1
|
Triposkiadis F, Briasoulis A, Starling RC, Magouliotis DE, Kourek C, Zakynthinos GE, Iliodromitis EK, Paraskevaidis I, Xanthopoulos A. Hereditary transthyretin amyloidosis (ATTRv). Curr Probl Cardiol 2025; 50:103019. [PMID: 39954876 DOI: 10.1016/j.cpcardiol.2025.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Hereditary transthyretin (TTR) amyloidosis (ATTRv amyloidosis) is a devastating disease characterized by broad range of clinical manifestations, including predominantly neurological, predominantly cardiac, and mixed phenotypes. This wide phenotypic variability hindered timely disease diagnosis and risk stratification in the past, especially in individuals with absent or uncharted family history. However, recent advances in noninvasive testing have led to greater awareness and earlier diagnosis. Further, medications have been discovered which proved effective in controlling the disease and improving outcomes including stabilizing TTR, silencing TTR variants, and removing TTR amyloid from affected tissues. Importantly, CRISPR gene editing, a groundbreaking technology, offers the unique potential to cure ATTRv amyloidosis, transforming lives and opening new doors in medical science. This review provides an update on ATTRv amyloidosis mechanisms, diagnosis, and management emphasizing the importance of early diagnosis as the steadfast underpinning for the capitalization of the advances in medical treatment to the benefit of the patients.
Collapse
Affiliation(s)
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Faculty of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Randall C Starling
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Dimitrios E Magouliotis
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA, 19096, USA
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, "Sotiria" Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | | | - Andrew Xanthopoulos
- School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus; Department of Cardiology, Faculty of Medicine, University Hospital of Larissa, 41110, Larissa, Greece
| |
Collapse
|
2
|
Yokoyama T, Kusaka K, Mizuguchi M, Nabeshima Y, Fujiwara S. Resveratrol Derivatives Inhibit Transthyretin Fibrillization: Structural Insights into the Interactions between Resveratrol Derivatives and Transthyretin. J Med Chem 2023; 66:15511-15523. [PMID: 37910439 DOI: 10.1021/acs.jmedchem.3c01698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hereditary ATTR amyloidosis is a disease caused by the deposition of amyloid fibrils formed by mutated transthyretin (TTR), a protein that binds to thyroid hormone in the serum, in the organs. The development of a small molecule that binds to and stabilizes TTR is a promising strategy for the treatment of ATTR amyloidosis. In the present study, we demonstrated that the resveratrol derivatives including pterostilbene available as a dietary supplement inhibit the fibrillization of V30M-TTR to the same extent as the approved drug tafamidis. Furthermore, based on a thermodynamic and X-ray crystallographic analysis, the binding of the resveratrol derivative to TTR was shown to be enthalpy-driven, with the binding enthalpy being acquired by hydrogen bonding to S117. Moreover, direct observation of hydrogen atoms by neutron crystallography provided details of the hydrogen bond network by S117 and emphasized the importance of the CH···π interaction by L110 in the ligand binding.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Katsuhiro Kusaka
- Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Satoru Fujiwara
- Institute for Quantum Biology, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
| |
Collapse
|
3
|
Hartmann J, Zacharias M. Analysis of amyloidogenic transthyretin mutations using continuum solvent free energy calculations. Proteins 2022; 90:2080-2090. [PMID: 35841533 DOI: 10.1002/prot.26399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/28/2022]
Abstract
Many proteins can undergo pathological conformational changes that result in the formation of amyloidogenic fibril structures. Various neurodegenerative diseases are associated with such pathological fibril formation of specific proteins. Transthyretin (TTR) is a tetrameric globular transport protein in the blood plasma that can dissociate, unfold, and form long and stable fibrils. Many TTR mutations are known that promote (TTR) amyloidosis and cause severe diseases. TTR amyloidosis has been studied extensively using biochemical methods and structures of various mutations in the globular form have been characterized. Recently, also the structure of a TTR fibril has been determined. In an effort to better understand why some mutations increase or decrease the tendency of amyloid formation, we have applied a combined molecular dynamics and continuum solvent approach to calculate the energetic influence of residue changes in the globular versus fibril form. For 29 out of 36 tested TTR single residue mutations, the approach correctly predicts the increased or decreased tendency for amyloidosis allowing us also to elucidate the origins of the tendency. We find that indeed the destabilization of the globular monomer or changes in dimer and tetramer stability due to mutation has a dominant influence on the amyloidogenic tendency. The continuum solvent model predicts a significantly more favorable mean energy per residue of the fibril form compared to the globular form. This effect is only slightly modulated by single-point mutations preserving the energetic preference for fibril formation upon protein unfolding. It explains why no correlation between experimental amyloidosis and calculated change in fibril stability was observed.
Collapse
Affiliation(s)
- Julian Hartmann
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Bavaria, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Bavaria, Germany
| |
Collapse
|
4
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
5
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
6
|
Srinivasan E, Natarajan N, Rajasekaran R. TTRMDB: A database for structural and functional analysis on the impact of SNPs over transthyretin (TTR) using bioinformatic tools. Comput Biol Chem 2020; 87:107290. [PMID: 32512488 DOI: 10.1016/j.compbiolchem.2020.107290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Hereditary Transthyretin-associated amyloidosis (ATTR) is an autosomal dominant protein-folding disorder with adult-onset caused by mutation of transthyretin (TTR). TTR is characterized by extracellular deposition of amyloid, leading to loss of autonomy and finally, death. More than 100 distinct mutations in TTR gene have been reported from variable age of onset, clinical expression and penetrance data. Besides, the cure for the disease remains still obscure. Further, the prioritizing of mutations concerning the characteristic features governing the stability and pathogenicity of TTR mutant proteins remains unanswered, to date and thus, a complex state of study for researchers. Herein, we provide a full report encompassing the effects of every reported mutant model of TTR protein about the stability, functionality and pathogenicity using various computational tools. In addition, the results obtained from our study were used to create TTRMDB (Transthyretin mutant database), which could be easy access to researchers at http://vit.ac.in/ttrmdb.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore 632014, Tamil Nadu, India
| | - Nandhini Natarajan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Loconte V, Menozzi I, Ferrari A, Folli C, Imbimbo BP, Zanotti G, Berni R. Structure-activity relationships of flurbiprofen analogues as stabilizers of the amyloidogenic protein transthyretin. J Struct Biol 2019; 208:165-173. [DOI: 10.1016/j.jsb.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
8
|
Li X, Lyu Y, Shen J, Mu Y, Qiang L, Liu L, Araki K, Imbimbo BP, Yamamura KI, Jin S, Li Z. Amyloid deposition in a mouse model humanized at the transthyretin and retinol-binding protein 4 loci. J Transl Med 2018; 98:512-524. [PMID: 29330472 DOI: 10.1038/s41374-017-0019-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
Familial amyloidotic polyneuropathy is an autosomal dominant disorder caused by a point mutation in the transthyretin (TTR) gene. The process of TTR amyloidogenesis begins with rate-limiting dissociation of the TTR tetramer. Thus, the TTR stabilizers, such as Tafamidis and Diflunisal, are now in clinical trials. Mouse models will be useful to testing the efficacy of these drugs. Although several mouse models have been generated, they all express mouse Rbp4. Thus, human TTR associates with mouse RBP4, resulting in different kinetic and thermodynamic stability profiles of TTR tetramers. To overcome this problem, we previously produced humanized mouse strains at both the TTR and Rbp4 loci (Ttr hTTRVal30 , Ttr hTTRMet30 , and Rbp4 hRBP4 ). By mating these mice, we produced double-humanized mouse strains, Ttr hTTRVal30/hTTRVal30 :Rbp4 hRBP4/hRBP4 and Ttr hTTRVal30/Met30 :Rbp4 hRBP4/hRBP4 . We used conventional transgenic mouse strains on a wild-type (Ttr +/+ :Tg[6.0hTTRMet30]) or knockout Ttr background (Ttr-/-:Tg[6.0hTTRMet30]) as reference strains. The double-humanized mouse showed 1/25 of serum hTTR and 1/40 of serum hRBP4 levels. However, amyloid deposition was more pronounced in Ttr hTTRVal30/Met30 :Rbp4 hRBP4/hRBP4 than in conventional transgenic mouse strains. In addition, a similar amount of amyloid deposition was also observed in Ttr hTTRVal30/ hTTRVal30 :Rbp4 hRBP4/ hRBP4 mice that carried the wild-type human TTR gene. Furthermore, amyloid deposition was first observed in the sciatic nerve without any additional genetic change. In all strains, anti-TTR antibody-positive deposits were found in earlier age and at higher percentage than amyloid fibril deposition. In double-humanized mice, gel filtration analysis of serum revealed that most hTTR was free of hRBP4, suggesting importance of free TTR for amyloid deposition.
Collapse
Affiliation(s)
- Xiangshun Li
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyi Lyu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Yanshuang Mu
- Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Lixia Qiang
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Kimi Araki
- Department of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | - Ken-Ichi Yamamura
- Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shoude Jin
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhenghua Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Zanotti G, Vallese F, Ferrari A, Menozzi I, Saldaño TE, Berto P, Fernandez-Alberti S, Berni R. Structural and dynamics evidence for scaffold asymmetric flexibility of the human transthyretin tetramer. PLoS One 2017; 12:e0187716. [PMID: 29240759 PMCID: PMC5730205 DOI: 10.1371/journal.pone.0187716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
The molecular symmetry of multimeric proteins is generally determined by using X-ray diffraction techniques, so that the basic question as to whether this symmetry is perfectly preserved for the same protein in solution remains open. In this work, human transthyretin (TTR), a homotetrameric plasma transport protein with two binding sites for the thyroid hormone thyroxine (T4), is considered as a case study. Based on the crystal structure of the TTR tetramer, a hypothetical D2 symmetry is inferred for the protein in solution, whose functional behavior reveals the presence of two markedly different Kd values for the two T4 binding sites. The latter property has been ascribed to an as yet uncharacterized negative binding cooperativity. A triple mutant form of human TTR (F87M/L110M/S117E TTR), which is monomeric in solution, crystallizes as a tetrameric protein and its structure has been determined. The exam of this and several other crystal forms of human TTR suggests that the TTR scaffold possesses a significant structural flexibility. In addition, TTR tetramer dynamics simulated using normal modes analysis exposes asymmetric vibrational patterns on both dimers and thermal fluctuations reveal small differences in size and flexibility for ligand cavities at each dimer-dimer interface. Such small structural differences between monomers can lead to significant functional differences on the TTR tetramer dynamics, a feature that may explain the functional heterogeneity of the T4 binding sites, which is partially overshadowed by the crystal state.
Collapse
Affiliation(s)
- Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- * E-mail:
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Ferrari
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilaria Menozzi
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Paola Berto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Rodolfo Berni
- Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Saldaño TE, Zanotti G, Parisi G, Fernandez-Alberti S. Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics. PLoS One 2017; 12:e0181019. [PMID: 28704493 PMCID: PMC5509292 DOI: 10.1371/journal.pone.0181019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state.
Collapse
Affiliation(s)
| | - Giuseppe Zanotti
- Department of Biomedical Science, University of Padua, Padova, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | |
Collapse
|
11
|
Qiang L, Guan Y, Li X, Liu L, Mu Y, Sugano A, Takaoka Y, Sakaeda T, Imbimbo BP, Yamamura KI, Jin S, Li Z. CSP-1103 (CHF5074) stabilizes human transthyretin in healthy human subjects. Amyloid 2017; 24:42-51. [PMID: 28393633 DOI: 10.1080/13506129.2017.1308348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary amyloid polyneuropathy is a type of protein misfolding disease. Transthyretin (TTR) is a homotetrameric serum protein and TTR tetramer dissociation is the limiting step in amyloid fibril formation. Thus, prevention of TTR dissociation is a promising therapeutic approach and some TTR stabilizers have been approved for the treatment of TTR amyloidosis. CSP-1103 (CHF5074) is a non-steroidal anti-inflammatory derivative that lacks cyclooxygenase inhibitory activity. In vitro, CSP-1103 stabilizes the TTR tetramer by binding to the thyroxine (T4) binding site. We have previously shown that serum TTR levels were increased by oral CSP-1103 administration through stabilization of TTR tetramers in humanized mice at both the Ttr locus and the Rbp4 locus. To determine whether CSP-1103 stabilizes TTR tetramers in humans, multiple CSP-1103 oral doses were administered for two weeks to 48 healthy human volunteers in a double-blind, placebo-controlled, parallel-group study. CSP-1103 treatment stabilized TTR tetramers in a dose-dependent manner under normal or denaturing stress conditions, thereby increasing serum TTR levels. Preincubation of serum with CSP-1103 or diflunisal in vitro increased the TTR tetramer stability. Computer simulation analysis revealed that the binding affinities of CSP-1103 with TTR at pH 7.0 were similar to those of tafamidis, thus confirming that CSP-1103 has potent TTR-stabilizing activity.
Collapse
Affiliation(s)
- Lixia Qiang
- a Division of Respiratory Disease , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China.,b Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto , Kumamoto , Japan
| | - Yanxia Guan
- a Division of Respiratory Disease , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xiangshun Li
- a Division of Respiratory Disease , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China.,b Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto , Kumamoto , Japan
| | - Li Liu
- b Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto , Kumamoto , Japan.,c Department of Histology and Embryology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Yanshuang Mu
- b Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto , Kumamoto , Japan
| | - Aki Sugano
- d Division of Medical Informatics and Bioinformatics , Kobe University Hospital , Kobe , Japan
| | - Yutaka Takaoka
- d Division of Medical Informatics and Bioinformatics , Kobe University Hospital , Kobe , Japan
| | - Toshiyuki Sakaeda
- e Department of Pharmacokinetics , Kyoto Pharmaceutical University , Kyoto , Japan
| | - Bruno P Imbimbo
- f Research and Development , Chiesi Farmaceutici , Parma , Italy
| | - Ken-Ichi Yamamura
- b Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto , Kumamoto , Japan
| | - Shoude Jin
- a Division of Respiratory Disease , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Zhenghua Li
- c Department of Histology and Embryology , Harbin Medical University , Harbin , Heilongjiang , China
| |
Collapse
|
12
|
Kheirbakhsh R, Chinisaz M, Amanpour S, Amini S, Khodayari S, Khodayari H, Dilmaghanian A, Haddadi M, Ebrahim-Habibi A. Turmeric effect on subcutaneous insulin-induced amyloid mass: anin vivostudy. Drug Chem Toxicol 2016; 40:1-6. [DOI: 10.3109/01480545.2016.1163575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Polsinelli I, Nencetti S, Shepard W, Ciccone L, Orlandini E, Stura EA. A new crystal form of human transthyretin obtained with a curcumin derived ligand. J Struct Biol 2016; 194:8-17. [PMID: 26796656 DOI: 10.1016/j.jsb.2016.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR), a 54kDa homotetrameric protein that transports thyroxine (T4), has been associated with clinical cases of TTR amyloidosis for its tendency to aggregate to form fibrils. Many ligands with a potential to inhibit fibril formation have been studied by X-ray crystallography in complex with TTR. Unfortunately, the ligand is often found in ambiguous electron density that is difficult to interpret. The ligand validation statistics suggest over-interpretation, even for the most active compounds like diflunisal. The primary technical reason is its position on a crystallographic 2-fold axis in the most common crystal form. Further investigations with the use of polyethylene glycol (PEG) to crystallize TTR complexes have resulted in a new trigonal polymorph with two tetramers in the asymmetric unit. The ligand used to obtain this new polymorph, 4-hydroxychalcone, is related to curcumin. Here we evaluate this crystal form to understand the contribution it may bring to the study of TTR ligands complexes, which are often asymmetric.
Collapse
Affiliation(s)
- Ivan Polsinelli
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - William Shepard
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Enrico A Stura
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif-sur-Yvette F-91191, France.
| |
Collapse
|
14
|
Florio P, Folli C, Cianci M, Del Rio D, Zanotti G, Berni R. Transthyretin Binding Heterogeneity and Anti-amyloidogenic Activity of Natural Polyphenols and Their Metabolites. J Biol Chem 2015; 290:29769-80. [PMID: 26468275 DOI: 10.1074/jbc.m115.690172] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Transthyretin (TTR) is an amyloidogenic protein, the amyloidogenic potential of which is enhanced by a number of specific point mutations. The ability to inhibit TTR fibrillogenesis is known for several classes of compounds, including natural polyphenols, which protect the native state of TTR by specifically interacting with its thyroxine binding sites. Comparative analyses of the interaction and of the ability to protect the TTR native state for polyphenols, both stilbenoids and flavonoids, and some of their main metabolites have been carried out. A main finding of this investigation was the highly preferential binding of resveratrol and thyroxine, both characterized by negative binding cooperativity, to distinct sites in TTR, consistent with the data of x-ray analysis of TTR in complex with both ligands. Although revealing the ability of the two thyroxine binding sites of TTR to discriminate between different ligands, this feature has allowed us to evaluate the interactions of polyphenols with both resveratrol and thyroxine preferential binding sites, by using resveratrol and radiolabeled T4 as probes. Among flavonoids, genistein and apigenin were able to effectively displace resveratrol from its preferential binding site, whereas genistein also showed the ability to interact, albeit weakly, with the preferential thyroxine binding site. Several glucuronidated polyphenol metabolites did not exhibit significant competition for resveratrol and thyroxine preferential binding sites and lacked the ability to stabilize TTR. However, resveratrol-3-O-sulfate was able to significantly protect the protein native state. A rationale for the in vitro properties found for polyphenol metabolites was provided by x-ray analysis of their complexes with TTR.
Collapse
Affiliation(s)
- Paola Florio
- From the Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Claudia Folli
- the Department of Food Science, University of Parma, 43124 Parma, Italy
| | - Michele Cianci
- the European Molecular Biology Laboratory, 22607 Hamburg, Germany, and
| | - Daniele Del Rio
- the Department of Food Science, University of Parma, 43124 Parma, Italy
| | - Giuseppe Zanotti
- the Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Rodolfo Berni
- From the Department of Life Sciences, University of Parma, 43124 Parma, Italy,
| |
Collapse
|
15
|
Chevillard F, Kolb P. SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability. J Chem Inf Model 2015; 55:1824-35. [PMID: 26282054 DOI: 10.1021/acs.jcim.5b00203] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
De novo drug design is widely assisted by computational approaches that enable the generation of a tremendous amount of new virtual molecules within a short time frame. While the novelty of the computationally generated compounds can easily be assessed, such approaches often neglect the synthetic feasibility of the molecules, thus creating a potential hurdle that can be a barrier to further investigation. Therefore, we have developed SCUBIDOO, a freely accessible database concept that currently holds 21 million virtual products originating from a small library of building blocks and a collection of robust organic reactions. This large data set was reduced to three representative and computationally tractable samples denoted as S, M, and L, containing 9994, 99,977, and 999,794 products, respectively. These small sets are useful as starting points for ligand identification and optimization projects. The generated products come with synthesis instructions and alerts of possible side reactions, and we show that they exhibit drug-like properties while still extending into unexplored quadrants of chemical space, thus suggesting novelty. We show multiple examples that demonstrate how SCUBIDOO can facilitate the search around initial hits. This database might be a useful idea generator for early ligand discovery projects since it allows a focus on those molecules that are likely to be synthetically feasible and can therefore be studied further. Together with its modular building block construction principle, this database is also suitable for structure-activity relationship studies or fragment-growing strategies.
Collapse
Affiliation(s)
- F Chevillard
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , 35032 Marburg, Germany
| | - P Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg , 35032 Marburg, Germany
| |
Collapse
|
16
|
Yokoyama T, Kosaka Y, Mizuguchi M. Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids. J Med Chem 2015; 58:7400-8. [PMID: 26322379 DOI: 10.1021/acs.jmedchem.5b00893] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Death-associated protein kinase 1 (DAPK1) is a 160 kDa serine/threonine protein kinase that belongs to the Ca(2+)/calmodulin-dependent protein kinase subfamily. DAPK1 is a possible target for the treatment of acute ischemic stroke and endometrial adenocarcinomas. In the present study, we investigated the binding characteristics of 17 natural flavonoids to DAPK1 using a 1-anilinonaphthalene-8-sulfonic acid competitive binding assay and revealed that morin was the strongest binder among the selected compounds. The crystallographic analysis of DAPK1 and 7 selected flavonoid complexes revealed the structure-binding affinity relationship in atomic-level detail. It was suggested that the high affinity of morin could be accounted for by the ionic interaction between 2'-OH and K42 and that such an interaction would not take place with either cyclin-dependent protein kinases or PIM kinases because of their broader entrance regions. Thus, morin would be a more selective inhibitor of DAPK1 than either of these other types of kinases. In addition, we found that the binding of kaempferol to DAPK1 was associated with a chloride ion. The present study provides a better understanding of the molecular properties of the ATP site of DAPK1 and may be useful for the design of specific DAPK1 inhibitors.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Yuto Kosaka
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| |
Collapse
|
17
|
Discovery of γ-Mangostin as an Amyloidogenesis Inhibitor. Sci Rep 2015; 5:13570. [PMID: 26310724 PMCID: PMC4550876 DOI: 10.1038/srep13570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein involved in human hereditary amyloidoses. The discovery and development of small molecules that inhibit the amyloid fibril formation of TTR is one of the therapeutic strategies for these diseases. Herein, we discovered that γ-mangostin (γ-M) is an effective inhibitor against the amyloid fibril formation of V30M amyloidogenic TTR. In-vitro binding assays revealed that γ-M was the most potent of the selected xanthone derivatives, and it bound to the thyroxine (T4)-binding sites and stabilized the TTR tetramer. X-ray crystallographic analysis revealed the diagonal binding mode of γ-M and the two binding sites of chloride ions at the T4-binding site. One of the chloride ions was replaced with a water molecule in the α-mangostin complex, which is a methylated derivative of γ-M. The stronger inhibitory potency of γ-M could be explained by the additional hydrogen bonds with the chloride ion. The present study establishes γ-M as a novel inhibitor of TTR fibrillization.
Collapse
|
18
|
Cianci M, Folli C, Zonta F, Florio P, Berni R, Zanotti G. Structural evidence for asymmetric ligand binding to transthyretin. ACTA ACUST UNITED AC 2015; 71:1582-92. [DOI: 10.1107/s1399004715010585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
Human transthyretin (TTR) represents a notable example of an amyloidogenic protein, and several compounds that are able to stabilize its native state have been proposed as effective drugs in the therapy of TTR amyloidosis. The two thyroxine (T4) binding sites present in the TTR tetramer display negative binding cooperativity. Here, structures of TTR in complex with three natural polyphenols (pterostilbene, quercetin and apigenin) have been determined, in which this asymmetry manifests itself as the presence of a main binding site with clear ligand occupancy and related electron density and a second minor site with a much lower ligand occupancy. The results of an analysis of the structural differences between the two binding sites are consistent with such a binding asymmetry. The different ability of TTR ligands to saturate the two T4 binding sites of the tetrameric protein can be ascribed to the different affinity of ligands for the weaker binding site. In comparison, the high-affinity ligand tafamidis, co-crystallized under the same experimental conditions, was able to fully saturate the two T4 binding sites. This asymmetry is characterized by the presence of small but significant differences in the conformation of the cavity of the two binding sites. Molecular-dynamics simulations suggest the presence of even larger differences in solution. Competition binding assays carried out in solution revealed the presence of a preferential binding site in TTR for the polyphenols pterostilbene and quercetin that was different from the preferential binding site for T4. The TTR binding asymmetry could possibly be exploited for the therapy of TTR amyloidosis by using a cocktail of two drugs, each of which exhibits preferential binding for a distinct binding site, thus favouring saturation of the tetrameric protein and consequently its stabilization.
Collapse
|
19
|
Mu Y, Jin S, Shen J, Sugano A, Takaoka Y, Qiang L, Imbimbo BP, Yamamura KI, Li Z. CHF5074 (CSP-1103) stabilizes human transthyretin in mice humanized at the transthyretin and retinol-binding protein loci. FEBS Lett 2015; 589:849-56. [PMID: 25728271 DOI: 10.1016/j.febslet.2015.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
Abstract
Familial amyloidotic polyneuropathy is one type of protein misfolding disease. Transthyretin (TTR) tetramer dissociation is the limiting step for amyloid fibril formation. CHF5074 (CSP-1103) stabilizes TTR tetramer in vitro by binding to the T4 binding site. Here, we used three strains of double humanized mice (mTtr(hTTRVal30/hTTRVal30), mTtr(hTTRVal30/hTTRMet30), and mTtr(hTTRMet30/hTTRMet30)) to assess whether CHF5074 stabilizes TTR tetramers in vivo. Treatment of mice with CHF5074 increased serum TTR levels by stabilizing TTR tetramers. Although the binding affinities of CHF5074 and diflunisal with TTRMet30 were similar, CHF5074 bound TTRVal30 more strongly than did diflunisal, suggesting the potent TTR-stabilizing activity of CHF5074.
Collapse
Affiliation(s)
- Yanshuang Mu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan; College of Life Sciences, Northeast Agriculture University, Harbin, China
| | - Shoude Jin
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Aki Sugano
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Lixia Qiang
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | - Ken-ichi Yamamura
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Zhenghua Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, China; Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
20
|
Transthyretin complexes with curcumin and bromo-estradiol: evaluation of solubilizing multicomponent mixtures. N Biotechnol 2014; 32:54-64. [PMID: 25224922 DOI: 10.1016/j.nbt.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 12/15/2022]
Abstract
Crystallographic structure determination of protein-ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the poor solubility of many compounds that have been shown to inhibit amyloid fibril formation. To achieve complete occupancy in co-crystallization experiments, the minimal requirement is one ligand for each of the two sites within the TTR tetramer. Here we present a new strategy for the co-crystallization of TTR using high molecular weight polyethylene glycol instead of high ionic strength precipitants, with ligands solubilized in multicomponent mixtures of compounds. This strategy is applied to the crystallization of TTR complexes with curcumin and 16α-bromo-estradiol. Here we report the crystal structures with these compounds and with the ferulic acid that results from curcumin degradation.
Collapse
|
21
|
Yokoyama T, Kosaka Y, Mizuguchi M. Crystal Structures of Human Transthyretin Complexed with Glabridin. J Med Chem 2014; 57:1090-6. [DOI: 10.1021/jm401832j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical
Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Yuto Kosaka
- Faculty of Pharmaceutical
Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical
Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0914, Japan
| |
Collapse
|