1
|
Ghamari S, Chiarelli G, Kołątaj K, Subramanian S, Acuna GP, Vollmer F. Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:253-262. [PMID: 39927203 PMCID: PMC11806501 DOI: 10.1515/nanoph-2024-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
The integration of DNA origami structures with opto-plasmonic whispering gallery mode (WGM) sensors offers a significant advancement in label-free biosensing, overcoming the limitations of traditional fluorescence-based techniques, and providing enhanced sensitivity and specificity for detecting DNA hybridization events. In this study, DNA origami acts as a scaffold for the precise assembly of plasmonic dimers, composed of gold nanorods (AuNRs), which amplify detection sensitivity by generating strong near-field enhancements in the nanogap between the nanorods. By leveraging the strong electromagnetic fields generated within the nanogap of the plasmonic dimer, this platform enables the detection of transient hybridization events between DNA docking strands and freely diffusing complementary sequences. Our findings demonstrate that the salt concentration critically influences DNA hybridization kinetics. Higher ionic strengths reduce electrostatic repulsion between negatively charged DNA strands, thereby stabilizing duplex formation and prolonging interaction times. These effects are most pronounced at salt concentrations around 300-500 mM, where optimal conditions for duplex stability and reduced dissociation rates are achieved. By thoroughly investigating the hybridization kinetics under varying environmental conditions, this study contributes to a deeper understanding of DNA interactions and offers a robust tool for single-molecule detection with real-time capabilities.
Collapse
Affiliation(s)
- Shahin Ghamari
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700Fribourg, Switzerland
| | - Sivaraman Subramanian
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Guillermo P. Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700Fribourg, Switzerland
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
2
|
Adamczyk AK, Huijben TAPM, Sison M, Di Luca A, Chiarelli G, Vanni S, Brasselet S, Mortensen KI, Stefani FD, Pilo-Pais M, Acuna GP. DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation. ACS NANO 2022; 16:16924-16931. [PMID: 36065997 DOI: 10.1021/acsnano.2c06936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.
Collapse
Affiliation(s)
- Aleksandra K Adamczyk
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Teun A P M Huijben
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark
| | - Miguel Sison
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France
| | - Kim I Mortensen
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQDCiudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHACiudad Autónoma de Buenos Aires, Argentina
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| |
Collapse
|
3
|
Kelm A, Ostapko J, Gajewska A, Sánchez-Iglesias A, Waluk J. Spectral and photophysical modifications of porphyrins attached to core-shell nanoparticles. Theory and experiment. Methods Appl Fluoresc 2021; 9. [PMID: 34256360 DOI: 10.1088/2050-6120/ac1400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022]
Abstract
Plasmonic nanostructures, of which gold nanoparticles are the most elementary example, owe their unique properties to localized surface plasmons (LSP), the modes of free electron oscillation. LSP alter significantly electromagnetic field in the nanostructure neighborhood (i.e., near-field), which can modify the electric dipole transition rates in organic emitters. This study aims at investigating the influence of Au@SiO2core-shell nanoparticles on the photophysics of porphyrins covalently attached to the nanoparticles surface. Guided by theoretical predictions, three sets of gold nanoparticles of different sizes were coated with a silica layer of similar thickness. The outer silica surface was functionalized with either free-basemeso-tetraphenylporphyrin or its zinc complex. Absorption and emission bands of porphyrin overlap in energy with a gold nanoparticle LSP resonance that provides the field enhancement. Silica separates the emitters from the gold surface, while the gold core size tunes the energy of the LSP resonance. The signatures of weak-coupling regime have been observed. Apart from modified emission profiles and shortened S1lifetimes, Q band part intensity of the excitation spectra significantly increased with respect to the Soret band. The results were explained using classical transfer matrix simulations and electronic states kinetics, taking into account the photophysical properties of each chromophore. The calculations could reasonably well predict and explain the experimental outcomes. The discrepancies between the two were discussed.
Collapse
Affiliation(s)
- A Kelm
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - J Ostapko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - A Gajewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - A Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - J Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
4
|
Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 2019; 14:e0222964. [PMID: 31600217 PMCID: PMC6786550 DOI: 10.1371/journal.pone.0222964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
In single molecule fluorescence studies, background emission from labeled substrates often restricts their concentrations to non-physiological nanomolar values. One approach to address this challenge is the use of zero-mode waveguides (ZMWs), nanoscale holes in a thin metal film that physically and optically confine the observation volume allowing much higher concentrations of fluorescent substrates. Standard fabrication of ZMWs utilizes slow and costly E-beam nano-lithography. Herein, ZMWs are made using a self-assembled mask of polystyrene microspheres, enabling fabrication of thousands of ZMWs in parallel without sophisticated equipment. Polystyrene 1 μm dia. microbeads self-assemble on a glass slide into a hexagonal array, forming a mask for the deposition of metallic posts in the inter-bead interstices. The width of those interstices (and subsequent posts) is adjusted within 100–300 nm by partially fusing the beads at the polystyrene glass transition temperature. The beads are dissolved in toluene, aluminum or gold cladding is deposited around the posts, and those are dissolved, leaving behind an array ZMWs. Parameter optimization and the performance of the ZMWs are presented. By using colloidal self-assembly, typical laboratories can make use of sub-wavelength ZMW technology avoiding the availability and expense of sophisticated clean-room environments and equipment.
Collapse
|
5
|
Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically. SCOPE OF REVIEW This paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy. MAJOR CONCLUSIONS smFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| |
Collapse
|
6
|
Bohlen J, Cuartero-González Á, Pibiri E, Ruhlandt D, Fernández-Domínguez AI, Tinnefeld P, Acuna GP. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. NANOSCALE 2019; 11:7674-7681. [PMID: 30946424 DOI: 10.1039/c9nr01204d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Metallic nanoparticles were shown to affect Förster energy transfer between fluorophore pairs. However, to date, the net plasmonic effect on FRET is still under dispute, with experiments showing efficiency enhancement and reduction. This controversy is due to the challenges involved in the precise positioning of FRET pairs in the near field of a metallic nanostructure, as well as in the accurate characterization of the plasmonic impact on the FRET mechanism. Here, we use the DNA origami technique to place a FRET pair 10 nm away from the surface of gold nanoparticles with sizes ranging from 5 to 20 nm. In this configuration, the fluorophores experience only moderate plasmonic quenching. We use the acceptor bleaching approach to extract the FRET rate constant and efficiency on immobilized single FRET pairs based solely on the donor lifetime. This technique does not require a posteriori correction factors neither a priori knowledge of the acceptor quantum yield, and importantly, it is performed in a single spectral channel. Our results allow us to conclude that, despite the plasmon-assisted Purcell enhancement experienced by donor and acceptor partners, the gold nanoparticles in our samples have a negligible effect on the FRET rate, which in turns yields a reduction of the transfer efficiency.
Collapse
Affiliation(s)
- J Bohlen
- Institute for Physical and Theoretical Chemistry - NanoBioScience and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The predictable nature of DNA interactions enables the programmable assembly of highly advanced 2D and 3D DNA structures of nanoscale dimensions. The access to ever larger and more complex structures has been achieved through decades of work on developing structural design principles. Concurrently, an increased focus has emerged on the applications of DNA nanostructures. In its nature, DNA is chemically inert and nanostructures based on unmodified DNA mostly lack function. However, functionality can be obtained through chemical modification of DNA nanostructures and the opportunities are endless. In this review, we discuss methodology for chemical functionalization of DNA nanostructures and provide examples of how this is being used to create functional nanodevices and make DNA nanostructures more applicable. We aim to encourage researchers to adopt chemical modifications as part of their work in DNA nanotechnology and inspire chemists to address current challenges and opportunities within the field.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Hu J, Wu M, Jiang L, Zhong Z, Zhou Z, Rujiralai T, Ma J. Combining gold nanoparticle antennas with single-molecule fluorescence resonance energy transfer (smFRET) to study DNA hairpin dynamics. NANOSCALE 2018; 10:6611-6619. [PMID: 29578224 DOI: 10.1039/c7nr08397a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of a plasmonic nano-antenna with single-molecule FRET technique presents new prospects to investigate the dynamics of biological molecules. However, the presence of a plasmonic nano-antenna significantly modifies the FRET rate and efficiency; this makes its applicability to the prevalent single-molecule FRET experiments unclear. Herein, using gold nanoparticle antennas of different sizes and DNA hairpins labelled with FRET pairs (Cy3 and Cy5) as the model system, we performed experiments to study the folding dynamics of single DNA hairpins at various salt concentrations. Our results indicate that gold nanoparticle antennas can enhance single-molecule fluorescence of Cy3 and Cy5 up to 3-5 folds, substantially reduce the FRET efficiency, and alter the obtained FRET efficiency histograms. However, the folding dynamics of DNA hairpins remains unaffected, and the correct kinetic and dynamic information can still be extracted from the seriously modified FRET efficiencies. Therefore, our experiments demonstrate the feasibility and compatibility for applying plasmonic nano-antennas to the mostly used single-molecule FRET assays, which provide a broad range of possibilities for the future applications of these nano-antennas in studying various essential biological processes.
Collapse
Affiliation(s)
- Jinyong Hu
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pfeifer W, Saccà B. Synthetic DNA filaments: from design to applications. Biol Chem 2018; 399:773-785. [DOI: 10.1515/hsz-2018-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/25/2018] [Indexed: 01/06/2023]
Abstract
Abstract
Natural filaments, such as microtubules and actin filaments, are fundamental components of the cell. Despite their relatively simple linear structure, filaments play a number of crucial roles in living organisms, from scaffolding to cellular adhesion and motility. The mechanical properties of natural filaments mostly rely on the structural features of the component units and on the way they are connected together, thus providing an ideal molecular model for emulation purposes. In this review, we describe the progresses done in this field using DNA for the rational design of synthetic filamentous-like materials with tailored structural and physical characteristics. We firstly survey the strategies that have been adopted until now for the construction of individual DNA building components and their programmable self-assembly into linear oligomeric structures. We then describe the theoretical models of polymer elasticity applied to calculate the bending strength of DNA filaments, expressed in terms of persistence length. Finally, we report some of the most exciting examples of truly biomimetic DNA filaments, which are capable of mimicking not only the sophisticated structural features of their natural counterparts but also their responsiveness to external stimuli, thus resulting in active motion and growing networks between distant loci.
Collapse
Affiliation(s)
- Wolfgang Pfeifer
- Centre for Medical Biotechnology (ZMB) and Centre for Nano Integration Duisburg-Essen (CENIDE) , University of Duisburg-Essen, Universitätstraße 2 , D-45117 Essen , Germany
| | - Barbara Saccà
- Centre for Medical Biotechnology (ZMB) and Centre for Nano Integration Duisburg-Essen (CENIDE) , University of Duisburg-Essen, Universitätstraße 2 , D-45117 Essen , Germany
| |
Collapse
|
10
|
Vietz C, Kaminska I, Sanz Paz M, Tinnefeld P, Acuna GP. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas. ACS NANO 2017; 11:4969-4975. [PMID: 28445644 DOI: 10.1021/acsnano.7b01621] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.
Collapse
Affiliation(s)
- Carolin Vietz
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Izabela Kaminska
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University , Grudziadzka 5, 87-100 Torun, Poland
| | - Maria Sanz Paz
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Guillermo P Acuna
- Institute for Physical and Theoretical Chemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Ray K, Badugu R, Szmacinski H, Lakowicz JR. Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticle-dielectric-metal substrate. Chem Commun (Camb) 2016; 51:15023-6. [PMID: 26312260 DOI: 10.1039/c5cc03581c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We observed over 400-fold enhanced fluorescence from single Cy5 molecules assembled on multilayer silver nanoparticle-dielectric-metal (PDM) substrate. This substantial enhancement is due to the near-field enhanced excitation, emission, and interaction of Cy5 with plasmonic nanostructures. Experimental observation is supported by finite-element method calculations.
Collapse
Affiliation(s)
- Krishanu Ray
- Centre for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
12
|
Banterle N, Lemke EA. Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol 2016; 39:105-112. [PMID: 26990172 PMCID: PMC7611743 DOI: 10.1016/j.copbio.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/07/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) can offer favorably high signal-to-noise observation of biological mechanisms. TIRFM can be used routinely to observe even single fluorescent molecules for a long duration (several seconds) at millisecond time resolution. However, to keep the investigated sample in the evanescent field, chemical surface immobilization techniques typically need to be implemented. In this review, we describe some of the recently developed novel nanodevices that overcome this limitation enabling long-term observation of free single molecules and outline their biological applications. The working concept of many devices is compatible with high-throughput strategies, which will further help to establish unbiased single molecule observation as a routine tool in biology to study the molecular underpinnings of even the most complex biological mechanisms.
Collapse
Affiliation(s)
- Niccolò Banterle
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
Puchkova A, Vietz C, Pibiri E, Wünsch B, Sanz Paz M, Acuna GP, Tinnefeld P. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. NANO LETTERS 2015; 15:8354-9. [PMID: 26523768 DOI: 10.1021/acs.nanolett.5b04045] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Optical nanoantennas are known to focus freely propagating light and reversely to mediate the emission of a light source located at the nanoantenna hotspot. These effects were previously exploited for fluorescence enhancement and single-molecule detection at elevated concentrations. We present a new generation of self-assembled DNA origami based optical nanoantennas with improved robustness, reduced interparticle distance, and optimized quantum-yield improvement to achieve more than 5000-fold fluorescence enhancement and single-molecule detection at 25 μM background fluorophore concentration. Besides outperforming lithographic optical antennas, DNA origami nanoantennas are additionally capable of incorporating single emitters or biomolecular assays at the antenna hotspot.
Collapse
Affiliation(s)
- Anastasiya Puchkova
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Carolin Vietz
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Enrico Pibiri
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Bettina Wünsch
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - María Sanz Paz
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Guillermo P Acuna
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Schulz S, Kramm K, Werner F, Grohmann D. Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation. Methods 2015; 86:10-8. [PMID: 25912642 DOI: 10.1016/j.ymeth.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 10/24/2022] Open
Abstract
The transcriptional apparatus is one of the most complex cellular machineries and in order to fully appreciate the behavior of these protein-nucleic acid assemblies one has to understand the molecular details of the system. In addition to classical biochemical and structural studies, fluorescence-based techniques turned out as an important--and sometimes the critical--tool to obtain information about the molecular mechanisms of transcription. Fluorescence is not only a multi-modal parameter that can report on molecular interactions, environment and oligomerization status. Measured on the single-molecule level it also informs about the heterogeneity of the system and gives access to distances and distance changes in the molecular relevant nanometer regime. A pre-requisite for fluorescence-based measurements is the site-specific incorporation of one or multiple fluorescent dyes. In this respect, the archaeal transcription system is ideally suited as it is available in a fully recombinant form and thus allows for site-specific modification via sophisticated labeling schemes. The application of fluorescence based approaches to the archaeal transcription apparatus changed our understanding of the molecular mechanisms and dynamics that drive archaeal transcription and unraveled the architecture of transcriptional complexes not amenable to structural interrogation.
Collapse
Affiliation(s)
- Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Kevin Kramm
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Finn Werner
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St, London WC1E 6BT, UK
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany.
| |
Collapse
|
15
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|