1
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
2
|
Nikolova C, Morris G, Ellis D, Bowler B, Jones M, Mulloy B, Gutierrez T. Characterization of the surface-active exopolysaccharide produced by Halomonas sp TGOS-10: Understanding its role in the formation of marine oil snow. PLoS One 2024; 19:e0299235. [PMID: 38805414 PMCID: PMC11132480 DOI: 10.1371/journal.pone.0299235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.
Collapse
Affiliation(s)
- Christina Nikolova
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David Ellis
- Department of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Bernard Bowler
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Mulloy
- Institute of Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Rodríguez-Valdecantos G, Torres-Rojas F, Muñoz-Echeverría S, del Rocío Mora-Ruiz M, Rosselló-Móra R, Cid-Cid L, Ledger T, González B. Aromatic compounds depurative and plant growth promotion rhizobacteria abilities of Allenrolfea vaginata ( Amaranthaceae) rhizosphere microbial communities from a solar saltern hypersaline soil. Front Microbiol 2023; 14:1251602. [PMID: 37954249 PMCID: PMC10635022 DOI: 10.3389/fmicb.2023.1251602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution. Methods To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions. Results Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions. Discussion These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Valdecantos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Felipe Torres-Rojas
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Sofía Muñoz-Echeverría
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Merit del Rocío Mora-Ruiz
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Luis Cid-Cid
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Thomas Ledger
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
4
|
Characterization and Expression Analysis of Extradiol and Intradiol Dioxygenase of Phenol-Degrading Haloalkaliphilic Bacterial Isolates. Curr Microbiol 2022; 79:294. [PMID: 35989347 PMCID: PMC9393131 DOI: 10.1007/s00284-022-02981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Haloalkophilic bacteria have a potential advantage as a bioremediation organism of high oil-polluted and industrial wastewater. In the current study, Haloalkaliphilic isolates were obtained from Hamralake, Wadi EL-Natrun, Egypt. The phenotype script, biochemical characters, and sequence analysis of bacterial-16S rRNA were used to identify the bacterial isolates; Halomonas HA1 and Marinobacter HA2. These strains required high concentrations of NaCl to ensure bacterial growth, especially Halomonas HA1 strain. Notably, both isolates can degrade phenol at optimal pH values, between 8 and 9, with the ability to grow in pH levels up to 11, like what was seen in the Halomonas HA1 strain. Moreover, both isolates represent two different mechanistic pathways for phenol degradation. Halomonas HA1 exploits the 1,2 phenol meta-cleavage pathway, while Marinobacter HA2 uses the 2,3 ortho-cleavage pathway as indicated by universal primers for 1,2 and 2,3 CTD genes. Interestingly, Marinobacter HA2 isolate eliminated the added phenol within an incubation period of 72 h, while the Halomonas HA1 isolate invested 96 h in degrading 84% of the same amount of phenol. Phylogenetic analysis of these 1,2 CTD (catechol dioxygenase) sequences clearly showed an evolutionary relationship between 1,2 dioxygenases of both Halomonadaceae and Pseudomonadaceae. In comparison, 2,3 CTD of Marinobacter HA2 shared the main domains of the closely related species. Furthermore, semi-quantitative RT-PCR analysis proved the constitutive expression pattern of both dioxygenase genes. These findings provide new isolates of Halomonas sp. and Marinobacter sp. that can degrade phenol at high salt and pH conditions via two independent mechanisms.
Collapse
|
5
|
Zhang M, Han F, Chen H, Yao J, Li Q, Li Z, Zhou W. The effect of salinity on ammonium-assimilating biosystems in hypersaline wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154622. [PMID: 35306073 DOI: 10.1016/j.scitotenv.2022.154622] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The ammonium-assimilating biosystem is a promising solution to improve the susceptible biological nitrogen removal (BNR) and to achieve nitrogen recovery in saline wastewater treatment. However, the treatment performance and functional stability of ammonium-assimilating biosystems have not been fully illuminated in hypersaline wastewater. In this study, although the dramatic decrease of removal efficiency of NH4+-N and PO43--P was observed in ammonium-assimilating biosystems under the salinity from 3% to 7%, the direction of nitrogen conversions through assimilation was insusceptible to high salinity. The extremely low concentrations of nitrite and nitrate accumulation and abundances of nitrification functional genes confirmed that the process of nitrification was negligible in all biosystems. Ammonium-assimilating biosystems maintained robustness and functional stability in hypersaline wastewater. The increase of salinity stimulated the production of EPS and changed the microbial community by enriching Proteobacteria and halophilic genera. We anticipate that the ammonium-assimilating biosystem could be a promising strategy for hypersaline wastewater treatment and future practical applications.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Fei Han
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Hao Chen
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Jingye Yao
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Qinyang Li
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Zhe Li
- School of Civil Engineering, Shandong University, 250061 Jinan, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China.
| |
Collapse
|
6
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Pyankova AA, Plotnikova EG. Benzoate-Degrading Bacteria of the Family Halomonadaceae Isolated from a Salt Mining Area: Species Diversity and Analysis of the benA Genes. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
9
|
Marsh WS, Heise BW, Krzmarzick MJ, Murdoch RW, Fathepure BZ. Isolation and characterization of a halophilic Modicisalibacter sp. strain Wilcox from produced water. Sci Rep 2021; 11:6943. [PMID: 33767228 PMCID: PMC7994583 DOI: 10.1038/s41598-021-86196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
We report the isolation a halophilic bacterium that degrades both aromatic and aliphatic hydrocarbons as the sole sources of carbon at high salinity from produced water. Phylogenetic analysis of 16S rRNA-gene sequences shows the isolate is a close relative of Modicisalibacter tunisiensis isolated from an oil-field water in Tunisia. We designate our isolate as Modicisalibacter sp. strain Wilcox. Genome analysis of strain Wilcox revealed the presence of a repertoire of genes involved in the metabolism of aliphatic and aromatic hydrocarbons. Laboratory culture studies corroborated the predicted hydrocarbon degradation potential. The strain degraded benzene, toluene, ethylbenzene, and xylenes at salinities ranging from 0.016 to 4.0 M NaCl, with optimal degradation at 1 M NaCl. Also, the strain degraded phenol, benzoate, biphenyl and phenylacetate as the sole sources of carbon at 2.5 M NaCl. Among aliphatic compounds, the strain degraded n-decane and n-hexadecane as the sole sources of carbon at 2.5 M NaCl. Genome analysis also predicted the presence of many heavy metal resistance genes including genes for metal efflux pumps, transport proteins, and enzymatic detoxification. Overall, due to its ability to degrade many hydrocarbons and withstand high salt and heavy metals, strain Wilcox may prove useful for remediation of produced waters.
Collapse
Affiliation(s)
- William S Marsh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenden W Heise
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mark J Krzmarzick
- Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Babu Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
10
|
Chakraborty J, Rajput V, Sapkale V, Kamble S, Dharne M. Spatio-temporal resolution of taxonomic and functional microbiome of Lonar soda lake of India reveals metabolic potential for bioremediation. CHEMOSPHERE 2021; 264:128574. [PMID: 33059288 DOI: 10.1016/j.chemosphere.2020.128574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Lonar Lake, India; a hypersaline and hyperalkaline extremophilic ecosystem having a unique microbial population has been rarely explored for bioremediation aspects. MinION-based shotgun sequencing was used to comprehensively compare the microbial diversity and functional potential of xenobiotic degradation pathways with seasonal changes. Proteobacteria and Firmicutes were prevalent bacterial phyla in the pre-monsoon and post-monsoon samples. Functional analysis from SEED-subsystem and KEGG database revealed 28 subsystems and 18 metabolic pathways for the metabolism of aromatic compounds and xenobiotic biodegradation respectively. Occurrence of N-phenyl alkanoic, benzoate, biphenyl, chloroaromatic, naphthalene, and phenol degradation genes depicted varied abundance in the pre-monsoon and post-monsoon samples. Further, KEGG analysis indicated nitrotoluene degradation pathway (ko00633) abundant in post-monsoon samples, and the benzoate degradation pathway (ko00362) predominant in 19LN4S (pre-monsoon) than 18LN7S (post-monsoon) samples. The abundant genes for benzoate degradation were pcaI: 3-oxoadipate CoA-transferase, alpha subunit, pcaH: protocatechuate 3,4-dioxygenase, beta subunit, and pcaB: 3-carboxy-cis, cis-muconate cycloisomerase, and 4-oxalocrotonate tautomerase. This metagenomic study provides a unique blueprint of hitherto unexplored xenobiotic biodegradation genes/pathways in terms of seasonal variations in the Lonar Lake, and warrants active exploitation of microbes for bioremediation purposes.
Collapse
Affiliation(s)
- Jaya Chakraborty
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Vibhavari Sapkale
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development (CEPD) Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J Syst Evol Microbiol 2020; 71. [PMID: 33269997 DOI: 10.1099/ijsem.0.004578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, slightly halophilic bacterium, designated TBZ202T, was isolated from water of Urmia Lake, in the Azerbaijan region of north-west Iran. The strain was facultatively anaerobic, Gram-stain-negative, rod-shaped and motile. Colonies were creamy, circular, convex and shiny. It grew at NaCl concentrations of 0-12 % (w/v) (optimum 3-5 % w/v), at temperatures of 20-45 °C (optimum 30 °C) and at pH 5.0-10.0 (optimum pH 7.0). Based on the 16S rRNA gene sequence, strain TBZ202T belongs to the genus Halomonas in the Halomonadaceae and the most closely related species are Halomonas gudaonensis CGMCC 1.6133T (98.6 % similarity), Halomonas ventosae Al12T (96.8 %) and Halomonas rambilicola RS-16T (96.6%). The G+C content was 67.9 % and the digital DNA-DNA hybridization and average nucleotide identity values with H. gudaonensis were 35.8 and 83.8 %, respectively, indicating that the isolate differs from all species described. The major fatty acids were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The only respiratory quinone detected was Q-9 and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and three unknown phospholipids. On the basis of a polyphasic taxonomic analysis, the isolate is considered to represent a novel species of the genus Halomonas, for which the name Halomonas azerbaijanica sp. nov. is proposed. The type strain is TBZ202T (=KCTC 62817T=CECT 9693T).
Collapse
Affiliation(s)
- Elham Kazemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Kiragosyan K, Picard M, Timmers PHA, Sorokin DY, Klok JBM, Roman P, Janssen AJH. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123002. [PMID: 32506049 DOI: 10.1016/j.jhazmat.2020.123002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD, Utrecht, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Shell, Oostduinlaan 2, 2596 JM, the Hague, the Netherlands
| |
Collapse
|
13
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
14
|
Gutierrez T, Morris G, Ellis D, Mulloy B, Aitken MD. Production and characterisation of a marine Halomonas surface-active exopolymer. Appl Microbiol Biotechnol 2019; 104:1063-1076. [PMID: 31813048 PMCID: PMC6962145 DOI: 10.1007/s00253-019-10270-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell’s 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed P39a to be a high-molecular-weight (~ 261,000 g/mol) glycoprotein composed of carbohydrate (17.2%) and protein (36.4%). The polymer exhibited high emulsifying activities against a range of oil substrates that included straight-chain aliphatics, mono- and alkyl- aromatics and cycloparaffins. In general, higher emulsification values were measured under low (0.1 M PBS) compared to high (synthetic seawater) ionic strength conditions, indicating that low ionic strength is more favourable for emulsification by the P39a polymer. However, as observed with other bacterial emulsifying agents, the polymer emulsified some aromatic hydrocarbon species, as well as refined and crude oils, more effectively under high ionic strength conditions, which we posit could be due to steric adsorption to these substrates as may be conferred by the protein fraction of the polymer. Furthermore, the polymer effected a positive influence on the degradation of phenanthrene by other marine bacteria, such as the specialist PAH-degrader Polycyclovorans algicola. Collectively, based on the ability of this Halomonas high-molecular-weight glycoprotein to emulsify a range of pure hydrocarbon species, as well as refined and crude oils, it shows promise for the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK. .,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA.
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Dave Ellis
- Institute of Chemical Sciences (ICS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Qu J, Chen X, Zhou J, Li H, Mai W. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 289:121714. [PMID: 31323719 DOI: 10.1016/j.biortech.2019.121714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
In this study, multistage contact oxidation reactor (MCOR) with a novel carrier was used for treatment of high-strength sodium saccharin wastewater (SSW) under stepwise increasing salinities from 1.0% to 8.0%. The results revealed that MCOR could effectively remove the organic pollutants from SSW when influent salinity was no more than 4.5%; the chemical oxygen demand (COD) and NH4+-N removal efficiency under the optimal operating parameters ranged up to 91.5% and 92.7%, respectively. Microbial diversity analysis illustrated that the dominant microbes in SSW treatment system were substantially distinct at different salinities. Pseudomonas was predominant at salinity of 3.5%, while Marinobacterium (a species involved in COD removal) was enriched to a greater degree at salinity of 7.0%. CCA suggested that salinity was the main factor for dynamic evolutions of microbial community structures. This work demonstrated that MCOR is an appropriate method for the treatment of high-strength, high-salinity SSW.
Collapse
Affiliation(s)
- Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenning Mai
- School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Tena-Garitaonaindia M, Llamas I, Toral L, Sampedro I. Chemotaxis of halophilic bacterium Halomonas anticariensis FP35 towards the environmental pollutants phenol and naphthalene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:631-636. [PMID: 30889450 DOI: 10.1016/j.scitotenv.2019.02.444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Chemotaxis can play an important role in bioremediation and substrate bioavailability. The bioremediation of hydrocarbons in saline environments can be carried out by technologies using halophilic bacteria. The aim of this study is to analyse chemotactic responses of the halophilic bacterium Halomonas anticariensis FP35T to environmental pollutants, as well as its catabolic potential for biotechnological use in bioremediation processes under saline conditions. Chemotaxis was detected and quantified using a modified Adler capillary assay. PCR amplification with degenerate primers for genes encoding ring-cleaving enzymes was used to characterize the catabolic versatility of FP35T. The results indicate that phenol (100-1,000 ppm) and naphthalene (100-500 ppm) are chemoattractants for H. anticariensis FP35T in a dose-dependent manner. These hydrocarbons were observed to act as chemoattractants for FP35T grown in a wide range of sea salt solutions (5-12.5% (w/v). However, the 7.5% (w/v) saline concentration was found to have the strongest chemotactic response. We also detected genes encoding ring-cleaving enzymes in the β-ketoadipate pathway for aromatic catabolism. These results suggest that H. anticariensis FP35T has the potential to catabolize aromatic compounds and to be used in bioremediation processes under saline conditions.
Collapse
Affiliation(s)
- M Tena-Garitaonaindia
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - I Llamas
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - L Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, 18016 Armilla, Granada, Spain
| | - I Sampedro
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
17
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
18
|
Complete Genome Sequence of Halomonas olivaria, a Moderately Halophilic Bacterium Isolated from Olive Processing Effluents, Obtained by Nanopore Sequencing. Microbiol Resour Announc 2019; 8:8/18/e00144-19. [PMID: 31048393 PMCID: PMC6498226 DOI: 10.1128/mra.00144-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Halomonas olivaria strain TYRC17, a moderately halophilic, Gram-negative bacterium that was isolated from olive processing effluents. The 5-Mbp genome consists of 7,375 protein-coding sequences, including a variety of genes involved in tyrosol metabolism, nitrate respiration, and the production of polysaccharides. Here, we report the complete genome sequence of Halomonas olivaria strain TYRC17, a moderately halophilic, Gram-negative bacterium that was isolated from olive processing effluents. The 5-Mbp genome consists of 7,375 protein-coding sequences, including a variety of genes involved in tyrosol metabolism, nitrate respiration, and the production of polysaccharides.
Collapse
|
19
|
Wang C, Huang Y, Zhang Z, Wang H. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express 2018; 8:67. [PMID: 29696463 PMCID: PMC5918149 DOI: 10.1186/s13568-018-0594-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 11/15/2022] Open
Abstract
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
Collapse
|
20
|
New Findings on Aromatic Compounds’ Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3. Curr Microbiol 2018; 75:1108-1118. [DOI: 10.1007/s00284-018-1497-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
|
21
|
Gasperotti AF, Revuelta MV, Studdert CA, Herrera Seitz MK. Identification of two different chemosensory pathways in representatives of the genus Halomonas. BMC Genomics 2018; 19:266. [PMID: 29669514 PMCID: PMC5907407 DOI: 10.1186/s12864-018-4655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Background Species of the genus Halomonas are salt-tolerant organisms that have a versatile metabolism and can degrade a variety of xenobiotic compounds, utilizing them as their sole carbon source. In this study, we examined the genome of a Halomonas isolate from a hydrocarbon-contaminated site to search for chemosensory genes that might be responsible for the observed chemotactic behavior of this organism as well as for other responses to environmental cues. Results Using genome-wide comparative tools, our isolate was identified as a strain of Halomonas titanicae (strain KHS3), together with two other Halomonas strains with available genomes that had not been previously identified at a species level. The search for the main components of chemosensory pathways resulted in the identification of two clusters of chemosensory genes and a total of twenty-five chemoreceptor genes. One of the gene clusters is very similar to the che cluster from Escherichia coli and, presumably, it is responsible for the chemotactic behavior towards a variety of compounds. This gene cluster is present in 47 out of 56 analyzed Halomonas strains with available genomes. A second che-like cluster includes a gene coding for a diguanylate cyclase with a phosphotransfer and two receiver domains, as well as a gene coding for a chemoreceptor with a longer cytoplasmic domain than the other twenty-four. This seemingly independent pathway resembles the wsp pathway from Pseudomonas aeruginosa although it also presents several differences in gene order and domain composition. This second chemosensory gene cluster is only present in a sub-group within the genus Halomonas. Moreover, remarkably similar gene clusters are also found in some orders of Proteobacteria phylogenetically more distant from the Oceanospirillales, suggesting the occurrence of lateral transfer events. Conclusions Chemosensory pathways were investigated within the genus Halomonas. A canonical chemotaxis pathway, controlled by a variable number of chemoreceptors, is widespread among Halomonas species. A second chemosensory pathway of unique organization that involves some type of c-di-GMP signaling was found to be present only in one branch of the genus, as well as in other proteobacterial lineages. Electronic supplementary material The online version of this article (10.1186/s12864-018-4655-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Florencia Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Revuelta
- Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
22
|
Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Int J Biol Macromol 2018; 106:1107-1114. [DOI: 10.1016/j.ijbiomac.2017.08.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022]
|
23
|
Loredana S, Graziano P, Antonio M, Carlotta NM, Caterina L, Maria AA, Carlo Z, Giuseppe C, Pietro A. Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis. Mar Drugs 2017; 15:md15040108. [PMID: 28383507 PMCID: PMC5408254 DOI: 10.3390/md15040108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
Lindane is an organochlorine pesticide belonging to persistent organic pollutants (POPs) that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we assessed the role of bacteria associated with the sponge Hymeniacidon perlevis in lindane degradation. Seven bacteria isolates were characterized and identified. These isolates showed a remarkable capacity to utilize lindane as a sole carbon source leading to a percentage of residual lindane ranging from 3% to 13% after 12 days of incubation with the pesticide. The lindane metabolite, 1,3–6-pentachloro-cyclohexene, was identified as result of lindane degradation and determined by gas chromatography–mass spectrometry (GC–MS). The bacteria capable of lindane degradation were identified on the basis of the phenotypic characterization by morphological, biochemical and cultural tests, completed with 16S rDNA sequence analysis, and assigned to Mameliella phaeodactyli, Pseudovibrioascidiaceicola, Oceanicaulis stylophorae, Ruegeria atlantica and to three new uncharacterized species. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of lindane.
Collapse
Affiliation(s)
- Stabili Loredana
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Pizzolante Graziano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Morgante Antonio
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Nonnis Marzano Carlotta
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Longo Caterina
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | | | - Zambonin Carlo
- Dipartimento di Chimica, Università di Bari Aldo Moro, 70125 Bari, Italy.
| | - Corriero Giuseppe
- Dipartimento di Biologia, Università di Bari Aldo Moro, 70125 Bari, Italy.
- CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Alifano Pietro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
24
|
Tian M, Du D, Zhou W, Zeng X, Cheng G. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz J Microbiol 2016; 48:305-313. [PMID: 28065387 PMCID: PMC5470458 DOI: 10.1016/j.bjm.2016.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/11/2016] [Indexed: 12/01/2022] Open
Abstract
The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.
Collapse
Affiliation(s)
- Mengyang Tian
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Dongyun Du
- South-Central University for Nationalities, College of Chemistry and Materials, Wuhan, PR China
| | - Wei Zhou
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Xiaobo Zeng
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Guojun Cheng
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China.
| |
Collapse
|
25
|
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 2016; 7:1369. [PMID: 27630626 PMCID: PMC5006600 DOI: 10.3389/fmicb.2016.01369] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
Collapse
Affiliation(s)
- Debajyoti Ghosal
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
| | - Shreya Ghosh
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| | - Tapan K. Dutta
- Department of Microbiology, Bose InstituteKolkata, India
| | - Youngho Ahn
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
26
|
Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 2016; 32:135. [PMID: 27344438 DOI: 10.1007/s11274-016-2081-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.
Collapse
|
27
|
Halophiles: Pharmaceutical Potential and Biotechnological Applications. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Dalvi S, Youssef NH, Fathepure BZ. Microbial community structure analysis of a benzoate-degrading halophilic archaeal enrichment. Extremophiles 2016; 20:311-21. [PMID: 26995683 DOI: 10.1007/s00792-016-0823-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 02/01/2023]
Abstract
A benzoate-degrading archaeal enrichment was developed using sediment samples from Rozel Point at Great Salt Lake, UT. The enrichment degraded benzoate as the sole carbon source at salinity ranging from 2.0 to 5.0 M NaCl with highest rate of degradation observed at 4.0 M. The enrichment was also tested for its ability to grow on other aromatic compounds such as 4-hydroxybenzoic acid (4-HBA), gentisic acid, protocatechuic acid (PCA), catechol, benzene and toluene as the sole sources of carbon and energy. Of these, the culture only utilized 4-HBA as the carbon source. To determine the initial steps in benzoate degradation pathway, a survey of ring-oxidizing and ring-cleaving genes was performed using degenerate PCR primers. Results showed the presence of 4-hydroxybenzoate 3-monooxygenase (4-HBMO) and protocatechuate 3, 4-dioxygenase (3,4-PCA) genes suggesting that the archaeal enrichment might degrade benzoate to 4-HBA that is further converted to PCA by 4-HBMO and, thus, formed PCA would undergo ring-cleavage by 3,4-PCA to form intermediates that enter the Krebs cycle. Small subunit rRNA gene-based diversity survey revealed that the enrichment consisted entirely of class Halobacteria members belonging to the genera Halopenitus, Halosarcina, Natronomonas, Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena. Of these, Halopenitus was the dominant group accounting for almost 91 % of the total sequences suggesting their potential role in degrading oxygenated aromatic compounds at extreme salinity.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Babu Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
29
|
Guo G, Fang T, Wang C, Huang Y, Tian F, Cui Q, Wang H. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium. Sci Rep 2015; 5:17603. [PMID: 26621792 PMCID: PMC4664950 DOI: 10.1038/srep17603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tingting Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fang Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qijia Cui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
|
31
|
Comparative genome analysis of Oceanimonas sp. GK1, a halotolerant bacterium with considerable xenobiotics degradation potentials. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1156-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 2015; 19:1109-20. [PMID: 26334644 DOI: 10.1007/s00792-015-0783-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.
Collapse
Affiliation(s)
- Souad Khemili-Talbi
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria.
| | - Salima Kebbouche-Gana
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria.
| | - Siham Akmoussi-Toumi
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria
| | - Yassmina Angar
- Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria
| | - Mohamed Lamine Gana
- Centre de Recherche et de Développement, SONATRACH, 35000, Boumerdès, Algeria
| |
Collapse
|
33
|
Lu ZY, Guo XJ, Li H, Huang ZZ, Lin KF, Liu YD. High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response. Int J Mol Sci 2015; 16:11834-48. [PMID: 26020478 PMCID: PMC4490417 DOI: 10.3390/ijms160611834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022] Open
Abstract
A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process.
Collapse
Affiliation(s)
- Zhi-Yan Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiao-Jue Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhong-Zi Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Kuang-Fei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yong-Di Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
34
|
Draft Genome Sequence of Halomonas sp. KHS3, a Polyaromatic Hydrocarbon-Chemotactic Strain. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00020-15. [PMID: 25767220 PMCID: PMC4357742 DOI: 10.1128/genomea.00020-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome sequence of Halomonas sp. KHS3, isolated from seawater from Mar del Plata harbor, is reported. This strain is able to grow using aromatic compounds as a carbon source and shows strong chemotactic response toward these substrates. Genes involved in motility, chemotaxis, and degradation of aromatic hydrocarbons were identified.
Collapse
|
35
|
|
36
|
Piubeli F, Grossman MJ, Fantinatti-Garboggini F, Durrant LR. Phylogenetic analysis of the microbial community in hypersaline petroleum produced water from the Campos Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12006-12016. [PMID: 24920265 DOI: 10.1007/s11356-014-3155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Collapse
Affiliation(s)
- Francine Piubeli
- Department of Food Science (DCA), Food Engineering Faculty (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, CEP 13083-862, Brazil
| | | | | | | |
Collapse
|
37
|
Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 2014; 80:6664-76. [PMID: 25149520 DOI: 10.1128/aem.01509-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.
Collapse
|
38
|
Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9578-9588. [PMID: 24859702 DOI: 10.1007/s11356-014-3036-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.
Collapse
Affiliation(s)
- Laura C Castillo-Carvajal
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Unidad Profesional Adolfo López Mateos, D.F, 07738, Mexico
| | | | | |
Collapse
|
39
|
Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 2014; 5:173. [PMID: 24795705 PMCID: PMC4005966 DOI: 10.3389/fmicb.2014.00173] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/30/2014] [Indexed: 12/29/2022] Open
Abstract
Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles.
Collapse
Affiliation(s)
- Babu Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
40
|
Characterization of microbial communities in heavy crude oil from Saudi Arabia. ANN MICROBIOL 2014; 65:95-104. [PMID: 25705147 PMCID: PMC4331609 DOI: 10.1007/s13213-014-0840-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/05/2014] [Indexed: 12/02/2022] Open
Abstract
The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus, Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Clostridia, Spingobacteria and Flavobacteria. The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria, respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.
Collapse
|
41
|
Amouric A, Liebgott PP, Joseph M, Brochier-Armanet C, Lorquin J. Halomonas olivaria sp. nov., a moderately halophilic bacterium isolated from olive-processing effluents. Int J Syst Evol Microbiol 2013; 64:46-54. [PMID: 24030688 DOI: 10.1099/ijs.0.049007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17(T) was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0-25 % (w/v) NaCl (optimum, 7 %), at pH 5-11 (optimum, pH 7.0) and at 4-50 °C (optimally at 35 °C). It accumulated poly-β-hydroxyalkanoate granules and produced exopolysaccharides. The predominant fatty acids were C18 : 1ω7c, C16 : 1ω7c and C16 : 0. Ubiquinone 9 (Q-9) was the only respiratory quinone. The DNA G+C content of TYRC17(T) was 53.9 mol%. Phylogenetic analyses of 16S rRNA gene sequences revealed that the strain represents a member of the genus Halomonas and more precisely of the subgroup containing Halomonas sulfidaeris, H. titanicae, H. variabilis, H. zhanjiangensis, H. alkaliantarctica, H. boliviensis and H. neptunia. TYRC17(T) showed high 16S-rRNA sequence identities in particular with the three last species listed (99.4-99.5 %). A multilocus sequence analysis (MLSA) using the 23S rRNA, gyrB, rpoD and secA genes allowed clarifying the phylogenetic position of TYRC17(T). This, combined with the level of DNA-DNA hybridization between TYRC17(T) and its closest relatives ranging from 21.6 % to 48.4 %, indicated that TYRC17(T) did not represent any of these species. On the basis of phenotypic and genotypic characteristics, and also genomic and phylogenetic evidence, it was concluded that strain TYRC17(T) represented a novel species of the genus Halomonas. The name Halomonas olivaria sp. nov. is proposed with TYRC17(T) ( = DSM 19074(T) = CCUG 53850B(T)) as the type strain.
Collapse
Affiliation(s)
- Agnès Amouric
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille
| | - Pierre-Pol Liebgott
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille
| | - Manon Joseph
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Jean Lorquin
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille
| |
Collapse
|
42
|
Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill. PLoS One 2013; 8:e67717. [PMID: 23826336 PMCID: PMC3694863 DOI: 10.1371/journal.pone.0067717] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Halomonas species are recognized for producing exopolysaccharides (EPS) exhibiting amphiphilic properties that allow these macromolecules to interface with hydrophobic substrates, such as hydrocarbons. There remains a paucity of knowledge, however, on the potential of Halomonas EPS to influence the biodegradation of hydrocarbons. In this study, the well-characterized amphiphilic EPS produced by Halomonas species strain TG39 was shown to effectively increase the solubilization of aromatic hydrocarbons and enhance their biodegradation by an indigenous microbial community from oil-contaminated surface waters collected during the active phase of the Deepwater Horizon oil spill. Three Halomonas strains were isolated from the Deepwater Horizon site, all of which produced EPS with excellent emulsifying qualities and shared high (97-100%) 16S rRNA sequence identity with strain TG39 and other EPS-producing Halomonas strains. Analysis of pyrosequence data from surface water samples collected during the spill revealed several distinct Halomonas phylotypes, of which some shared a high sequence identity (≥97%) to strain TG39 and the Gulf spill isolates. Other bacterial groups comprising members with well-characterized EPS-producing qualities, such as Alteromonas, Colwellia and Pseudoalteromonas, were also found enriched in surface waters, suggesting that the total pool of EPS in the Gulf during the spill may have been supplemented by these organisms. Roller bottle incubations with one of the Halomonas isolates from the Deepwater Horizon spill site demonstrated its ability to effectively produce oil aggregates and emulsify the oil. The enrichment of EPS-producing bacteria during the spill coupled with their capacity to produce amphiphilic EPS is likely to have contributed to the ultimate removal of the oil and to the formation of oil aggregates, which were a dominant feature observed in contaminated surface waters.
Collapse
|
43
|
Egorova DO, Korsakova ES, Demakov VA, Plotnikova EG. Degradation of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 isolated from waste products of a salt-mining plant. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR. Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 2013; 24:699-709. [PMID: 23292008 DOI: 10.1007/s10532-012-9617-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Phenol is a toxic aromatic compound used or produced in many industries and as a result a common component of industrial wastewaters. Phenol containing waste streams are frequently hypersaline and therefore require halophilic microorganisms for efficient biotreatment without dilution. In this study three halophilic bacteria isolated from different saline environments and identified as Halomonas organivorans, Arhodomonas aquaeolei and Modicisalibacter tunisiensis were shown to be able to grow on phenol in hypersaline media containing 100 g/L of total salts at a concentration of 3 mM (280 mg/L), well above the concentration found in most waste streams. Genes encoding the aromatic dioxygenase enzymes catechol 1,2 dioxygenase and protocatechuate 3,4-dioxygenase were present in all strains as determined by PCR amplification using primers specific for highly conserved regions of the genes. The gene for protocatechuate 3,4-dioxygenase was cloned from the isolated H. organivorans and the translated protein was evaluated by comparative protein sequence analysis with protocatechuate 3,4-dioxygenase proteins from other microorganisms. Although the analysis revealed a wide range of sequence divergence among the protocatechuate 3,4-dioxygenase family, all of the conserved domain amino acid structures identified for this enzyme family are identical or conservatively substituted in the H. organivorans enzyme.
Collapse
Affiliation(s)
- Maricy Raquel Lindenbah Bonfá
- Departamento de Ciência de Alimentos-FEA, Universidade Estadual de Campinas-UNICAMP, Rua Monteiro Lobato, 80 CEP, Campinas, SP 13083-862, Brazil
| | | | | | | | | |
Collapse
|
45
|
Li H, Zhang Q, Wang XL, Ma XY, Lin KF, Liu YD, Gu JD, Lu SG, Shi L, Lu Q, Shen TT. Biodegradation of benzene homologues in contaminated sediment of the East China Sea. BIORESOURCE TECHNOLOGY 2012; 124:129-136. [PMID: 22989641 DOI: 10.1016/j.biortech.2012.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
This study focused on acclimating a microbial enrichment to biodegrade benzene, toluene, ethylbenzene and xylenes (BTEX) in a wide range of salinity. The enrichment degraded 120 mg/L toluene within 5d in the presence of 2M NaCl or 150 mg/L toluene within 7d in the presence of 1-1.5M NaCl. PCR-DGGE (polymerase chain reaction-denatured gradient gel electrophoresis) profiles demonstrated the dominant species in the enrichments distributed between five main phyla: Gammaproteobacteria, Sphingobacteriia, Prolixibacter, Flavobacteriia and Firmicutes. The Marinobacter, Prolixibacter, Balneola, Zunongwangia, Halobacillus were the dominant genus. PCR detection of genotypes involved in bacterial BETX degradation revealed that the degradation pathways contained all the known initial oxidative attack of BTEX by monooxygenase and dioxygenase. And the subsequent ring fission was catalysed by catechol 1,2-dioxygenase and catechol 2,3-dioxygenase. Nuclear magnetic resonance (NMR) spectroscopy profiles showed that the bacterial consortium adjusted the osmotic pressure by ectoine and hydroxyectoine as compatible solutes to acclimate the different salinity conditions.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 2012; 78:7309-16. [PMID: 22885747 DOI: 10.1128/aem.01327-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.
Collapse
|
47
|
Jin HM, Kim JM, Lee HJ, Madsen EL, Jeon CO. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7731-7740. [PMID: 22709320 DOI: 10.1021/es3018545] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Following the 2007 oil spill in South Korean tidal flats, we sought to identify microbial players influencing the environmental fate of released polycyclic aromatic hydrocarbons (PAHs). Two years of monitoring showed that PAH concentrations in sediments declined substantially. Enrichment cultures were established using seawater and modified minimal media containing naphthalene as sole carbon source. The enriched microbial community was characterized by 16S rRNA-based DGGE profiling; sequencing selected bands indicated Alteromonas (among others) were active. Alteromonas sp. SN2 was isolated and was able to degrade naphthalene, phenanthrene, anthracene, and pyrene in laboratory-incubated microcosm assays. PCR-based analysis of DNA extracted from the sediments revealed naphthalene dioxygenase (NDO) genes of only two bacterial groups: Alteromonas and Cycloclasticus, having gentisate and catechol metabolic pathways, respectively. However, reverse transcriptase PCR-based analysis of field-fixed mRNA revealed in situ expression of only the Alteromonas-associated NDO genes; in laboratory microcosms these NDO genes were markedly induced by naphthalene addition. Analysis by GC/MS showed that naphthalene in tidal-flat samples was metabolized predominantly via the gentisate pathway; this signature metabolite was detected (0.04 μM) in contaminated field sediment. A quantitative PCR-based two-year data set monitoring Alteromonas-specific 16S rRNA genes and NDO transcripts in sea-tidal flat field samples showed that the abundance of bacteria related to strain SN2 during the winter season was 20-fold higher than in the summer season. Based on the above data, we conclude that strain SN2 and its relatives are site natives--key players in PAH degradation and adapted to winter conditions in these contaminated sea-tidal-flat sediments.
Collapse
Affiliation(s)
- Hyun Mi Jin
- School of Biological Sciences, Chung-Ang University , 84, HeukSeok-Ro, Seoul 156-756, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Kim W, Park YR, Im S, Kim D, Kim SW. Expression and bioconversion of recombinant m- and p-hydroxybenzoate hydroxylases from a novel moderate halophile, Chromohalobacter sp. Biotechnol Lett 2012; 34:1687-92. [PMID: 22648685 DOI: 10.1007/s10529-012-0950-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
p-Hydroxybenzoate hydroxylase (pobA) and m-hydroxybenzoate hydroxylase (mobA) genes, from the moderate halophile Chromohalobacter sp. HS-2, were expressed and characterized. Solubilities of overexpressed recombinant MobA and PobA were enhanced by the induction of the heat-shock proteins DnaJ and DnaK. Each MobA and PobA maintained stable activity under high NaCl concentrations. V (max) and K (m) values for MobA with m-hydroxybenzoate were 70 μmol min(-1) mg(-1) protein and 81 μM, respectively. Similarly, those of PobA with p-hydroxybenzoate as substrate were 5 μmol min(-1) mg(-1) protein and 129 μM, respectively. The Escherichia coli expression system, including induction of heat shock proteins, was used to convert hydroxybenzoates into protocatechuate (3,4-dihydroxybenzoate) and revealed that resting cells harboring mobA converted 15 mM m-hydroxybenzoate to 15 mM protocatechuate while those harboring pobA converted 50 mM p-hydroxybenzoate to 35 mM protocatechuate at 30 °C, respectively.
Collapse
Affiliation(s)
- Wonduck Kim
- Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | | | | | | | | |
Collapse
|
49
|
Ohta Y, Nishi S, Haga T, Tsubouchi T, Hasegawa R, Konishi M, Nagano Y, Tsuruwaka Y, Shimane Y, Mori K, Usui K, Suda E, Tsutsui K, Nishimoto A, Fujiwara Y, Maruyama T, Hatada Y. Screening and Phylogenetic Analysis of Deep-Sea Bacteria Capable of Metabolizing Lignin-Derived Aromatic Compounds. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojms.2012.24021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 2011; 95:789-98. [PMID: 22086071 DOI: 10.1007/s00253-011-3706-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
In this study we investigated the phenanthrene degradation by a halophilic consortium obtained from a saline soil sample. This consortium, named Qphe, could efficiently utilize phenanthrene in a wide range of NaCl concentrations, from 1% to 17% (w/v). Since none of the purified isolates could degrade phenanthrene, serial dilutions were performed and resulted in a simple polycyclic aromatic hydrocarbon (PAH)-degrading culture named Qphe-SubIV which was shown to contain one culturable Halomonas strain and one unculturable strain belonging to the genus Marinobacter. Qphe-SubIV was shown to grow on phenanthrene at salinities as high as 15% NaCl (w/v) and similarly to Qphe, at the optimal NaCl concentration of 5% (w/v), could degrade more than 90% of the amended phenanthrene in 6 days. The comparison of the substrate range of the two consortiums showed that the simplified culture had lost the ability to degrade chrysene but still could grow on other polyaromatic substrates utilized by Qphe. Metabolite analysis by HPLC and GC-MS showed that 2-hydroxy 1-naphthoic acid and 2-naphthol were among the major metabolites accumulated in the Qphe-SubIV culture media, indicating that an initial dioxygenation step might proceed at C1 and C2 positions. By investigating the growth ability on various substrates along with the detection of catechol dioxygenase gene, it was postulated that the uncultured Marinobacter strain had the central role in phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.
Collapse
|