1
|
Majeed A, Sharma V, Ul Rehman W, Kaur A, Das S, Joseph J, Singh A, Bhardwaj P. Comprehensive Codon Usage Analysis Across Diverse Plant Lineages. Biochem Genet 2025:10.1007/s10528-025-11053-y. [PMID: 39966258 DOI: 10.1007/s10528-025-11053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
The variation of codon usage patterns in response to the evolution of organisms is an intriguing question to answer. This study investigated the relevance of the evolutionary events of vascularization and seed production with the codon usage patterns in different plant lineages. We found that the optimal codons of non-vascular lineages generally end with GC, whereas those of the vascular lineages end with AU. Correspondence analysis and model-based clustering showed that the evolution of the codon usage pattern follows the evolutionary event of the vascularization more precisely than that of the seed production. The dinucleotides CpG and TpA were under-represented in all the lineages, whereas the dinucleotide TpG was found over-represented in all the lineages, except algae. Evolutionary-related lineages showed similar codon pair bias. The dinucleotide CpA showed a similar representation as those of its parent codon pairs. Although natural selection predominates over mutational pressure in determining the codon usage bias, the relative influence of mutational pressure is higher in the non-vascular lineages than those in the vascular lineages.
Collapse
Affiliation(s)
- Aasim Majeed
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Vikas Sharma
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Wahid Ul Rehman
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Amitozdeep Kaur
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Sreemoyee Das
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Josepheena Joseph
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Amandeep Singh
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India
| | - Pankaj Bhardwaj
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, VPO Ghudda, Distt. Bathinda, Punjab, 151401, India.
| |
Collapse
|
2
|
Kodama Y, Fujishima M. Effects of the Symbiotic Chlorella variabilis on the Host Ciliate Paramecium bursaria Phenotypes. Microorganisms 2024; 12:2537. [PMID: 39770740 PMCID: PMC11678095 DOI: 10.3390/microorganisms12122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Paramecium bursaria, a ciliated protist, forms a symbiotic relationship with the green alga Chlorella variabilis. This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside in specialized compartments called perialgal vacuoles (PVs) within the host cytoplasm, which protect them from digestion by host lysosomal fusion. The relationship between P. bursaria and symbiotic Chlorella spp. is characterized by mutualism, in which both organisms benefit from this association. Furthermore, symbiotic algae also influence their host phenotypes, and algae-free P. bursaria can be obtained through various methods and reassociated with symbiotic algae, making it a valuable tool for studying secondary endosymbiosis. Recent advancements in genomic and transcriptomic studies on both hosts and symbionts have further enhanced the utility of this model system. This review summarizes the infection process of the symbiotic alga C. variabilis and its effects on the algal infection on number of host trichocysts, mitochondria, cytoplasmic crystals, total protein amount, stress responses, photoaccumulation, and circadian rhythms of the host P. bursaria.
Collapse
Affiliation(s)
- Yuuki Kodama
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Nishikawatsu-cho 1060, Matsue-shi 690-8504, Shimane, Japan
| | - Masahiro Fujishima
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Yamaguchi, Japan;
| |
Collapse
|
3
|
Chuang CN, Liu HC, Woo TT, Chao JL, Chen CY, Hu HT, Hsueh YP, Wang TF. Noncanonical usage of stop codons in ciliates expands proteins with structurally flexible Q-rich motifs. eLife 2024; 12:RP91405. [PMID: 38393970 PMCID: PMC10942620 DOI: 10.7554/elife.91405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.
Collapse
Affiliation(s)
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tai-Ting Woo
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Hisao-Tang Hu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| |
Collapse
|
4
|
Fu Y, Liang F, Li C, Warren A, Shin MK, Li L. Codon Usage Bias Analysis in Macronuclear Genomes of Ciliated Protozoa. Microorganisms 2023; 11:1833. [PMID: 37513005 PMCID: PMC10384029 DOI: 10.3390/microorganisms11071833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ciliated protozoa (ciliates) are unicellular eukaryotes, several of which are important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome of ciliates can promote a better understanding of the genetic mode and evolutionary history of these organisms and help optimize codons to improve gene editing efficiency in model ciliates. In this study, the following indices were calculated: the guanine-cytosine (GC) content, the frequency of the nucleotides at the third position of codons (T3, C3, A3, G3), the effective number of codons (ENc), GC content at the 3rd position of synonymous codons (GC3s), and the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, Neutrality plot analysis, ENc plot analysis, and correlation analysis were employed to explore the main influencing factors of CUB. The results showed that the GC content in the MAC genomes of each of 21 ciliate species, the genomes of which were relatively complete, was lower than 50%, and the base compositions of GC and GC3s were markedly distinct. Synonymous codon analysis revealed that the codons in most of the 21 ciliates ended with A or T and four codons were the general putative optimal codons. Collectively, our results indicated that most of the ciliates investigated preferred using the codons with anof AT-ending and that codon usage bias was affected by gene mutation and natural selection.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Fasheng Liang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Mann Kyoon Shin
- Department of Biology, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
5
|
Wang L, Xing H, Yuan Y, Wang X, Saeed M, Tao J, Feng W, Zhang G, Song X, Sun X. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS One 2018; 13:e0194372. [PMID: 29584741 PMCID: PMC5870960 DOI: 10.1371/journal.pone.0194372] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianlin Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Muhammad Saeed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
- * E-mail: (XSO); (XSU)
| | - Xuezhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
- * E-mail: (XSO); (XSU)
| |
Collapse
|