1
|
Urbano VA, Alves GHZ, Pompeu PS, Contieri BB, Benedito E. Fish acting as sinks of methane-derived carbon in Neotropical floodplains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178231. [PMID: 39721522 DOI: 10.1016/j.scitotenv.2024.178231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain. Our objective was to investigate the proportion of methane-derived carbon in the biomass of apex fish across 34 lakes from four major Neotropical floodplains (Amazon, Pantanal, Araguaia, and Paraná) using stable isotopes of carbon (δ13C). We found that methane-derived carbon contributed between 5 % and 16 % to the biomass of 37 apex fish species, providing, for the first time, evidence of the fish's role in the methane cycle in the Neotropics. Consumers in the Amazon and Pantanal floodplains, the largest and most significant regions for methane production, exhibited higher levels of methane-derived carbon in their biomass (11.06 ± 2.87 % and 9.84 ± 3.08 %, respectively). These results underscore the role of aquatic consumers in mitigating methane emissions in floodplains, as methane oxidation and assimilation are linked to reduced emissions. Therefore, conserving fish assemblages in floodplains through strategies that maintain the natural dynamics of these ecosystems is essential for controlling natural methane emissions.
Collapse
Affiliation(s)
- Vinícius Andrade Urbano
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil; Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.
| | - Gustavo Henrique Zaia Alves
- Department of General Biology, State University of Ponta Grossa (UEPG), Campus Uvaranas, Ponta Grossa, PR 84030-900, Brazil
| | - Paulo Santos Pompeu
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil
| | - Beatriz Bosquê Contieri
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| | - Evanilde Benedito
- Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| |
Collapse
|
2
|
Pelsma KAJ, In 't Zandt MH, Op den Camp HJM, Jetten MSM, Dean JF, Welte CU. Amsterdam urban canals contain novel niches for methane-cycling microorganisms. Environ Microbiol 2021; 24:82-97. [PMID: 34863018 PMCID: PMC9299808 DOI: 10.1111/1462-2920.15864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane‐cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co‐occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate‐limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome‐assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human‐impacted carbon cycle.
Collapse
Affiliation(s)
- Koen A J Pelsma
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Joshua F Dean
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
3
|
Berberich ME, Beaulieu JJ, Hamilton TL, Waldo S, Buffam I. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1-23. [PMID: 32801395 PMCID: PMC7425684 DOI: 10.1002/lno.11392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/09/2019] [Indexed: 05/19/2023]
Abstract
Freshwater reservoirs are an important source of the greenhouse gas methane (CH4) to the atmosphere, but global emission estimates are poorly constrained (13.3-52.5 Tg C yr-1), partially due to extreme spatial variability in emission rates within and among reservoirs. Spatial heterogeneity in the availability of organic matter (OM) for biological CH4 production by methanogenic archaea may be an important contributor to this variation. To investigate this, we measured sediment CH4 potential production rates, OM source and quantity, and methanogen community composition at 15 sites within a eutrophic reservoir in Ohio, USA. CH4 production rates were highest in the shallow riverine inlet zone of the reservoir, even when rates were normalized to OM quantity, indicating that OM was more readily utilized by methanogens in the riverine zone than in the transitional or lacustrine zones. Sediment stable isotopes and C:N indicated a greater proportion of terrestrial OM in the particulate sediment of this zone. Methanogens were present at all sites, but the riverine zone contained a higher relative abundance of methanogens capable of acetoclastic and methylotrophic methanogenesis, likely reflecting differences in decomposition processes or OM quality. While we found that methane potential production rates were negatively correlated with autochthonous carbon in particulate sediment OM, rates were positively correlated with indicators of autochthonous carbon in the porewater dissolved OM. It is likely that both dissolved and particulate sediment OM affect CH4 production rates, and that both terrestrial and aquatic OM sources are important in the riverine methane production hot spot.
Collapse
Affiliation(s)
- Megan E. Berberich
- University of Cincinnati, Department of Biological Sciences, Cincinnati, OH, United States
| | - Jake J. Beaulieu
- USEPA, Office of Research and Development, Cincinnati, OH, United States
| | - Trinity L. Hamilton
- University of Cincinnati, Department of Biological Sciences, Cincinnati, OH, United States
| | - Sarah Waldo
- USEPA, Office of Research and Development, Cincinnati, OH, United States
| | - Ishi Buffam
- University of Cincinnati, Department of Biological Sciences, Cincinnati, OH, United States
| |
Collapse
|
4
|
Biderre-Petit C, Taib N, Gardon H, Hochart C, Debroas D. New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 2020; 95:5092586. [PMID: 30203066 DOI: 10.1093/femsec/fiy183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Najwa Taib
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hélène Gardon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Corentin Hochart
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Methane-derived carbon in the benthic food web in stream impoundments. PLoS One 2014; 9:e111392. [PMID: 25360609 PMCID: PMC4216073 DOI: 10.1371/journal.pone.0111392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
Methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs. CH4 is oxidized by methane oxidizing bacteria (MOB), and subsequently utilized by chironomid larvae, which may exhibit low δ13C values. This has been shown for chironomid larvae collected from lakes, streams and backwater pools. However, the relationship between CH4 concentrations and δ13C values of chironomid larvae for in-stream impoundments is unknown. CH4 concentrations were measured in eleven in-stream impoundments located in the Queich River catchment area, South-western Germany. Furthermore, the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae) were determined and correlated with CH4 concentrations. Chironomini larvae had lower mean δ13C values (−29.2 to −25.5 ‰), than Tanypodinae larvae (−26.9 to −25.3 ‰). No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p>0.05). Mean δ13C values of chironomid larvae (mean: −26.8‰, range: −29.2‰ to −25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: −28.4‰, range: −29.3‰ to −27.1‰) and tree leaf litter (mean: −29.8 ‰, range: −30.5‰ to −29.1‰). We suggest that CH4 concentration has limited influence on the benthic food web in stream impoundments.
Collapse
|
6
|
Gąsiorowski M, Sienkiewicz E. The Sources of Carbon and Nitrogen in Mountain Lakes and the Role of Human Activity in Their Modification Determined by Tracking Stable Isotope Composition. WATER, AIR, AND SOIL POLLUTION 2013; 224:1498. [PMID: 23576824 PMCID: PMC3618881 DOI: 10.1007/s11270-013-1498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/19/2013] [Indexed: 05/12/2023]
Abstract
We studied the isotopic composition of organic matter in the sediments of eight mountain lakes located in the Tatra Mountains (Western Carpathians, Poland). The sediments of the lakes were fine and course detritus gyttja, mud, and sand. The total organic carbon content varied from 0.5 to 53 %. The C/N ratio indicated that in-lake primary production is the major source of the organic matter in the lakes located above the treeline, whereas terrestrial plant fragments are the major organic compounds in the sediments of dystrophic forest lakes. We also found that a clear trend of isotopic curves toward lower values of δ13C and δ15N (both ~3 ‰) began in the 1960s. This trend is a sign of the deposition of greater amounts of NO x from the combustion of fossil fuels, mainly by vehicle engines. The combustion of fossil fuels in electric plants and other factories had a smaller influence on the isotopic composition. This trend has been weaker since the 1990s. Animal and human wastes from pastures and tourism had a surprisingly minor effect on lake environments. These data are contrary to previous data regarding lake biota and suggest the high sensitivity of living organisms to organic pollution.
Collapse
Affiliation(s)
- Michał Gąsiorowski
- Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. No. 51/55, 00818 Warsaw, Poland
| | - Elwira Sienkiewicz
- Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. No. 51/55, 00818 Warsaw, Poland
| |
Collapse
|
7
|
Mills CT, Slater GF, Dias RF, Carr SA, Reddy CM, Schmidt R, Mandernack KW. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep. FEMS Microbiol Ecol 2013; 84:474-94. [PMID: 23346979 DOI: 10.1111/1574-6941.12079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. (14) C-dead) carbon to soil microbial communities. Natural abundance (13) C and (14) C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ(13) C values of PLFAs common in type I and II methanotrophs were as negative as -67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ(13) C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ(14) C values of select PLFAs (-351 to -936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35-91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.
Collapse
Affiliation(s)
- Christopher T Mills
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Bodelier PLE, Bär-Gilissen MJ, Meima-Franke M, Hordijk K. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecol Evol 2012; 2:106-27. [PMID: 22408730 PMCID: PMC3297182 DOI: 10.1002/ece3.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/02/2023] Open
Abstract
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
9
|
Alam MS, Jia Z. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Front Microbiol 2012; 3:246. [PMID: 22783249 PMCID: PMC3389332 DOI: 10.3389/fmicb.2012.00246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/18/2012] [Indexed: 11/22/2022] Open
Abstract
Nitrogenous fertilizers are generally thought to have an important role in regulating methane oxidation. In this study, the effect of ammonium on methane oxidation activity was investigated in a paddy soil using urea at concentrations of 0, 50, 100, 200, and 400 μg N per gram dry weight soil (N/g.d.w.s) and ammonium sulfate at concentrations of 0, 50, and 200 μg N/g.d.w.s. The results of this study demonstrate that urea concentrations of 200 μg N/g.d.w.s. and above significantly inhibit methane oxidation activity, whereas no statistically significant difference was observed in methane oxidation activity among soil microcosms with urea concentrations of less than 200 μg N/g.d.w.s after incubation for 27 days. Similar results were obtained in a sense that methane oxidation activity was inhibited only when the ammonium sulfate concentration was 200 μg N/g.d.w.s in soil microcosms in this study. Phylogenetic analysis of pmoA genes showed that nitrogen fertilization resulted in apparent changes in the community composition of methane-oxidizing bacteria (MOB). Type I MOB displayed an increased abundance in soil microcosms amended with nitrogenous fertilizers, whereas type II MOB dominated the native soil. Furthermore, although no statistically significant relationship was observed between pmoA gene and amoA gene abundances, methane oxidation activity was significantly negatively correlated with nitrification activity in the presence of urea or ammonium sulfate. Our results indicate that the methane oxidation activity in paddy soils might be inhibited when the concentration of ammonium fertilizers is high and that the interactions between ammonia and methane oxidizers need to be further investigated.
Collapse
Affiliation(s)
- M. Saiful Alam
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese, Academy of Sciences, Nanjing, Jiangsu ProvinceP.R. China
- Graduate School of Chinese Academy of SciencesBeijing, P.R. China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese, Academy of Sciences, Nanjing, Jiangsu ProvinceP.R. China
| |
Collapse
|
10
|
López Bellido J, Peltomaa E, Ojala A. An urban boreal lake basin as a source of CO₂ and CH₄. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1649-1659. [PMID: 21420770 DOI: 10.1016/j.envpol.2011.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/21/2011] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Up to now, carbon gas fluxes from urban lakes in the boreal zone have seldom been studied. In summer 2005 we investigated fluxes from an urban boreal lake basin in southern Finland with long history of eutrophication and anoxia. Hypolimnetic CO₂ and CH₄ concentrations were high compared to other boreal lakes. During the open-water period, the lake basin acted as a source of CO₂ and CH₄ with fluxes of 2.10 mol m(-2 )and 0.04 mol m(-2), respectively. Despite the high oxidation rate (83%), CH₄ flux was higher than in other lakes and CH₄ contributed 33% [ corrected] to Global Warming Potential. The ratio of carbon emission to accumulation was 4, i.e. emissions were an important route for carbon departure but less so than in rural lakes. Since the lake oxygen conditions affected nutrient availability, there was a positive feedback from hypolimnion to carbon uptake, which was reflected in gas concentrations.
Collapse
Affiliation(s)
- Jessica López Bellido
- University of Helsinki, Department of Environmental Sciences, Niemenkatu 73, FIN-15140 Lahti, Finland.
| | | | | |
Collapse
|
11
|
Siljanen HM, Saari A, Krause S, Lensu A, Abell GC, Bodrossy L, Bodelier PL, Martikainen PJ. Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiol Ecol 2010; 75:430-45. [DOI: 10.1111/j.1574-6941.2010.01015.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Steenbergh AK, Meima MM, Kamst M, Bodelier PL. Biphasic kinetics of âa methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol Ecol 2010; 71:12-22. [DOI: 10.1111/j.1574-6941.2009.00782.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Abstract
A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N(2)O-to-N(2) production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems.
Collapse
|
14
|
Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany). Appl Environ Microbiol 2008; 75:119-26. [PMID: 18997033 DOI: 10.1128/aem.01350-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.
Collapse
|
15
|
Jones RI, Carter CE, Kelly A, Ward S, Kelly DJ, Grey J. WIDESPREAD CONTRIBUTION OF METHANE-CYCLE BACTERIA TO THE DIETS OF LAKE PROFUNDAL CHIRONOMID LARVAE. Ecology 2008; 89:857-64. [DOI: 10.1890/06-2010.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Rahalkar M, Bussmann I, Schink B. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 2007; 57:1073-1080. [PMID: 17473262 DOI: 10.1099/ijs.0.64574-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel methanotroph, strain LC 2(T), was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2(T) grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing typical intracytoplasmic membranes arranged in stacks. Cells are coccoid, elliptical or rod-shaped and occur often in pairs. Strain LC 2(T) grows at low oxygen concentrations and in counter-gradients of methane and oxygen. It can grow on medium free of bound nitrogen, possesses the nifH gene and fixes atmospheric nitrogen at low oxygen pressure. It grows at neutral pH and at temperatures between 10 and 30 degrees C. Phylogenetically, it is most closely related to the genus Methylobacter, with the type strains of Methylobacter tundripaludum and Methylobacter psychrophilus showing 94 and 93.4 % 16S rRNA gene sequence similarity, respectively. Furthermore, the pmoA gene sequence of strain LC 2(T) is most closely related to pmoA gene sequences of Methylobacter strains (92 % similar to Methylobacter sp. LW 12 by deduced amino acid sequence identity). The DNA G+C content is 49.9 mol% and the major cellular fatty acid is 16 : 1omega7c (60 %). Strain LC 2(T) (=JCM 14076(T)=DSM 18750(T)) is described as the type strain of a novel species within a new genus, Methylosoma difficile gen. nov., sp. nov.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Composition
- Carbon/metabolism
- Cytoplasm/ultrastructure
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Germany
- Hydrogen-Ion Concentration
- Membranes/ultrastructure
- Methane/metabolism
- Methanol/metabolism
- Methylococcaceae/classification
- Methylococcaceae/cytology
- Methylococcaceae/isolation & purification
- Methylococcaceae/physiology
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Movement
- Nitrogenase/metabolism
- Oxidoreductases/genetics
- Phylogeny
- Pigments, Biological/biosynthesis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sodium Chloride/metabolism
- Temperature
Collapse
Affiliation(s)
- Monali Rahalkar
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| | - Ingeborg Bussmann
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| | - Bernhard Schink
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| |
Collapse
|
18
|
Kankaala P, Taipale S, Nykänen H, Jones RI. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000336] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Taipale S, Kankaala P, Jones RI. Contributions of Different Organic Carbon Sources to Daphnia in the Pelagic Foodweb of a Small Polyhumic Lake: Results from Mesocosm DI13C-Additions. Ecosystems 2007. [DOI: 10.1007/s10021-007-9056-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Deines P, Bodelier PLE, Eller G. Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environ Microbiol 2007; 9:1126-34. [PMID: 17472629 DOI: 10.1111/j.1462-2920.2006.01235.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent investigations have shown that biogenic methane can be a carbon source for macro invertebrates in freshwater food webs. Stable carbon isotopic signatures, used to infer an organism's food source, indicated that methane can play a major role in the nutrition of chironomid larvae. However, the pathway of methane-derived carbon into invertebrate biomass is still not confirmed. It has been proposed that chironomid larvae ingest methane-oxidizing bacteria (MOB), but this has not been experimentally demonstrated to date. Using (13)C-labelled methane we could show for the first time that chironomid larvae assimilate methane-derived carbon through MOB. Chironomid larval biomass was significantly (13)C-enriched after dwelling for 10 days in lake sediment enriched with labelled methane. Moreover, phospholipid fatty acids diagnostic for MOB were detected in larval tissue and were significantly (13)C-enriched, which encompasses the (13)C-uptake predicted for a methane-based nutrition. Additionally, chironomid larvae fed on sediment and water-column derived MOB biomass.
Collapse
Affiliation(s)
- Peter Deines
- Max Planck Institute for Limnology, Department of Physiological Ecology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | | | | |
Collapse
|
21
|
Stief P, Eller G. The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterised with O2, pH, and redox microsensors. J Comp Physiol B 2006; 176:673-83. [PMID: 16721623 DOI: 10.1007/s00360-006-0090-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We devised a set-up in which microsensors can be used for characterising the gut microenvironment of aquatic macrofauna. In a small flow cell, we measured microscale gradients through dissected guts (O(2), pH, redox potential [E ( h )]), in the haemolymph (O(2)), and towards the body surface (O(2)) of Chironomus plumosus larvae. The gut microenvironment was compared with the chemical conditions in the lake sediment in which the animals reside and feed. When the dissected guts were incubated at the same nominal O(2) concentration as in haemolymph, the gut content was completely anoxic and had pH and E ( h ) values slightly lower than in the ambient sediment. When the dissected guts were artificially oxygenated, the volumetric O(2)-consumption rates of the gut content were at least 10x higher than in the sediment. Using these potential O(2)-consumption rates in a cylindrical diffusion-reaction model, it was predicted that diffusion of O(2) from the haemolymph to the gut could not oxygenate the gut content under in vivo conditions. Additionally, the potential O(2)-consumption rates were so high that the intake of dissolved O(2) along with feeding could be ruled out to oxygenate the gut content. We conclude that microorganisms present in the gut of C. plumosus cannot exhibit an aerobic metabolism. The presented microsensor technique and the data analysis are applicable to guts of other macrofauna species with cutaneous respiration.
Collapse
Affiliation(s)
- Peter Stief
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | |
Collapse
|
22
|
Mohanty SR, Bodelier PLE, Floris V, Conrad R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 2006; 72:1346-54. [PMID: 16461686 PMCID: PMC1392950 DOI: 10.1128/aem.72.2.1346-1354.2006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these contradictory results may be explained by the composition of the methane-consuming microbial community and hence whether methanotrophic diversity affects methane fluxes was investigated. To this end, rice field and forest soils were incubated in microcosms and supplemented with different nitrogenous fertilizers and methane concentrations. By labeling the methane with 13C, diversity and function could be coupled by analyses of phospholipid-derived fatty acids (PLFA) extracted from the soils at different time points during incubation. In both rice field and forest soils, the activity as well as the growth rate of methane-consuming bacteria was affected differentially. For type I methanotrophs, fertilizer application stimulated the consumption of methane and the subsequent growth, while type II methanotrophs were generally inhibited. Terminal restriction fragment length polymorphism analyses of the pmoA gene supported the PLFA results. Multivariate analyses of stable-isotope-probing PLFA profiles indicated that in forest and rice field soils, Methylocystis (type II) species were affected by fertilization. The type I methanotrophs active in forest soils (Methylomicrobium/Methylosarcina related) differed from the active species in rice field soils (Methylobacter/Methylomonas related). Our results provide a case example showing that microbial community structure indeed matters, especially when assessing and predicting the impact of environmental change on biodiversity loss and ecosystem functioning.
Collapse
Affiliation(s)
- Santosh R Mohanty
- Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | | | | | | |
Collapse
|