1
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
2
|
Ogura M, Endo K, Suzuki T, Homma Y. Prenylated quinolinecarboxylic acid compound-18 prevents sensory nerve fiber outgrowth through inhibition of the interleukin-31 pathway. PLoS One 2021; 16:e0246630. [PMID: 33539470 PMCID: PMC7861556 DOI: 10.1371/journal.pone.0246630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/25/2021] [Indexed: 11/24/2022] Open
Abstract
Interleukin-31 (IL-31) is involved in excessive development of cutaneous sensory nerves in atopic dermatitis (AD), leading to severe pruritus. We previously reported that PQA-18, a prenylated quinolinecarboxylic acid (PQA) derivative, is an immunosuppressant with inhibition of p21-activated kinase 2 (PAK2) and improves skin lesions in Nc/Nga mice as an AD model. In the present study, we investigate the effect of PQA-18 on sensory nerves in lesional skin. PQA-18 alleviates cutaneous nerve fiber density in the skin of Nc/Nga mice. PQA-18 also inhibits IL-31-induced sensory nerve fiber outgrowth in dorsal root ganglion cultures. Signaling analysis reveals that PQA-18 suppresses phosphorylation of PAK2, Janus kinase 2, and signal transducer and activator of transcription 3 (STAT3), activated by IL-31 receptor (IL-31R), resulting in inhibition of neurite outgrowth in Neuro2A cells. Gene silencing analysis for PAK2 confirms the requirement for STAT3 phosphorylation and neurite outgrowth elicited by IL-31R activation. LC/MS/MS analysis reveals that PQA-18 prevents the formation of PAK2 activation complexes induced by IL-31R activation. These results suggest that PQA-18 inhibits the IL-31 pathway through suppressing PAK2 activity, which suppresses sensory nerve outgrowth. PQA-18 may be a valuable lead for the development of a novel drug for pruritus of AD.
Collapse
Affiliation(s)
- Masato Ogura
- Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail:
| | - Kumiko Endo
- Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshiyuki Suzuki
- Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshimi Homma
- Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
3
|
Guedouari H, Ould Amer Y, Pichaud N, Hebert-Chatelain E. Characterization of the interactome of c-Src within the mitochondrial matrix by proximity-dependent biotin identification. Mitochondrion 2021; 57:257-269. [PMID: 33412331 DOI: 10.1016/j.mito.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
C-Src kinase is localized in several subcellular compartments, including mitochondria where it is involved in the regulation of organelle functions and overall metabolism. Surprisingly, the characterization of the intramitochondrial Src interactome has never been fully determined. Using in vitro proximity-dependent biotin identification (BioID) coupled to mass spectrometry, we identified 51 candidate proteins that may interact directly or indirectly with c-Src within the mitochondrial matrix. Pathway analysis suggests that these proteins are involved in a large array of mitochondrial functions such as protein folding and import, mitochondrial organization and transport, oxidative phosphorylation, tricarboxylic acid cycle and metabolism of amino and fatty acids. Among these proteins, we identified 24 tyrosine phosphorylation sites in 17 mitochondrial proteins (AKAP1, VDAC1, VDAC2, VDAC3, LonP1, Hsp90, SLP2, PHB2, MIC60, UBA1, EF-Tu, LRPPRC, ACO2, OAT, ACAT1, ETFβ and ATP5β) as potential substrates for intramitochondrial Src using in silico prediction of tyrosine phospho-sites. Interaction of c-Src with SLP2 and ATP5β was confirmed using coimmunoprecipitation. This study suggests that the intramitochondrial Src could target several proteins and regulate different mitochondrial functions.
Collapse
Affiliation(s)
- Hala Guedouari
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Yasmine Ould Amer
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada
| | - Nicolas Pichaud
- University of Moncton, Dept. of Chemistry and Biochemistry, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada; University of Moncton, Dept. of Biology, Moncton, NB, Canada.
| |
Collapse
|
4
|
Prenylated quinolinecarboxylic acid derivative prevents neuronal cell death through inhibition of MKK4. Biochem Pharmacol 2018; 162:109-122. [PMID: 30316820 DOI: 10.1016/j.bcp.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
The development of neuroprotective agents is necessary for the treatment of neurodegenerative diseases. Here, we report PQA-11, a prenylated quinolinecarboxylic acid (PQA) derivative, as a potent neuroprotectant. PQA-11 inhibits glutamate-induced cell death and caspase-3 activation in hippocampal cultures, as well as inhibits N-Methyl-4-phenylpyridinium iodide- and amyloid β1-42-induced cell death in SH-SY5Y cells. PQA-11 also suppresses mitogen-activated protein kinase kinase 4 (MKK4) and c-jun N-terminal kinase (JNK) signaling activated by these neurotoxins. Quartz crystal microbalance analysis and in vitro kinase assay reveal that PQA-11 interacts with MKK4, and inhibits its sphingosine-induced activation. The administration of PQA-11 by intraperitoneal injection alleviates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopaminergic neurons in mice. These results suggest that PQA-11 is a unique MKK4 inhibitor with potent neuroprotective effects in vitro and in vivo. PQA-11 may be a valuable lead for the development of novel neuroprotectants.
Collapse
|
5
|
Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D. c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS One 2018; 13:e0196230. [PMID: 29723216 PMCID: PMC5933793 DOI: 10.1371/journal.pone.0196230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Studies have demonstrated that the solute carrier family 11 member 1 (SLC11A1) is heavily glycosylated and phosphorylated in macrophages. However, the mechanisms of SLC11A1 phosphorylation, and the effects of phosphorylation on SLC11A1 activity remain largely unknown. Here, the tyrosine phosphorylation of SLC11A1 is observed in SLC11A1-expressing U937 cells when differentiated into macrophages by phorbol myristate acetate (PMA). The phosphorylation of SLC11A1 is almost completely blocked by treatment with PP2, a selective inhibitor of Src family kinases. Furthermore, we found that SLC11A1 is a direct substrate for active c-Src kinase and siRNA-mediated knockdown of cellular Src (c-Src) expression results in a significant decrease in tyrosine phosphorylation. We found that PMA induces the interaction of SLC11A1 with c-Src kinase. We demonstrated that SLC11A1 is phosphorylated by Src family kinases at tyrosine 15 and this type of phosphorylation is required for SLC11A1-mediated modulation of NF-κB activation and nitric oxide (NO) production induced by LPS. Our results demonstrate important roles for c-Src tyrosine kinase in phosphorylation and activation of SLC11A1 in macrophages.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shao Tao
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
6
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
7
|
Ogura M, Inoue T, Yamaki J, Homma MK, Kurosaki T, Homma Y. Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice. Eur J Immunol 2016; 47:406-418. [DOI: 10.1002/eji.201646342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Masato Ogura
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center and Graduate School of Frontier Biosciences; Osaka University; Suita, Osaka Japan
| | - Junko Yamaki
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Miwako K. Homma
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International Immunology Frontier Research Center and Graduate School of Frontier Biosciences; Osaka University; Suita, Osaka Japan
- Laboratory for Lymphocyte Differentiation; RIKEN Center for Integrative Medical Sciences; Tsurumi-ku, Yokohama Kanagawa Japan
| | - Yoshimi Homma
- Department of Biomolecular Science; Fukushima Medical University School of Medicine; Fukushima Japan
| |
Collapse
|
8
|
Ogura M, Kikuchi H, Suzuki T, Yamaki J, Homma MK, Oshima Y, Homma Y. Prenylated quinolinecarboxylic acid derivative suppresses immune response through inhibition of PAK2. Biochem Pharmacol 2016; 105:55-65. [DOI: 10.1016/j.bcp.2016.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
|
9
|
Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, Putluri V, Bhat VB, Bhowmik SK, Gupta V, Arora K, Wu D, Tsouko E, Zhang Y, Maity S, Donti TR, Graham BH, Frigo DE, Coarfa C, Yotnda P, Putluri N, Sreekumar A, Lewis MT, Creighton CJ, Wong LJC, Kaipparettu BA. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Rep 2016; 14:2154-2165. [PMID: 26923594 DOI: 10.1016/j.celrep.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/19/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Transmitochondrial cybrids and multiple OMICs approaches were used to understand mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple-negative breast cancer (TNBC). Analysis of cybrids and established breast cancer (BC) cell lines showed that metastatic TNBC maintains high levels of ATP through fatty acid β oxidation (FAO) and activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including the knocking down of carnitine palmitoyltransferase-1A (CPT1) and 2 (CPT2), the rate-limiting proteins of FAO, and analysis of patient-derived xenograft models confirmed the role of mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation and their significance in BC metastasis.
Collapse
Affiliation(s)
- Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sajna Vithayathil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Santosh Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pi-Lin Sung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Clinical Medicine, National Yang-Ming University and Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | | | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Salil Kumar Bhowmik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vineet Gupta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kavisha Arora
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danli Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suman Maity
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Taraka R Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Yotnda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Wu H, Shi Y, Deng X, Su Y, Du C, Wei J, Ren Y, Wu M, Hou Y, Duan H. Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Mol Cell Endocrinol 2015; 417:27-35. [PMID: 26363223 DOI: 10.1016/j.mce.2015.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/05/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
Renal tubular epithelial cells (RTEC) apoptosis, which plays a key role in the pathogenesis and progression of diabetic nephropathy (DN), is believed to be contributive to the hyperglycemia-induced kidney failure, though the exact mechanisms remain elusive. In this study, we investigated how inhibition of c-Src/p38 MAPK pathway would affect RTEC apoptosis. The c-Src inhibitor PP2 i.p. administered every other day for 8 weeks to diabetic db/db mice significantly reduced their kidney weights, daily urinary volumes, blood glucose, blood urea nitrogen, serum creatinine, triglyceride and urine albumin excretion, whereas deactivation of c-Src and p38 MAPK were also observed, along with decreases in both Bax/Bcl-2 ratio and cleaved caspase-3 level in the kidneys. In vitro, exposure of HK-2 cells (a human RTEC line), to high glucose (HG) promoted phosphorylation of c-Src and p38 MAPK, and subsequently, as revealed by western blotting, TUNEL assay and flow cytometry, increased cell death, which can be inhibited by PP2. Especially, a specific p38 MAPK inhibitor, SB203580, that both attenuated HG-induced c-Src activation and abrogated the expression of PPARγ and CHOP, also reduced apoptosis. Taken together, PP2 inhibits c-Src and therefore reduces apoptosis in RTEC, which at least in part, is due to suppressed p38 MAPK activation in diabetic kidney.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Xinna Deng
- Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London Health Sciences Centre, Department of Medicine, and Pathology, University of Western Ontario, London, Ontario, Canada
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Yanjuan Hou
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhufang, China.
| |
Collapse
|
11
|
Grancara S, Zonta F, Ohkubo S, Brunati AM, Agostinelli E, Toninello A. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation. Amino Acids 2015; 47:869-83. [PMID: 25792113 DOI: 10.1007/s00726-015-1964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Viale U. Bassi 58B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Suzuki T, Kikuchi H, Ogura M, Homma MK, Oshima Y, Homma Y. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold. PLoS One 2015; 10:e0117088. [PMID: 25668511 PMCID: PMC4323345 DOI: 10.1371/journal.pone.0117088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/19/2014] [Indexed: 01/06/2023] Open
Abstract
Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980–8678, Japan
| | - Masato Ogura
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Miwako K. Homma
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980–8678, Japan
| | - Yoshimi Homma
- Fukushima Medical University School of Medicine, Fukushima, 960–1295, Japan
- * E-mail:
| |
Collapse
|