1
|
Harindintwali JD, He C, Wen X, Liu Y, Wang M, Fu Y, Xiang L, Jiang J, Jiang X, Wang F. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil. ENVIRONMENTAL RESEARCH 2024; 252:119055. [PMID: 38710429 DOI: 10.1016/j.envres.2024.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Geographical Sciences, Nantong University, Nantong, 226001, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Liu Z, Han L, Zhang X, Chen S, Wang X, Fang H. Core bacteria carrying the genes associated with the degradation of atrazine in different soils. ENVIRONMENT INTERNATIONAL 2023; 181:108303. [PMID: 37948867 DOI: 10.1016/j.envint.2023.108303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine residues can pose serious threats to soil ecology and human health. Currently, the underlying relationship between soil microbial communities and the degradation genes associated with atrazine degradation remains unclear. In this study, the degradation characteristics of atrazine was investigated in ten different soil types. Further, diversity and abundance of degradation genes and succession of the bacterial community were also studied. The degradation of 10 mg/kg atrazine in different soil types exhibited an initial rapid trend followed by a gradual slowdown, adhering to the first-order kinetic equation. Atrazine significantly increased the absolute abundance of atz degradation genes. The increase in the absolute abundance of atzC gene was the largest, whereas that of atzA gene was the smallest, and the trzD gene was only detected in the Binzhou loam soil. Co-occurrence network analysis showed that the number of potential bacterial hosts of atzC was the highest compared with the other atz genes. Atrazine also altered the structural composition of the soil microbial community. The relative abundances of Ochrobactrum, Nocardiopsis, Lactobacillus, and Brevibacterium was increased in the atrazine-treated soils, while those of Conexibate, Solirubacter, and Micromonospora was decreased significantly compared with the control. Additionally, four atrazine-degrading bacterial strains Rhizobium AT1, Stenotrophomonas AT2, Brevibacterium AT3, and Bacillus AT4 were isolated from the atrazine-treated soils. After 14 d for inoculation, their degradation rate for 10 mg/L atrazine ranged from 17.56 % to 30.55 %. Moreover, the relative abundances of the bacterial genera, including these four isolates, in the atrazine-treated soil were significantly higher than those in the control, indicating that they were involved in the synergistic degradation of atrazine in the soil. This study revealed the degradation characteristics of atrazine, distribution of degradation genes, and succession of microbial communities, and explored the internal relationship between microbial community structure and atrazine degradation mechanisms in different soil types.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xin Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Bokade P, Bajaj A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions. J Basic Microbiol 2023; 63:239-256. [PMID: 36670077 DOI: 10.1002/jobm.202200499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Castro-Gutierrez VM, Hassard F, Moir JW. Probe-based qPCR assay enables the rapid and specific detection of bacterial degrading genes for the pesticide metaldehyde in soil. METHODS IN MICROBIOLOGY 2022; 195:106447. [PMID: 35271872 DOI: 10.1016/j.mimet.2022.106447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Metaldehyde, a molluscicide pesticide, has been identified as a pollutant of concern due to its repeated detection in drinking water, thereby generating numerous compliance failures for water utilities. Biological degradation potential for metaldehyde is widespread in soils, occurring at different rates, but to date, no molecular methods for its assessment have been reported. Here, three genes belonging to a shared metaldehyde-degrading gene cluster present in bacteria were used as candidates for development of a quantitative PCR (qPCR) assay for assessing the metaldehyde-degrading potential in soil. Screening of gene targets, primer pairs and optimization of reaction conditions led to the development of a sensitive and specific probe-based qPCR method for quantifying the mahY metaldehyde-degrading gene from soil. The technique was tested across 8 soils with different compositions and origins. The degrading pathway was detected in 4/8 soils, in which a higher number of gene copies correlated with periods of greater metaldehyde removal. Additionally, swift elimination of the pesticide was observed in soils with an elevated initial number of mahY gene copies. The gene cluster was not detected in other soils, even though metaldehyde removal occurred, indicating that other biological degrading pathways are also important in nature. The method described here is the first one available to estimate the microbial metaldehyde degradation potential and activity in soils, and can also be used to detect degrading microorganisms in systems such as sand filters for water purification or to monitor degrading strains in engineered processes.
Collapse
Affiliation(s)
- V M Castro-Gutierrez
- Department of Biology, University of York, Heslington, York, UK; Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca 11501, Costa Rica
| | - F Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - J W Moir
- Department of Biology, University of York, Heslington, York, UK.
| |
Collapse
|
5
|
Gallego S, Devers-Lamrani M, Rousidou K, Karpouzas DG, Martin-Laurent F. Assessment of the effects of oxamyl on the bacterial community of an agricultural soil exhibiting enhanced biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1189-1198. [PMID: 30360251 DOI: 10.1016/j.scitotenv.2018.09.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 05/19/2023]
Abstract
Modern agricultural practices largely rely on pesticides to protect crops against various pests and to ensure high yields. Following their application to crops a large amount of pesticides ends up in soil where they may affect non-target organisms, among which microorganisms. We assessed the effects of the carbamate nematicide oxamyl on the whole bacterial diversity of an agricultural soil exhibiting enhanced biodegradation of oxamyl through 16S rRNA amplicon next generation sequencing (NGS) and on the oxamyl-degrading bacterial community through cehA q-PCR analysis and 14C-oxamyl mineralization assays. Oxamyl was rapidly mineralized by the indigenous microorganisms reaching >70% within a month. Concomitantly, a significant increase in the number of oxamyl-degrading microorganisms was observed. NGS analysis of the total (DNA) and active (RNA) bacterial community showed no changes in α-diversity indices in response to oxamyl exposure. Analysis of the β-diversity revealed significant changes in the composition of the soil bacterial community after 13 and 30 days of oxamyl exposure only when the active fraction of the bacterial community was considered. These changes were associated with seven OTUs related to Proteobacteria (5), Acidobacteria (1) and Actinobacteria (1). The relative abundance of the dominant bacterial phyla were not affected by oxamyl, except of Bacteroidetes and Gemmatimonadetes which decreased after 13 and 30 days of oxamyl exposure respectively. To conclude, oxamyl induced changes in the abundance of oxamyl-degrading microorganisms and on the diversity of the soil bacterial community. The latter became evident only upon RNA-based NGS analysis emphasizing the utility of such approaches when the effects of pesticides on the soil microbial community are explored.
Collapse
Affiliation(s)
- Sara Gallego
- Agroécologie, AgroSup Dijon, INRA, Univ.de Bourgogne Franche Comté, 17 rue Sully, Dijon, France
| | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, INRA, Univ.de Bourgogne Franche Comté, 17 rue Sully, Dijon, France
| | - Konstantina Rousidou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRA, Univ.de Bourgogne Franche Comté, 17 rue Sully, Dijon, France.
| |
Collapse
|
6
|
Douglass JF, Radosevich M, Tuovinen OH. Microbial attenuation of atrazine in agricultural soils: Biometer assays, bacterial taxonomic diversity, and catabolic genes. CHEMOSPHERE 2017; 176:352-360. [PMID: 28273542 DOI: 10.1016/j.chemosphere.2017.02.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to examine the potential biomineralization of atrazine and identification of atrazine-degrading bacteria in agricultural soils. Different atrazine application histories of soils impacted the kinetics of biomineralization but not the presence of catabolic genes of two atrazine degradative pathways (Trz and Atz). Biomineralization was based on the measurement of 14CO2 from [U-ring-14C]-atrazine in surface soil (0-7 cm) samples incubated in biometers. Aerobic atrazine biomineralization rate constants (k) varied in the range of 0.004-0.508 d-1 depending on the specific soil sample and glucose amendment. The corresponding k-values for anaerobic biometers ± nitrate, ferrihydrite or sulfate were 0.002-0.360 d-1. Glucose enhancement of atrazine biomineralization was not consistent. Aerobic enrichments from soil samples and in-situ incubated BioSep beads yielded mixed cultures, four of which were characterized by 16S rRNA gene amplification, cloning and sequencing. Twelve pure cultures were isolated from enrichments and they were primarily Arthrobacter spp. (10/12). The presence of eight atrazine catabolic genes representing two degradative pathways was investigated in seven bacterial isolates by PCR amplification and sequencing. Several combinations of atrazine catabolic genes were detected; each contained at least atzBC. A complete set of genes for the Atz pathway was not found among the isolates. Our data indicate that atrazine metabolism involves multiple microorganisms and cooperative pathways diverging from atrazine metabolites.
Collapse
Affiliation(s)
- James F Douglass
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Mark Radosevich
- Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, Knoxville, TN 37996, USA
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:360-370. [PMID: 27592507 DOI: 10.1080/15226514.2016.1225289] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.
Collapse
Affiliation(s)
| | | | - Yogita Gharde
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Bhumesh Kumar
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Mayank Varun
- b Department of Botany , St. John's College , Agra , Uttar Pradesh , India
| | - Sellappan Arun
- c Department of Soil Science and Agricultural Chemistry , Tamil Nadu Agricultural University , Coimbatore , Tamil Nadu , India
| |
Collapse
|
8
|
Castillo JM, Beguet J, Martin-Laurent F, Romero E. Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:379-387. [PMID: 26590874 DOI: 10.1016/j.jhazmat.2015.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Soil organic amendment affects biotic and abiotic processes that control the fate of pesticides, but the treatment history of the soil is also relevant. These processes were assessed in a multidisciplinary study with the aim of optimizing pesticide mitigation in soils. Soil microcosms pre-treated (E2) or not with diuron (E1) were amended with either winery (W) or olive waste (O) vermicomposts. Herbicide dissipation followed a double first-order model in E1 microcosms, but a single first-order model in E2. Also, diuron persistence was longer in E1 than in E2 (E1-DT50>200 day(-1), E2-DT50<16 day(-1)). The genetic structure of the bacterial community was modified by both diuron exposure and amendment. O-vermicompost increased enzymatic activities in both experiments, but diuron-degrading genetic potential (puhB) was quantified only in E2 microcosms in accordance with reduced diuron persistence. Therefore, O-vermicompost addition favoured the proliferation of diuron degraders, increasing the soil diuron-depuration capability.
Collapse
Affiliation(s)
- Jean Manuel Castillo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada, Spain.
| | - Jérèmie Beguet
- French National Institute for Agricultural Research-INRA, UMR 1347 Agroécologie, 17 rue Sully, B P 86510, 21065 Dijon Cedex, France
| | - Fabrice Martin-Laurent
- French National Institute for Agricultural Research-INRA, UMR 1347 Agroécologie, 17 rue Sully, B P 86510, 21065 Dijon Cedex, France
| | - Esperanza Romero
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
9
|
Coleman NV. Primers: Functional Genes for Aerobic Chlorinated Hydrocarbon-Degrading Microbes. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Wan R, Wang Z, Xie S. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:502-508. [PMID: 24317158 DOI: 10.1016/j.scitotenv.2013.11.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Guo Q, Wan R, Xie S. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:337-343. [PMID: 23771408 DOI: 10.1007/s11356-013-1914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.
Collapse
Affiliation(s)
- Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Environment Protection (MEP), Guangzhou, 510655, China
| | | | | |
Collapse
|
12
|
Prado B, Fuentes M, Verhulst N, Govaerts B, De León F, Zamora O. Fate of atrazine in a soil under different agronomic management practices. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:844-855. [PMID: 25190559 DOI: 10.1080/03601234.2014.938555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg(-1)) at 0-10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg(-1), respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg(-1)). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.
Collapse
Affiliation(s)
- B Prado
- a Instituto de Geología, UNAM , Ciudad Universitaria , México , D.F. , Mexico
| | | | | | | | | | | |
Collapse
|
13
|
Dunon V, Sniegowski K, Bers K, Lavigne R, Smalla K, Springael D. High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiol Ecol 2013; 86:415-31. [PMID: 23802695 DOI: 10.1111/1574-6941.12173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly.
Collapse
Affiliation(s)
- Vincent Dunon
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Xie S, Wan R, Wang Z, Wang Q. Atrazine biodegradation by Arthrobacter strain DAT1: effect of glucose supplementation and change of the soil microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4078-4084. [PMID: 23224504 DOI: 10.1007/s11356-012-1356-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to investigate the impact of glucose supplementation on the soil microbiota inoculated with the atrazine-degrading Arthrobacter strain DAT1. Soil microcosms with different treatments were constructed for biodegradation tests. The impact of glucose supplementation on atrazine degradation capacity of the strain DAT1 and the strain's survival and growth were assessed. The densities of the 16S rRNA gene and the atrazine-metabolic trzN gene were determined using quantitative PCR. The growth of the strain DAT1 and the bacterial community structure were characterized using terminal restriction fragment length polymorphism. Glucose supplementation could affect atrazine degradation by the strain DAT1 and the strain's trzN gene density and growth. The density of the16S rRNA gene decreased during the incubation period. Glucose supplementation could alter the bacterial community structure during the bioaugmentation process. Glucose supplementation could promote the growth of the autochthonous soil degraders that harbored novel functional genes transforming atrazine. Further study will be necessary in order to elucidate the impact of exogenous carbon on autochthonous and inoculated degraders. This study could add some new insights on atrazine bioremediation.
Collapse
Affiliation(s)
- Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, China.
| | | | | | | |
Collapse
|
15
|
Zhou X, Wang Q, Wang Z, Xie S. Nitrogen impacts on atrazine-degrading Arthrobacter strain and bacterial community structure in soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2484-2491. [PMID: 22961491 DOI: 10.1007/s11356-012-1168-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to investigate the impacts of exogenous nitrogen on a microbial community inoculated with the atrazine-degrading Arthrobacter sp. in soil amended with a high concentration of atrazine. Inoculated and uninoculated microcosms for biodegradation tests were constructed. Atrazine degradation capacity of the strain DAT1 and the strain's atrazine-metabolic potential and survival were assessed. The relative abundance of the strain DAT1 and the bacterial community structure in soils were characterized using quantitative PCR in combination with terminal restriction fragment length polymorphism. Atrazine degradation by the strain DAT1 and the strain's atrazine-metabolic potential and survival were not affected by addition of a medium level of nitrate, but these processes were inhibited by addition of a high level of nitrate. Microbial community structure changed in both inoculated and uninoculated microcosms, dependent on the level of added nitrate. Bioaugmentation with the strain DAT1 could be a very efficient biotechnology for bioremediation of soils with high concentrations of atrazine.
Collapse
Affiliation(s)
- Xiaode Zhou
- State Key Laboratory of Ecohydraulic Engineering in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | | | | | | |
Collapse
|
16
|
Correa-Galeote D, Tortosa G, Bedmar EJ. Determination of Denitrification Genes Abundance in Environmental Samples. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/mg/235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes. Appl Microbiol Biotechnol 2012; 97:1661-8. [DOI: 10.1007/s00253-012-4318-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
18
|
Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 2012; 24:203-13. [PMID: 22991035 DOI: 10.1007/s10532-012-9574-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.
Collapse
|
19
|
Fernández LA, Valverde C, Gómez MA. Isolation and characterization of atrazine-degrading Arthrobacter sp. strains from Argentine agricultural soils. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0463-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Cheyns K, Martin-Laurent F, Bru D, Aamand J, Vanhaecke L, Diels J, Merckx R, Smolders E, Springael D. Long-term dynamics of the atrazine mineralization potential in surface and subsurface soil in an agricultural field as a response to atrazine applications. CHEMOSPHERE 2012; 86:1028-34. [PMID: 22176786 DOI: 10.1016/j.chemosphere.2011.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 05/25/2023]
Abstract
The dynamics of the atrazine mineralization potential in agricultural soil was studied in two soil layers (topsoil and at 35-45 cm depth) in a 3 years field trial to examine the long term response of atrazine mineralizing soil populations to atrazine application and intermittent periods without atrazine and the effect of manure treatment on those processes. In topsoil samples, (14)C-atrazine mineralization lag times decreased after atrazine application and increased with increasing time after atrazine application, suggesting that atrazine application resulted into the proliferation of atrazine mineralizing microbial populations which decayed when atrazine application stopped. Decay rates appeared however much slower than growth rates. Atrazine application also resulted into the increase of the atrazine mineralization potential in deeper layers which was explained by the growth on leached atrazine as measured in soil leachates recovered from that depth. However, no decay was observed during intermittent periods without atrazine application in the deeper soil layer. atzA and trzN gene quantification confirmed partly the growth and decay of the atrazine degrading populations in the soil and suggested that especially trzN bearing populations are the dominant atrazine degrading populations in both topsoil and deeper soil. Manure treatment only improved the atrazine mineralization rate in deeper soil layers. Our results point to the importance of the atrazine application history on a field and suggests that the long term survival of atrazine degrading populations after atrazine application enables them to rapidly proliferate once atrazine is again applied.
Collapse
Affiliation(s)
- K Cheyns
- Division Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dynamics of the linuron hydrolase libA gene pool size in response to linuron application and environmental perturbations in agricultural soil and on-farm biopurification systems. Appl Environ Microbiol 2012; 78:2783-9. [PMID: 22307296 DOI: 10.1128/aem.06991-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
libA, a gene encoding a novel type of linuron hydrolase, was recently identified in the linuron-mineralizing Variovorax sp. strain SRS16. In order to assess the contribution of libA to linuron degradation in environmental settings, libA abundance was monitored in response to the application of linuron and to environmental perturbations in agricultural soil microcosms and microcosms simulating the matrix of on-farm biopurification systems. libA numbers were measured by real-time PCR and linked to reported data of Variovorax community composition and linuron mineralization capacity. In the soil microcosms and one biopurification system setup, libA numbers responded to the application of linuron and environmental changes in congruency with the modulation of linuron mineralization capacity and the occurrence of a particular Variovorax phylotype (phylotype A). However, in another biopurification system setup, no such correlations were found. Our data suggest that in the simulated environmental settings, the occurrence of libA can be linked to the linuron mineralization capacity and that libA is primarily hosted by Variovorax phylotype A strains. However, the results also suggest that, apart from libA, other, as-yet-unknown isofunctional genes play an important role in linuron mineralization in the environment.
Collapse
|
22
|
Cortet J, Kocev D, Ducobu C, Džeroski S, Debeljak M, Schwartz C. Using data mining to predict soil quality after application of biosolids in agriculture. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1972-1982. [PMID: 22031581 DOI: 10.2134/jeq2011.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The amount of biosolids recycled in agriculture has steadily increased during the last decades. However, few models are available to predict the accompanying risks, mainly due to the presence of trace element and organic contaminants, and benefits for soil fertility of their application. This paper deals with using data mining to assess the benefits and risks of biosolids application in agriculture. The analyzed data come from a 10-yr field experiment in northeast France focusing on the effects of biosolid application and mineral fertilization on soil fertility and contamination. Biosolids were applied at agriculturally recommended rates. Biosolids had a significant effect on soil fertility, causing in particular a persistent increase in plant-available phosphorus (P) relative to plots receiving mineral fertilizer. However, soil fertility at seeding and crop management method had greater effects than biosolid application on soil fertility at harvest, especially soil nitrogen (N) content. Levels of trace elements and organic contaminants in soils remained below legal threshold values. Levels of extractable metals correlated more strongly than total metal levels with other factors. Levels of organic contaminants, particularly polycyclic aromatic hydrocarbons, were linked to total metal levels in biosolids and treated soil. This study confirmed that biosolid application at rates recommended for agriculture is a safe option for increasing soil fertility. However, the quality of the biosolids selected has to be taken into account. The results also indicate the power of data mining in examining links between parameters in complex data sets.
Collapse
|
23
|
Sherchan S, Bachoon D. The presence of atrazine and atrazine-degrading bacteria in the residential, cattle farming, forested and golf course regions of Lake Oconee. J Appl Microbiol 2011; 111:293-9. [DOI: 10.1111/j.1365-2672.2011.05059.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Udiković-Kolić N, Devers-Lamrani M, Petrić I, Hršak D, Martin-Laurent F. Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Appl Microbiol Biotechnol 2011; 90:1547-54. [DOI: 10.1007/s00253-011-3198-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
25
|
Shaner D, Stromberger M, Khosla R, Helm A, Bosley B, Hansen N. Spatial distribution of enhanced atrazine degradation across northeastern Colorado cropping systems. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:46-56. [PMID: 21488492 DOI: 10.2134/jeq2010.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to (i) assess the spatial distribution of enhanced atrazine degradation in 45 commercial farm fields in northeastern Colorado (Kit Carson, Larimer, Logan, Morgan, Phillips, and Yuma counties) where selected cultural management practices and soil bio-chemo-physical properties were quantified; (ii) utilize Classification and Regression Tree (CART) Analysis to identify cultural management practices and (or) soil bio-chemophysical attributes that are associated with enhanced atrazine degradation; and (iii) translate our CART Analysis into a model that predicts relative atrazine degradation rate (rapid, moderate, or slow) as a function of known management practices and (or) soil properties. Enhanced atrazine degradation was widespread within a 300-km radius across northeastern Colorado, with approximately 44% of the fields demonstrating rapid atrazine degradation activity (laboratory-based dissipation time halflife [DT50] < 3 d). The most rapid degradation rates occurred in fields that received the most frequent atrazine applications. Classification and Regression Tree Analysis resulted in a prediction model that correctly classified soils with rapid atrazine DT50 80% of the time and soils with slow degradation (DT50 > 8 d) 62.5% of the time. Significant factors were recent atrazine use history, soil pH, and organic matter content. The presence/absence of atzC polymerase chain reaction (PCR) product was not a significant predictor variable for atrazine DT50. In conclusion, enhanced atrazine degradation is widespread in northeastern Colorado. If producers know their atrazine use history, soil pH, and OM content, they should be able to identify fields exhibiting enhanced atrazine degradation using our CART Model.
Collapse
Affiliation(s)
- Dale Shaner
- USDA-ARS, Water Management Research Unit, 2150 Centre Ave., Bldg. D Ste. 320, Fort Collins, CO 80526-8119, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Glaesner N, Baelum J, Strobel BW, Jacobsen CS. Atrazine is not readily mineralised in 24 temperate soils regardless of pre-exposure to triazine herbicides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3670-3674. [PMID: 20850214 DOI: 10.1016/j.envpol.2010.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/10/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Mineralisation of atrazine in soil has been shown to depend on previous exposure of the herbicide. In this study, 24 Danish soils were collected and screened for potential to mineralise atrazine. Six soils were chosen, because they had never been exposed to atrazine, whereas 18 soils were chosen because of their history of application of atrazine or the related compound terbuthylazine. None of the 24 soils revealed a mineralisation potential of more than 4% of the added atrazine within a 60 day timeframe. In an atrazine adapted French soil, we found 60% mineralisation of atrazine in 30 days. Cattle manure was applied in order to boost the microbial activity, and a 2-3% increase in the atrazine mineralisation was found in some of the temperate soils, while in the highly adapted French soil it caused a 5% reduction.
Collapse
Affiliation(s)
- Nadia Glaesner
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
27
|
Jason Krutz L, Shaner DL, Weaver MA, Webb RM, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ. Agronomic and environmental implications of enhanced s-triazine degradation. PEST MANAGEMENT SCIENCE 2010; 66:461-481. [PMID: 20127867 DOI: 10.1002/ps.1909] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agriculture Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Udiković Kolić N, Martin-Laurent F, Devers M, Petrić I, Begonja Kolar A, Hrsak D. Genetic potential, diversity and activity of an atrazine-degrading community enriched from a herbicide factory effluent. J Appl Microbiol 2010; 105:1334-43. [PMID: 19146484 DOI: 10.1111/j.1365-2672.2008.03890.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS To characterize an atrazine-degrading bacterial community enriched from the wastewater of a herbicide factory. METHODS AND RESULTS The community mineralized 81.4 +/- 1.9% of [(14)C-ring]atrazine and 31.0 +/- 1.8% of [(14)C-ethyl]atrazine within 6 days of batch cultivation in mineral salts medium containing atrazine as the sole nitrogen source. Degradation activity of the community towards different chloro- and methylthio-substituted s-triazine compounds was also demonstrated. Restriction analysis of amplified 16S rDNA revealed high diversity of bacterial populations forming the community, with Pseudomonas species dominating in the clone library. Atrazine-degrading genetic potential of the community determined by PCR revealed the presence of trzN, atzB, atzC and trzD genes. The trzN, atzB and atzC genes were shown to be located on a plasmid of 322 kb. Quantitative PCR showed that relative abundances of atzB, atzC and trzD genes were approx. 100-fold lower than 16S rDNA. CONCLUSIONS The enriched community represents a complex bacterial association expressing substantial atrazine-mineralizing activity and a broad specificity towards a range of s-triazine compounds. SIGNIFICANCE AND IMPACT OF THE STUDY Our study is beginning to yield insights into the richness, genetic potential and density of functional atrazine-mineralizing community that could be a potential bioaugmentation agent for improving biotransformation processes in wastewaters bearing different s-triazine compounds.
Collapse
Affiliation(s)
- N Udiković Kolić
- Rudjer Bosković Institute, Center for Marine and Environmental Research, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
29
|
Pesce S, Martin-Laurent F, Rouard N, Montuelle B. Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. PEST MANAGEMENT SCIENCE 2009; 65:651-657. [PMID: 19319931 DOI: 10.1002/ps.1729] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Since biological degradation processes are known to be a major driver of the natural attenuation of pesticide residues in the environment, microbial communities adapted to pesticide biodegradation are likely to play a key environmental role in reducing pesticide exposure in contaminated ecosystems. The aim of this study was to assess the diuron-mineralising potential of microbial communities at a small-scale watershed level, including a diuron-treated vineyard (pollution source), its associated grass buffer strip (as a river protection area against pesticide runoff) and the lotic receiver hydrosystem (sediments and epilithon), by using radiorespirometry. RESULTS Comparison of results obtained at different sampling sites (in both soil and aquatic systems) revealed the importance of diuron exposure in the adaptation of microbial communities to rapid diuron mineralisation in the vineyard but also in the contaminated grass strip and in downstream epilithic biofilms and sediments. CONCLUSION This study provides strong suggestive evidence for high diuron biodegradation potential throughout its course, from the pollution source to the final receiving hydrosystem, and suggests that, after microbial adaptation, grass strips may represent an effective environmental tool for mineralisation and attenuation of intercepted pesticides.
Collapse
|
30
|
Bressan M, Mougel C, Dequiedt S, Maron PA, Lemanceau P, Ranjard L. Response of soil bacterial community structure to successive perturbations of different types and intensities. Environ Microbiol 2008; 10:2184-7. [PMID: 18462402 DOI: 10.1111/j.1462-2920.2008.01641.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In soil, genetic structure modifications of indigenous bacterial community consecutively to a severe stress (mercury contamination) were delayed when the community was pre-exposed to various minor perturbations (heat, copper and atrazine). Such minor perturbations induced transitory community structure modifications leading to an increase of community stability towards a severe mercury stress. These results illustrated well the short-term pre-adaptation process for bacterial community hypothesizing that community submitted to perturbations become more resistant to withstand another stress.
Collapse
Affiliation(s)
- Mélanie Bressan
- INRA, Université de Bourgogne, UMR Microbiologie du Sol et de l'Environnement, CMSE, 17, rue Sully, B.V. 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Gonod LV, Martin-Laurent F, Chenu C. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 2007; 58:529-37. [PMID: 17117994 DOI: 10.1111/j.1574-6941.2006.00159.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D.
Collapse
Affiliation(s)
- Laure Vieublé Gonod
- UMR Environnement et Grandes Cultures, INRA-INAPG, Bâtiment EGER, Thiverval Grignon, France.
| | | | | |
Collapse
|
32
|
Zablotowicz RM, Krutz LJ, Reddy KN, Weaver MA, Koger CH, Locke MA. Rapid development of enhanced atrazine degradation in a Dundee silt loam soil under continuous corn and in rotation with cotton. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:852-9. [PMID: 17263485 DOI: 10.1021/jf0620923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-labeled atrazine were evaluated in the laboratory on soils collected prior to herbicide application in the first, second, third, and sixth years of the study. In soils collected in 2000, a maximum of 10% of the atrazine was mineralized after 30 days. After 1 year of herbicide application, atrazine-treated soils mineralized 52-57% of the radiolabeled atrazine in 30 days. By the sixth year of the study, greater than 59% of the atrazine was mineralized after 7 days in soils treated with atrazine, while soils from plots with no atrazine treatment mineralized less than 36%. The data also indicated rapid development of enhanced atrazine degradation in soils following 1 year of corn production with atrazine use. Atrazine mineralization was as rapid in soils under a rotation receiving biannual atrazine applications as in soils under continuous corn receiving annual applications of atrazine. Cumulative mineralization kinetics parameters derived from the Gompertz model (k and ti) were highly correlated with a history of atrazine application and total soil carbon content. Changes in the soil microbial community assessed by total fatty acid methyl ester (FAME) analysis indicated significant interactions of cropping system and sampling date, with FAME indicators for soil bacteria responsible for differences in community structure. Autoclaved soil lost all ability to mineralize atrazine, and atrazine-mineralizing bacteria were isolated from these plots, confirming the biological basis for atrazine mineralization. These results indicate that changes in degradative potential of a soil can occur rapidly and some changes in soil properties may be associated with cropping systems, which can contribute to enhanced atrazine degradation potential.
Collapse
Affiliation(s)
- Robert M Zablotowicz
- Southern Weed Science Research Unit and Crop Genetics & Production Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 141 Experiment Station Road, Stoneville, MS 38776, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Kersanté A, Martin-Laurent F, Soulas G, Binet F. Interactions of earthworms with Atrazine-degrading bacteria in an agricultural soil. FEMS Microbiol Ecol 2006; 57:192-205. [PMID: 16867138 DOI: 10.1111/j.1574-6941.2006.00108.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the last 10 years, accelerated mineralization of Atrazine (2-chloro-ethylamino-6-isopropylamino-s-triazine) has been evidenced in agricultural soils repeatedly treated with this herbicide. Here, we report on the interaction between earthworms, considered as soil engineers, and the Atrazine-degrading community. The impact of earthworm macrofauna on Atrazine mineralization was assessed in representative soil microsites of earthworm activities (gut contents, casts, burrow linings). Soil with or without earthworms, namely the anecic species Lumbricus terrestris and the endogenic species Aporrectodea caliginosa, was either inoculated or not inoculated with Pseudomonas sp. ADP, an Atrazine-degrading strain, and was either treated or not treated with Atrazine. The structure of the bacterial community, the Atrazine-degrading activity and the abundance of atzA, B and C sequences in soil microsites were investigated. Atrazine mineralization was found to be reduced in representative soil microsites of earthworm activities. Earthworms significantly affected the structure of soil bacterial communities. They also reduced the size of the inoculated population of Pseudomonas sp. ADP, thereby contributing to the diminution of the Atrazine-degrading genetic potential in representative soil microsites of earthworm activities. This study illustrates the regulation produced by the earthworms on functional bacterial communities involved in the fate of organic pollutants in soils.
Collapse
Affiliation(s)
- Anne Kersanté
- CNRS/Université de Rennes 1, UMR 6553 ECOBIO, IFR CAREN, Rennes, France
| | | | | | | |
Collapse
|
34
|
López-Gutiérrez JC, Philippot L, Martin-Laurent F. Impact of maize mucilage on atrazine mineralization and atzC abundance. PEST MANAGEMENT SCIENCE 2005; 61:838-44. [PMID: 15934036 DOI: 10.1002/ps.1078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Soil was amended with maize mucilage, a major rhizodeposit, to study its role on the number of culturable soil micro-organisms, the structure of the bacterial community, atrazine mineralization and atzC abundance. The maximal percentage of atrazine mineralization was lower for mucilage-amended than for water-amended soil. Total culturable soil bacteria and 16S rDNA copy number, measured by RT-PCR, presented similar values and were not significantly (P < 0.05) different among treatments. Mucilage applied at a rate of 70 microg C g(-1) dry soil day(-1) over two weeks did not modify the abundance of the total soil microflora. Global structure of soil bacterial communities revealed by RISA analysis was not modified by maize mucilage amendment. Abundance of atzC sequence was only augmented by mucilage addition at the beginning of the experiment. However, this increase was not sustainable in time, as atzC copy number increased in water-amended soil which, in turn, corresponded with the higher percentage of atrazine mineralization observed in this soil. Maize mucilage amendment alone contributed only to minor changes in the atrazine-degrading community in the studied soil.
Collapse
Affiliation(s)
- Juan C López-Gutiérrez
- UMR Soil Microbiology and Geochemistry, INRA/Université de Bourgogne, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | |
Collapse
|