1
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
2
|
Opperman CJ, Wojno J, Goosen W, Warren R. Phages for the treatment of Mycobacterium species. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:41-92. [PMID: 37770176 DOI: 10.1016/bs.pmbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Justyna Wojno
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; Lancet Laboratories, Cape Town, South Africa
| | - Wynand Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
4
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
6
|
Mycobacterium tuberculosis PPE51 Inhibits Autophagy by Suppressing Toll-Like Receptor 2-Dependent Signaling. mBio 2022; 13:e0297421. [PMID: 35467412 PMCID: PMC9239179 DOI: 10.1128/mbio.02974-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an ubiquitous homeostatic pathway in mammalian cells and plays a significant role in host immunity. Substantial evidence indicates that the ability of Mycobacterium tuberculosis (Mtb) to successfully evade immune responses is partially due to inhibition of autophagic pathways. Our previous screening of Mtb transposon mutants identified the PPE51 protein as an important autophagy-inhibiting effector. We found that expression of PPE51, either by infecting bacteria or by direct expression in host cells, suppressed responses to potent autophagy-inducing stimuli and interfered with bacterial phagocytosis. This phenotype was associated with reduced activation of extracellular signal-regulated kinase 1/2 (ERK1/2), a key component of signaling pathways that stimulate autophagy. Multiple lines of evidence demonstrated that the effects of PPE51 are attributable to signal blocking by Toll-like receptor 2 (TLR2), a receptor with known involvement of activation of ERK1/2 and autophagy. Consistent with these results, mice with intact TLR2 signaling showed striking virulence attenuation for an Mtb ppe51 deletion mutant (Δ51) compared to wild-type Mtb, whereas infection of TLR2-deficient mice showed no such attenuation. Mice infected with Δ51 also displayed increased T cell responses to Mtb antigens and increased autophagy in infected lung tissues. Together, these results suggest that TLR2 activates relevant host immune functions during mycobacterial infection, which Mtb then evades through suppression of TLR2 signaling by PPE51. In addition to its previously identified function transporting substrates across the bacterial cell wall, our results demonstrate a direct role of PPE51 for evasion of both innate and adaptive immunity to Mtb.
Collapse
|
7
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
8
|
Abstract
Autophagy is a fundamental cellular process that has important roles in innate and adaptive immunity against a broad range of microbes. Many pathogenic microbes have evolved mechanisms to evade or exploit autophagy. It has been previously demonstrated that induction of autophagy can suppress the intracellular survival of mycobacteria, and several PE_PGRS family proteins of Mycobacterium tuberculosis have been proposed to act as inhibitors of autophagy to promote mycobacterial survival. However, the mechanisms by which these effectors inhibit autophagy have not been defined. Here, we report detailed studies of M. tuberculosis deletion mutants of two genes, pe_pgrs20 and pe_pgrs47, that we previously reported as having a role in preventing autophagy of infected host cells. These mutants resulted in increased autophagy and reduced intracellular survival of M. tuberculosis in macrophages. This phenotype was accompanied by increased cytokine production and antigen presentation by infected cells. We further demonstrated that autophagy inhibition by PE_PGRS20 and PE_PGRS47 resulted from canonical autophagy rather than autophagy flux inhibition. Using macrophages transfected to express PE_PGRS20 or PE_PGRS47, we showed that these proteins inhibited autophagy initiation directly by interacting with Ras-related protein Rab1A. Silencing of Rab1A in mammalian cells rescued the survival defects of the pe_pgrs20 and pe_pgrs47 deletion mutant strains and reduced cytokine secretion. To our knowledge, this is the first study to identify mycobacterial effectors that directly interact with host proteins responsible for autophagy initiation. IMPORTANCE Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis, which then resides and replicates mainly within host phagocytic cells. Autophagy is a complex host cellular process that helps control intracellular infections and enhance innate and adaptive immune responses. During coevolution with humans, M. tuberculosis has acquired various mechanisms to inhibit host cellular processes, including autophagy. We identified two related M. tuberculosis proteins, PE_PGRS20 and PE_PGRS47, as the first reported examples of specific mycobacterial effectors interfering with the initiation stage of autophagy. Autophagy regulation by these PE_PGRS proteins leads to increased bacterial survival in phagocytic cells and increased autophagic degradation of mycobacterial antigens to stimulate adaptive immune responses. A better understanding of how M. tuberculosis regulates autophagy in host cells could facilitate the design of new and more effective therapeutics or vaccines against tuberculosis.
Collapse
|
9
|
Karpin GW, Merola JS, Falkinham JO. Identification of the Target for a Transition Metal-α-Amino Acid Complex Antibiotic Against Mycobacterium smegmatis. Front Pharmacol 2021; 12:686358. [PMID: 34248636 PMCID: PMC8268012 DOI: 10.3389/fphar.2021.686358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
Spontaneous mutants of Mycobacterium smegmatis strain mc2155 resistant to 1-PG (iridium-L-phenylglycine complex), an antimycobacterial antibiotic, were isolated. Based on the discovery that some 1-PG-resistant mutants (1-PGR) were also resistant to high concentrations of clarithromycin (≥250 μg/ml), but no other anti-mycobacterial antibiotics, the 23S rRNA region spanning the peptidyl transferase domain was sequenced and mutations shown to be localized in the peptidyl transferase domain of the 23S rRNA gene. Measurements showed that 1-PG bound to ribosomes isolated from the 1-PG-sensitive parental strain, but the ribosome binding values for the 1-PGR mutant reduced.
Collapse
Affiliation(s)
- George W Karpin
- Virginia Tech Center for Drug Discovery and Development, Blacksburg, VA, United States.,Department of Chemistry, Virginia Tech, Blacksburg, VA, United States
| | - Joseph S Merola
- Virginia Tech Center for Drug Discovery and Development, Blacksburg, VA, United States.,Department of Chemistry, Virginia Tech, Blacksburg, VA, United States
| | - Joseph O Falkinham
- Virginia Tech Center for Drug Discovery and Development, Blacksburg, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Thiede JM, Dillon NA, Howe MD, Aflakpui R, Modlin SJ, Hoffner SE, Valafar F, Minato Y, Baughn AD. Pyrazinamide Susceptibility Is Driven by Activation of the SigE-Dependent Cell Envelope Stress Response in Mycobacterium tuberculosis. mBio 2021; 13:e0043921. [PMID: 35100871 PMCID: PMC8805019 DOI: 10.1128/mbio.00439-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023] Open
Abstract
Pyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response. IMPORTANCE For decades, pyrazinamide has served as a cornerstone of tuberculosis therapy. Unlike any other antitubercular drug, pyrazinamide requires an acidic environment to exert its action. Despite its importance, the driver of this conditional susceptibility has remained unknown. In this study, a genome-wide approach revealed that pyrazinamide action is governed by the cell envelope stress response. This observation was validated by orthologous approaches that demonstrate that a central player of this response, SigE, is both necessary and sufficient for potentiation of pyrazinamide action. Moreover, constitutive activation of this response through deletion of the anti-sigma factor gene rseA or exposure of bacilli to drugs that target the cell wall was found to potently drive pyrazinamide susceptibility independent of environmental pH. These findings force a paradigm shift in our understanding of pyrazinamide action and open new avenues for improving diagnostic and therapeutic tools for tuberculosis.
Collapse
Affiliation(s)
- Joshua M. Thiede
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nicholas A. Dillon
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Michael D. Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ranee Aflakpui
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Samuel J. Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, Biomedical Informatics Research Center, Division of Epidemiology, School of Public Health, San Diego State University, San Diego, California, USA
| | - Sven E. Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, Biomedical Informatics Research Center, Division of Epidemiology, School of Public Health, San Diego State University, San Diego, California, USA
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, Biomedical Informatics Research Center, Division of Epidemiology, School of Public Health, San Diego State University, San Diego, California, USA
| | - Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
12
|
Liu S, Xie Y, Luo W, Dou Y, Xiong H, Xiao Z, Zhang XL. PE_PGRS31-S100A9 Interaction Promotes Mycobacterial Survival in Macrophages Through the Regulation of NF-κB-TNF-α Signaling and Arachidonic Acid Metabolism. Front Microbiol 2020; 11:845. [PMID: 32457723 PMCID: PMC7225313 DOI: 10.3389/fmicb.2020.00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) evades the surveillance of immune responses for survival in macrophages. However, the precise mechanism and toxins/proteins encoded by M. tb involved in the bacterial escape remain elusive. The function of Rv1768 protein (also referred to as PE_PGRS31, belonging to the PE_PGRS family) encoded by the region of deletion 14 (RD-14) in the virulent M. tb H37Rv strain has not, to the best of our knowledge, been reported previously. Here, we found that Rv1768 remarkably promotes bacterial survival in macrophages. Compared to wild type (WT) H37Rv, the Rv1768 deficient strain (H37RvΔ1768) showed significantly decreased colony-forming units in the lungs, spleen, and liver of the murine M. tb infection model. The bacterial burdens of WT H37Rv in WT macrophages and C57BL/6 mice were significantly higher than those in S100A9 deficiency cells and mice, but there were no significant differences for H37RvΔRv1768. Rv1768 binds S100A9 with the proline-glutamic acid domain (PE domain) and blocks the interaction between S100A9 and Toll-like receptor 4 (TLR4), and suppresses TLR4-myeloid differentiation factor 88-nuclear factor-kappa B (NF-κB)-tumor necrosis factor α (TNF-α) signaling in macrophages. Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.
Collapse
Affiliation(s)
- Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wei Luo
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yafeng Dou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhen Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences and Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
13
|
Suarez CA, Franceschelli JJ, Morbidoni HR. Mycobacteriophage CRB2 defines a new subcluster in mycobacteriophage classification. PLoS One 2019; 14:e0212365. [PMID: 30811481 PMCID: PMC6392294 DOI: 10.1371/journal.pone.0212365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteriophages are viruses -mostly temperates- that infect Mycobacterium smegmatis and sometimes Mycobacterium tuberculosis. Mycobacteriophages are grouped in clusters on the basis of the overall nucleotide sequence homology, being further divided in subclusters as more mycobacteriophage genomes are sequenced and annotated. As part of our on-going screening for novel isolates, we herein report the bioinformatics analysis of CRB2, a mycobacteriophage belonging into the Siphoviridae family that propagates at 30°C. CRB2 has a 72,217 bp genome with a 69.78% GC content that belongs to Cluster B; nucleotide comparison with other B cluster members positions CRB2 as the sole member of a new subcluster, B9, being mycobacteriophage Saguaro (belonging into subcluster B7) its closest relative. Sequencing and annotation of 14 mycobacteriophages isolated by our group has yielded six cluster A members, a singleton, four of the five members of subcluster B6, one of the three reported members of subcluster G4, and CRB2 which defines subcluster B9. Considering the massive mycobacteriophage search performed in USA and the relatively rarity of our phages, we propose that factors other than size of the sampling determine the variability of mycobacteriophage distribution, and thus a world-wide concerted mining would most likely bring extremely rare and yet undiscovered mycobacteriophages.
Collapse
Affiliation(s)
- Cristian Alejandro Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Judith Franceschelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
14
|
Di Capua CB, Belardinelli JM, Buchieri MV, Bortolotti A, Franceschelli JJ, Morbidoni HR. Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages. MICROBIOLOGY-SGM 2018; 164:1567-1582. [PMID: 30311878 DOI: 10.1099/mic.0.000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan M Belardinelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,‡Present address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - María V Buchieri
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J Franceschelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
15
|
Rodríguez-Rubio L, Jofre J, Muniesa M. Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy? Antibiotics (Basel) 2017; 6:antibiotics6040032. [PMID: 29206153 PMCID: PMC5745475 DOI: 10.3390/antibiotics6040032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
The emergence of multi-drug resistant bacteria has undermined our capacity to control bacterial infectious diseases. Measures needed to tackle this problem include controlling the spread of antibiotic resistance, designing new antibiotics, and encouraging the use of alternative therapies. Phage therapy seems to be a feasible alternative to antibiotics, although there are still some concerns and legal issues to overcome before it can be implemented on a large scale. Here we highlight some of those concerns, especially those related to the ability of bacteriophages to transport bacterial DNA and, in particular, antibiotic resistance genes.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Joan Jofre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Di Capua CB, Doprado M, Belardinelli JM, Morbidoni HR. Complete auxotrophy for unsaturated fatty acids requires deletion of two sets of genes in Mycobacterium smegmatis. Mol Microbiol 2017; 106:93-108. [PMID: 28762586 DOI: 10.1111/mmi.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741-1743 (highly homologous to a Pseudomonas aeruginosa acyl-CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886-MSMEG_1741-1743 strictly required oleic acid for growth. The ΔMSMEG_1886-ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742-43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Doprado
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Genome Sequence of Mycobacteriophage Momo. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00601-15. [PMID: 26089415 PMCID: PMC4472892 DOI: 10.1128/genomea.00601-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Momo is a newly discovered phage of Mycobacterium smegmatis mc2155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages.
Collapse
|
18
|
Liu F, Yang M, Wang X, Yang S, Gu J, Zhou J, Zhang XE, Deng J, Ge F. Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. Mol Cell Proteomics 2014; 13:3352-66. [PMID: 25180227 DOI: 10.1074/mcp.m114.041962] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The lysine acetylation of proteins is a reversible post-translational modification that plays a critical regulatory role in both eukaryotes and prokaryotes. Mycobacterium tuberculosis is a facultative intracellular pathogen and the causative agent of tuberculosis. Increasing evidence shows that lysine acetylation may play an important role in the pathogenesis of M. tuberculosis. However, only a few acetylated proteins of M. tuberculosis are known, presenting a major obstacle to understanding the functional roles of reversible lysine acetylation in this pathogen. We performed a global acetylome analysis of M. tuberculosis H37Ra by combining protein/peptide prefractionation, antibody enrichment, and LC-MS/MS. In total, we identified 226 acetylation sites in 137 proteins of M. tuberculosis H37Ra. The identified acetylated proteins were functionally categorized into an interaction map and shown to be involved in various biological processes. Consistent with previous reports, a large proportion of the acetylation sites were present on proteins involved in glycolysis/gluconeogenesis, the citrate cycle, and fatty acid metabolism. A NAD(+)-dependent deacetylase (MRA_1161) deletion mutant of M. tuberculosis H37Ra was constructed and its characterization showed a different colony morphology, reduced biofilm formation, and increased tolerance of heat stress. Interestingly, lysine acetylation was found, for the first time, to block the immunogenicity of a peptide derived from a known immunogen, HspX, suggesting that lysine acetylation plays a regulatory role in immunogenicity. Our data provide the first global survey of lysine acetylation in M. tuberculosis. The dataset should be an important resource for the functional analysis of lysine acetylation in M. tuberculosis and facilitate the clarification of the entire metabolic networks of this life-threatening pathogen.
Collapse
Affiliation(s)
- Fengying Liu
- From the ‡Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingkun Yang
- §Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xude Wang
- From the ‡Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shanshan Yang
- From the ‡Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Gu
- From the ‡Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jie Zhou
- ¶Foshan Fourth People's Hospital, Foshan, China
| | - Xian-En Zhang
- ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaoyu Deng
- From the ‡Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Feng Ge
- §Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
19
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
20
|
Ramón-García S, Ng C, Jensen PR, Dosanjh M, Burian J, Morris RP, Folcher M, Eltis LD, Grzesiek S, Nguyen L, Thompson CJ. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J Biol Chem 2013; 288:34514-28. [PMID: 24126912 DOI: 10.1074/jbc.m113.516385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WhiB-like (Wbl) proteins are well known for their diverse roles in actinobacterial morphogenesis, cell division, virulence, primary and secondary metabolism, and intrinsic antibiotic resistance. Gene disruption experiments showed that three different Actinobacteria (Mycobacterium smegmatis, Streptomyces lividans, and Rhodococcus jostii) each exhibited a different whiB7-dependent resistance profile. Heterologous expression of whiB7 genes showed these resistance profiles reflected the host's repertoire of endogenous whiB7-dependent genes. Transcriptional activation of two resistance genes in the whiB7 regulon, tap (a multidrug transporter) and erm(37) (a ribosomal methyltransferase), required interaction of WhiB7 with their promoters. Furthermore, heterologous expression of tap genes isolated from Mycobacterium species demonstrated that divergencies in drug specificity of homologous structural proteins contribute to the variation of WhiB7-dependent drug resistance. WhiB7 has a specific tryptophan/glycine-rich region and four conserved cysteine residues; it also has a peptide sequence (AT-hook) at its C terminus that binds AT-rich DNA sequence motifs upstream of the promoters it activates. Targeted mutagenesis showed that these motifs were required to provide antibiotic resistance in vivo. Anaerobically purified WhiB7 from S. lividans was dimeric and contained 2.1 ± 0.3 and 2.2 ± 0.3 mol of iron and sulfur, respectively, per protomer (consistent with the presence of a 2Fe-2S cluster). However, the properties of the dimer's absorption spectrum were most consistent with the presence of an oxygen-labile 4Fe-4S cluster, suggesting 50% occupancy. These data provide the first insights into WhiB7 iron-sulfur clusters as they exist in vivo, a major unresolved issue in studies of Wbl proteins.
Collapse
Affiliation(s)
- Santiago Ramón-García
- From the Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
22
|
Stella EJ, Franceschelli JJ, Tasselli SE, Morbidoni HR. Analysis of novel mycobacteriophages indicates the existence of different strategies for phage inheritance in mycobacteria. PLoS One 2013; 8:e56384. [PMID: 23468864 PMCID: PMC3585329 DOI: 10.1371/journal.pone.0056384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriophages have been essential in the development of mycobacterial genetics through their use in the construction of tools for genetic manipulation. Due to the simplicity of their isolation and variety of exploitable molecular features, we searched for and isolated 18 novel mycobacteriophages from environmental samples collected from several geographic locations. Characterization of these phages did not differ from most of the previously described ones in the predominant physical features (virion size in the 100–400 nm, genome size in the 50–70 kbp, morphological features compatible with those corresponding to the Siphoviridae family), however novel characteristics for propagation were noticed. Although all the mycobacteriophages propagated at 30°C, eight of them failed to propagate at 37°C. Since some of our phages yielded pinpoint plaques, we improved plaque detection by including sub-inhibitory concentrations of isoniazid or ampicillin-sulbactam in the culture medium. Thus, searches for novel mycobacteriophages at low temperature and in the presence of these drugs would allow for the isolation of novel members that would otherwise not be detected. Importantly, while eight phages lysogenized Mycobacterium smegmatis, four of them were also capable of lysogenizing Mycobacterium tuberculosis. Analysis of the complete genome sequence obtained for twelve mycobacteriophages (the remaining six rendered partial genomic sequences) allowed for the identification of a new singleton. Surprisingly, sequence analysis revealed the presence of parA or parA/parB genes in 7/18 phages including four that behaved as temperate in M. tuberculosis. In summary, we report here the isolation and preliminary characterization of mycobacteriophages that bring new information to the field.
Collapse
Affiliation(s)
- Emma J. Stella
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J. Franceschelli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina E. Tasselli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R. Morbidoni
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
23
|
Enhanced priming of adaptive immunity by Mycobacterium smegmatis mutants with high-level protein secretion. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1416-25. [PMID: 22787192 DOI: 10.1128/cvi.00131-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M. smegmatis, we screened a random transposon mutant library for mutants displaying enhanced efficiency of protein secretion ("high secretors") and isolated 61 mutants showing enhanced endogenic and transgenic protein secretion. Sequence analysis identified a total of 54 genes involved in optimal secretion of insert proteins, as well as multiple independent transposon insertions localized within the same genomic loci and operons. The majority of transposon insertions occurred in genes that have no known protein secretion function. These transposon mutants were shown to prime antigen-specific CD8(+) T cell responses better than the parental strain. Specifically, upon introducing the simian immunodeficiency virus (SIV) gag gene into these transposon mutant strains, we observed that they primed SIV Gag-specific CD8(+) T cell responses significantly better than the control prime immunization in a heterologous prime/boost regimen. Our results reveal a dependence on bacterial secretion of mycobacterial and foreign antigens for the induction of antigen-specific CD8(+) T cells in vivo. The data also suggest that these M. smegmatis transposon mutants could be used as novel live attenuated vaccine strains to express foreign antigens, such as those of human immunodeficiency virus type 1 (HIV-1), and induce strong antigen-specific T cell responses.
Collapse
|
24
|
Wang XD, Gu J, Wang T, Bi LJ, Zhang ZP, Cui ZQ, Wei HP, Deng JY, Zhang XE. Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation. Mol Microbiol 2011; 82:1375-91. [PMID: 22026918 PMCID: PMC3283747 DOI: 10.1111/j.1365-2958.2011.07892.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NADH pyrophosphatase (NudC) catalyses the hydrolysis of NAD(H) to AMP and NMN(H) [nicotinamide mononucleotide (reduced form)]. NudC multiple sequence alignment reveals that homologues from most Mycobacterium tuberculosis isolates, but not other mycobacterial species, have a polymorphism at the highly conserved residue 237. To elucidate the functional significance of this polymorphism, comparative analyses were performed using representative NudC isoforms from M. tuberculosis H37Rv (NudCRv) and M. bovis BCG (NudCBCG). Biochemical analysis showed that the P237Q polymorphism prevents dimer formation, and results in a loss of enzymatic activity. Importantly, NudCBCG was found to degrade the active forms of isoniazid (INH), INH-NAD and ethionamide (ETH), ETH-NAD. Consequently, overexpression of NudCBCG in Mycobacterium smegmatis mc2155 and M. bovis BCG resulted in a high level of resistance to both INH and ETH. Further genetic studies showed that deletion of the nudC gene in M. smegmatis mc2155 and M. bovis BCG resulted in increased susceptibility to INH and ETH. Moreover, inactivation of NudC in both strains caused a defect in drug tolerance phenotype for both drugs in exposure assays. Taken together, these data suggest that mycobacterial NudC plays an important role in the inactivation of INH and ETH.
Collapse
Affiliation(s)
- Xu-De Wang
- State Key Laboratory of Virology Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isolation of generalized transducing bacteriophages for uropathogenic strains of Escherichia coli. Appl Environ Microbiol 2011; 77:6630-5. [PMID: 21784916 DOI: 10.1128/aem.05307-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The traditional genetic procedure for random or site-specific mutagenesis in Escherichia coli K-12 involves mutagenesis, isolation of mutants, and transduction of the mutation into a clean genetic background. The transduction step reduces the likelihood of complications due to secondary mutations. Though well established, this protocol is not tenable for many pathogenic E. coli strains, such as uropathogenic strain CFT073, because it is resistant to known K-12 transducing bacteriophages, such as P1. CFT073 mutants generated via a technique such as lambda Red mutagenesis may contain unknown secondary mutations. Here we describe the isolation and characterization of transducing bacteriophages for CFT073. Seventy-seven phage isolates were acquired from effluent water samples collected from a wastewater treatment plant in Madison, WI. The phages were differentiated by a host sensitivity-typing scheme with a panel of E. coli strains from the ECOR collection and clinical uropathogenic isolates. We found 49 unique phage isolates. These were then examined for their ability to transduce antibiotic resistance gene insertions at multiple loci between different mutant strains of CFT073. We identified 4 different phages capable of CFT073 generalized transduction. These phages also plaque on the model uropathogenic E. coli strains 536, UTI89, and NU14. The highest-efficiency transducing phage, ΦEB49, was further characterized by DNA sequence analysis, revealing a double-stranded genome 47,180 bp in length and showing similarity to other sequenced phages. When combined with a technique like lambda Red mutagenesis, the newly characterized transducing phages provide a significant development in the genetic tools available for the study of uropathogenic E. coli.
Collapse
|
26
|
Genome-wide identification of Mycobacterium tuberculosis exported proteins with roles in intracellular growth. J Bacteriol 2010; 193:854-61. [PMID: 21148733 DOI: 10.1128/jb.01271-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exported proteins of Mycobacterium tuberculosis that are localized at the bacterial cell surface or secreted into the environment are ideally situated to interact with host factors and to function in virulence. In this study, we constructed a novel β-lactamase reporter transposon and used it directly in M. tuberculosis for genome-wide identification of exported proteins. From 177 β-lactam-resistant transposon mutants, we identified 111 different exported proteins. The majority of these proteins have no known function, and for nearly half of the proteins, our demonstration that they are exported when fused to a β-lactamase reporter is the first experimental proof of their extracytoplasmic localization. The transposon mutants in our banked library were of further value as a collection of mutants lacking individual exported proteins. By individually testing each of 111 mutants for growth in macrophages, six attenuated mutants with insertions in mce1A, mce1B, mce2F, rv0199, ctaC, and lppX were identified. Given that much of the M. tuberculosis genome encodes proteins of unknown function, our library of mapped transposon mutants is a valuable resource for efforts in functional genomics. This work also demonstrates the power of a β-lactamase reporter transposon that could be applied similarly to other bacterial pathogens.
Collapse
|
27
|
Mutually exclusive genotypes for pyrazinamide and 5-chloropyrazinamide resistance reveal a potential resistance-proofing strategy. Antimicrob Agents Chemother 2010; 54:5323-8. [PMID: 20876380 DOI: 10.1128/aac.00529-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pyrazinamide (PZA) analog 5-chloropyrazinamide (5-Cl PZA) is active against mycobacterial species, including PZA-resistant strains of Mycobacterium tuberculosis. In M. smegmatis, overexpression of the type 1 fatty acid synthase (FAS I) confers resistance to 5-Cl PZA, a potent FAS I inhibitor. Since M. tuberculosis and M. bovis cannot tolerate FAS I overexpression, 5-Cl PZA resistance mutations have yet to be described for tubercle bacilli. In an attempt to identify other factors that govern the activity of 5-Cl PZA, we selected for 5-Cl PZA-resistant isolates from a library of transposon-mutagenized M. smegmatis isolates. Here, we report that increased expression of the M. smegmatis pyrazinamidase PzaA confers resistance to 5-Cl PZA and susceptibility to PZA in M. smegmatis, M. tuberculosis, and M. bovis. In contrast, while ectopic overexpression of the M. tuberculosis pyrazinamidase PncA increases PZA susceptibility, this amidase does not mediate resistance to 5-Cl PZA. We conclude that PncA-independent turnover of 5-Cl PZA represents a potential mechanism of resistance to this compound for M. tuberculosis, which will likely translate into enhanced PZA susceptibility. Thus, countersusceptibility can be manipulated as a resistance-proofing strategy for PZA-based compounds when these agents are used simultaneously.
Collapse
|
28
|
Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J Bacteriol 2010; 192:5134-42. [PMID: 20675473 DOI: 10.1128/jb.00650-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conjugal transfer of chromosomal DNA between strains of Mycobacterium smegmatis occurs by a novel mechanism. In a transposon mutagenesis screen, three transfer-defective insertions were mapped to the lsr2 gene of the donor strain mc(2)155. Because lsr2 encodes a nonspecific DNA-binding protein, mutations of lsr2 give rise to a variety of phenotypes, including an inability to form biofilms. In this study, we show that efficient DNA transfer between strains of M. smegmatis occurs in a mixed biofilm and that the process requires expression of lsr2 in the donor but not in the recipient strain. Testing cells from different strata of standing cultures showed that transfer occurred predominantly at the biofilm air-liquid interface, as other strata containing higher cell densities produced very few transconjugants. These data suggest that the biofilm plays a role beyond mere facilitation of cell-cell contact. Surprisingly, we found that under standard assay conditions the recipient strain does not form a biofilm. Taking these results together, we conclude that for transfer to occur, the recipient strain is actively recruited into the biofilm. In support of this idea, we show that donor and recipient cells are present in almost equal numbers in biofilms that produce transconjugants. Our demonstration of genetic exchange between mycobacteria in a mixed biofilm suggests that conjugation occurs in the environment. Since biofilms are considered to be the predominant natural microhabitat for bacteria, our finding emphasizes the importance of studying biological and physical processes that occur between cells in mixed biofilms.
Collapse
|
29
|
Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR. An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS Pathog 2009; 5:e1000662. [PMID: 19936047 PMCID: PMC2773412 DOI: 10.1371/journal.ppat.1000662] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/22/2009] [Indexed: 11/29/2022] Open
Abstract
Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable α-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2. Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of β-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with β-oxidation (KOR-dependent), and one that functions in the absence of β-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host. Knowledge of the basic biology of Mycobacterium tuberculosis is essential to identifying novel ways to combat the emerging threat of drug-resistant tuberculosis. Since the tricarboxylic acid (TCA) cycle is a cornerstone of metabolism and M. tuberculosis does not possess a “typical” TCA cycle enzyme set, much effort has been focused on elucidating the components of this pathway. Previous reports indicate that M. tuberculosis possesses a variant TCA cycle in which succinic semialdehyde replaces succinyl-CoA. Since this pathway does not conserve as much metabolic energy as the canonical pathway, we considered an alternative hypothesis: that M. tuberculosis might possess an anaerobic type α-ketoglutarate dehydrogenase. In this manuscript, we investigate this previously unknown activity for mycobacteria using a combination of genetic and biochemical approaches, and demonstrate that M. tuberculosis is capable of driving a conventional TCA cycle in an unconventional way. We also validate the existence of the previously described variant pathway and provide evidence that these two pathways are differentially utilized in response to a metabolic signal, fatty acid catabolism.
Collapse
Affiliation(s)
- Anthony D. Baughn
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott J. Garforth
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Catherine Vilchèze
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Chen J, Kriakov J, Singh A, Jacobs WR, Besra GS, Bhatt A. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2009; 155:4050-4057. [PMID: 19744987 DOI: 10.1099/mic.0.033209-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages have played an important role in the development of genetic tools and diagnostics for pathogenic mycobacteria, including Mycobacterium tuberculosis. However, despite the isolation of numerous phages that infect mycobacteria, the mechanisms of mycobacteriophage infection remain poorly understood, and knowledge about phage receptors is minimal. In an effort to identify the receptor for phage I3, we screened a library of Mycobacterium smegmatis transposon mutants for phage-resistant strains. All four phage I3-resistant mutants isolated were found to have transposon insertions in genes located in a cluster involved in the biosynthesis of the cell-wall-associated glycopeptidolipid (GPL), and consequently the mutants did not synthesize GPLs. The loss of GPLs correlated specifically with phage I3 resistance, as all mutants retained sensitivity to two other mycobacteriophages: D29 and Bxz1. In order to define the minimal receptor for phage I3, we then tested the phage sensitivity of previously described GPL-deficient mutants of M. smegmatis that accumulate biosynthesis intermediates of GPLs. The results indicated that, while the removal of most sugar residues from the fatty acyl tetrapeptide (FATP) core of GPL did not affect sensitivity to phage I3, a single methylated rhamnose, transferred by the rhamnosyltransferase Gtf2 to the FATP core, was critical for phage binding.
Collapse
Affiliation(s)
- Jiemin Chen
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jordan Kriakov
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Albel Singh
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - William R Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gurdyal S Besra
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
LpqM, a mycobacterial lipoprotein-metalloproteinase, is required for conjugal DNA transfer in Mycobacterium smegmatis. J Bacteriol 2009; 191:2721-7. [PMID: 19233923 DOI: 10.1128/jb.00024-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described a novel conjugal DNA transfer process that occurs in Mycobacterium smegmatis. To identify donor genes required for transfer, we have performed a transposon mutagenesis screen; we report here that LpqM, a putative lipoprotein-metalloproteinase, is essential for efficient DNA transfer. Bioinformatic analyses predict that LpqM contains a signal peptide necessary for the protein's targeting to the cell envelope and a metal ion binding motif, the likely catalytic site for protease activity. Using targeted mutagenesis, we demonstrate that each of these motifs is necessary for DNA transfer and that LpqM is located in the cell envelope. The requirement for transfer is specific to the donor strain; an lpqM knockout mutant in the recipient is still proficient in transfer assays. The activity of LpqM is conserved among mycobacteria; homologues from both Mycobacterium tuberculosis and Mycobacterium avium can complement lpqM donor mutants, suggesting that the homologues recognize and process similar proteins. Lipoproteins constitute a significant proportion of the mycobacterial cell wall, but despite their abundance, very few have been assigned an activity. We discuss the potential role of LpqM in DNA transfer and the implications of the conservation of LpqM activity in M. tuberculosis.
Collapse
|
32
|
Scandurra GM, Young M, de Lisle GW, Collins DM. A bovine macrophage screening system for identifying attenuated transposon mutants of Mycobacterium avium subsp. paratuberculosis with vaccine potential. J Microbiol Methods 2009; 77:58-62. [PMID: 19386227 DOI: 10.1016/j.mimet.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/17/2008] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
Johne's disease is a chronic granulomatous enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease is responsible for considerable economic losses in the livestock industry and in particular within the dairy sector. A more effective vaccine against Johne's disease would be of major benefit. In this study, we developed an efficient procedure for identifying mutants of MAP with reduced virulence that are potential live vaccine candidates against Johne's disease. A mariner transposon was used to create random insertional libraries in two different MAP strains (989 and k10), an effective cattle macrophage survival system was developed, and a total of 1890 insertion mutants were screened by using a 96-prong multi-blot replicator (frogger) system. Two of the transposon mutants with poor survival ability in macrophages were tested in mice. These strains were found to be attenuated in vivo, thereby validating the further use of this macrophage screening system to identify MAP mutants with potential as candidate vaccines against Johne's disease.
Collapse
Affiliation(s)
- G M Scandurra
- AgResearch, National Centre for Biosecurity and Infectious Disease, Wallaceville, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
33
|
Abstract
Transduction is the process in which bacterial DNA is transferred from one bacterial cell to another by means of a phage particle. There are two types of transduction, generalized transduction and specialized transduction. In this chapter two of the best-studied systems - Escherichia coli-phage P1, and Salmonella enterica-phage P22 - are discussed from theoretical and practical perspectives.
Collapse
Affiliation(s)
- Anne Thierauf
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
34
|
|
35
|
Coros A, Callahan B, Battaglioli E, Derbyshire KM. The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 2008; 69:794-808. [PMID: 18554329 DOI: 10.1111/j.1365-2958.2008.06299.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conjugal DNA transfer in Mycobacterium smegmatis occurs by a mechanism distinct from plasmid-mediated DNA transfer. Previously, we had shown that the secretory apparatus, ESX-1, negatively regulated DNA transfer from the donor strain; ESX-1 donor mutants are hyper-conjugative. Here, we describe a genome-wide transposon mutagenesis screen to isolate recipient mutants. Surprisingly, we find that a majority of insertions map within the esx-1 locus, which encodes the secretory apparatus. Thus, in contrast to its role in donor function, ESX-1 is essential for recipient function; recipient ESX-1 mutants are hypo-conjugative. In addition to esx-1 genes, our screen identifies novel non-esx-1 loci in the M. smegmatis genome that are required for both DNA transfer and ESX-1 activity. DNA transfer therefore provides a simple molecular genetic assay to characterize ESX-1, which, in Mycobacterium tuberculosis, is necessary for full virulence. These findings reinforce the functional intertwining of DNA transfer and ESX-1 secretion, first described in the M. smegmatis donor. Moreover, our observation that ESX-1 has such diametrically opposed effects on transfer in the donor and recipient, forces us to consider how proteins secreted by the ESX-1 apparatus can function so as to modulate two seemingly disparate processes, M. smegmatis DNA transfer and M. tuberculosis virulence.
Collapse
Affiliation(s)
- Abbie Coros
- The Microscopy and Imaging Center, Texas A&M University, 2257 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
36
|
Construction of a severely attenuated mutant of Mycobacterium tuberculosis for reducing risk to laboratory workers. Tuberculosis (Edinb) 2008; 88:375-81. [PMID: 18457997 DOI: 10.1016/j.tube.2008.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/22/2008] [Accepted: 02/24/2008] [Indexed: 11/20/2022]
Abstract
The ability to construct defined deletions of Mycobacterium tuberculosis has allowed many genes involved in virulence to be identified. Deletion of nutritional genes leads to varying levels of attenuation, presumably reflecting the need for a particular molecule, and the availability (or lack) of that molecule in vivo. We have previously shown that M. tuberculosis mutants lacking either the trpD or ino1 gene are highly attenuated in mouse models of infection, but can grow when supplemented with tryptophan or inositol, respectively. In this paper we have constructed a double Delta trpDDelta ino1 mutant, and show that this is severely attenuated in SCID mouse and guinea pig models. As the strain will grow in the presence of supplements, we propose that this strain could be used for research and antigen preparative purposes, with reduced risks to laboratory workers.
Collapse
|
37
|
IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J Bacteriol 2008; 190:3408-10. [PMID: 18326566 DOI: 10.1128/jb.00009-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS6110 is an insertion element found exclusively within the members of the Mycobacterium tuberculosis complex (MTBC), and because of this exclusivity, it has become an important diagnostic tool in the identification of MTBC species. The restriction of IS6110 to the MTBC is hypothesized to arise from the inability of these bacteria to exchange DNA. We have identified an IS6110-related element in a strain of Mycobacterium smegmatis. The presence of IS6110 indicates that lateral gene transfer has occurred among mycobacterial species, suggesting that the mycobacterial gene pool is larger than previously suspected.
Collapse
|
38
|
Carbone A. Codon bias is a major factor explaining phage evolution in translationally biased hosts. J Mol Evol 2008; 66:210-23. [PMID: 18286220 DOI: 10.1007/s00239-008-9068-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/20/2007] [Accepted: 12/07/2007] [Indexed: 11/28/2022]
Abstract
The size and diversity of bacteriophage populations require methodologies to quantitatively study the landscape of phage differences. Statistical approaches are confronted with small genome sizes forbidding significant single-phage analysis, and comparative methods analyzing full phage genomes represent an alternative but they are of difficult interpretation due to lateral gene transfer, which creates a mosaic spectrum of related phage species. Based on a large-scale codon bias analysis of 116 DNA phages hosted by 11 translationally biased bacteria belonging to different phylogenetic families, we observe that phage genomes are almost always under codon selective pressure imposed by translationally biased hosts, and we propose a classification of phages with translationally biased hosts which is based on adaptation patterns. We introduce a computational method for comparing phages sharing homologous proteins, possibly accepted by different hosts. We observe that throughout phages, independently from the host, capsid genes appear to be the most affected by host translational bias. For coliphages, genes involved in virion morphogenesis, host interaction and ssDNA binding are also affected by adaptive pressure. Adaptation affects long and small phages in a significant way. We analyze in more detail the Microviridae phage space to illustrate the potentiality of the approach. The small number of directions in adaptation observed in phages grouped around phi X174 is discussed in the light of functional bias. The adaptation analysis of the set of Microviridae phages defined around phi MH2K shows that phage classification based on adaptation does not reflect bacterial phylogeny.
Collapse
Affiliation(s)
- Alessandra Carbone
- Génomique Analytique, Université Pierre et Marie Curie-Paris 6, UMR S511, 91 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
39
|
Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR. The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 2007; 189:5495-503. [PMID: 17526710 PMCID: PMC1951828 DOI: 10.1128/jb.00190-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphate import is required for the growth of mycobacteria and is regulated by environmental inorganic phosphate (P(i)) concentrations, although the mechanism of this regulation has not been characterized. The expression of genes involved in P(i) acquisition is frequently regulated by two-component regulatory systems (2CRs) consisting of a sensor histidine kinase and a DNA-binding response regulator. In this work, we have identified the senX3-regX3 2CR as a P(i)-dependent regulator of genes involved in phosphate acquisition in Mycobacterium smegmatis. Characterization of senX3 mutants with different PhoA phenotypes suggests a dual role for SenX3 as a phosphatase or a phosphodonor for the response regulator RegX3, depending upon P(i) availability. Expression of PhoA activity required phosphorylation of RegX3, consistent with a role for phosphorylated RegX3 (RegX3 approximately P) as a transcriptional activator of phoA. Furthermore, purified RegX3 approximately P bound to promoter sequences from phoA, senX3, and the high-affinity phosphate transporter component pstS, demonstrating direct transcriptional control of all three genes. DNase I footprinting and primer extension analyses have further defined the DNA-binding region and transcriptional start site within the phoA promoter. A DNA motif consisting of an inverted repeat was identified in each of the promoters bound by RegX3 approximately P. Based upon our findings, we propose a model for P(i)-regulated gene expression mediated by SenX3-RegX3 in mycobacteria.
Collapse
Affiliation(s)
- Robert T Glover
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
40
|
van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods 2006; 4:147-52. [PMID: 17179933 DOI: 10.1038/nmeth996] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/09/2006] [Indexed: 01/26/2023]
Abstract
Genetic dissection of M. tuberculosis is complicated by its slow growth and its high rate of illegitimate recombination relative to homologous DNA exchange. We report here the development of a facile allelic exchange system by identification and expression of mycobacteriophage-encoded recombination proteins, adapting a strategy developed previously for recombineering in Escherichia coli. Identifiable recombination proteins are rare in mycobacteriophages, and only 1 of 30 genomically characterized mycobacteriophages (Che9c) encodes homologs of both RecE and RecT. Expression and biochemical characterization show that Che9c gp60 and gp61 encode exonuclease and DNA-binding activities, respectively, and expression of these proteins substantially elevates recombination facilitating allelic exchange in both M. smegmatis and M. tuberculosis. Mycobacterial recombineering thus provides a simple approach for the construction of gene replacement mutants in both slow- and fast-growing mycobacteria.
Collapse
Affiliation(s)
- Julia C van Kessel
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, 376 Crawford Hall, 4249 Fifth Ave., University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
41
|
Murry JP, Rubin EJ. New genetic approaches shed light on TB virulence. Trends Microbiol 2005; 13:366-72. [PMID: 15982889 DOI: 10.1016/j.tim.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 05/24/2005] [Accepted: 06/13/2005] [Indexed: 11/24/2022]
Abstract
Although tuberculosis has been studied for more than a century, insights into the molecular mechanisms by which it causes disease remain fairly limited. The current genetic boom in this system promises to reveal new virulence mechanisms, making this an exciting time to be studying this disease. Long considered a technical "poor relation", tuberculosis research has developed into a source for creative techniques and ideas. In the midst of this development, it is important to keep in mind the limitations of each new approach that is employed to study this organism. This review examines the genetic approaches that are currently being used to study tuberculosis, with an emphasis on new developments that promise to improve our understanding of the pathogenic mechanisms of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jeffrey P Murry
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|