1
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Graziani A, Rocca MS, Vinanzi C, Masi G, Grande G, De Toni L, Ferlin A. Genetic Causes of Qualitative Sperm Defects: A Narrative Review of Clinical Evidence. Genes (Basel) 2024; 15:600. [PMID: 38790229 PMCID: PMC11120687 DOI: 10.3390/genes15050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Several genes are implicated in spermatogenesis and fertility regulation, and these genes are presently being analysed in clinical practice due to their involvement in male factor infertility (MFI). However, there are still few genetic analyses that are currently recommended for use in clinical practice. In this manuscript, we reviewed the genetic causes of qualitative sperm defects. We distinguished between alterations causing reduced sperm motility (asthenozoospermia) and alterations causing changes in the typical morphology of sperm (teratozoospermia). In detail, the genetic causes of reduced sperm motility may be found in the alteration of genes associated with sperm mitochondrial DNA, mitochondrial proteins, ion transport and channels, and flagellar proteins. On the other hand, the genetic causes of changes in typical sperm morphology are related to conditions with a strong genetic basis, such as macrozoospermia, globozoospermia, and acephalic spermatozoa syndrome. We tried to distinguish alterations approved for routine clinical application from those still unsupported by adequate clinical studies. The most important aspect of the study was related to the correct identification of subjects to be tested and the correct application of genetic tests based on clear clinical data. The correct application of available genetic tests in a scenario where reduced sperm motility and changes in sperm morphology have been observed enables the delivery of a defined diagnosis and plays an important role in clinical decision-making. Finally, clarifying the genetic causes of MFI might, in future, contribute to reducing the proportion of so-called idiopathic MFI, which might indeed be defined as a subtype of MFI whose cause has not yet been revealed.
Collapse
Affiliation(s)
- Andrea Graziani
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Giulia Masi
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (G.M.); (L.D.T.)
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (C.V.); (G.G.)
| |
Collapse
|
3
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
4
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
5
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
6
|
Cavarocchi E, Whitfield M, Saez F, Touré A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23073926. [PMID: 35409285 PMCID: PMC8999829 DOI: 10.3390/ijms23073926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle that provides the mechanical force for sperm propulsion and motility. Importantly several functional maturation events that occur during the journey of the sperm cells through the genital tracts are necessary for the activation of flagellar beating and the acquisition of fertilization potential. Ion transporters and channels located at the surface of the sperm cells have been demonstrated to be involved in these processes, in particular, through the activation of downstream signaling pathways and the promotion of novel biochemical and electrophysiological properties in the sperm cells. We performed a systematic literature review to describe the currently known genetic alterations in humans that affect sperm ion transporters and channels and result in asthenozoospermia, a pathophysiological condition defined by reduced or absent sperm motility and observed in nearly 80% of infertile men. We also present the physiological relevance and functional mechanisms of additional ion channels identified in the mouse. Finally, considering the state-of-the art, we discuss future perspectives in terms of therapeutics of asthenozoospermia and male contraception.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Fabrice Saez
- UMR GReD Institute (Génétique Reproduction & Développement) CNRS 6293, INSERM U1103, Team «Mécanismes de L’Infertilité Mâle Post-Testiculaire», Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: (F.S.); (A.T.)
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
- Correspondence: (F.S.); (A.T.)
| |
Collapse
|
7
|
Mikec Š, Kolenc Ž, Peterlin B, Horvat S, Pogorevc N, Kunej T. Syndromic male subfertility: a network view of genome-phenome associations. Andrology 2022; 10:720-732. [PMID: 35218153 PMCID: PMC9314622 DOI: 10.1111/andr.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Background Male infertility is a disorder of the reproductive system with a highly complex genetic landscape. In most cases, the reason for male infertility remains unknown; however, the importance of genetic abnormalities in the diagnosis of subfertility/infertility is becoming increasingly recognized. Several syndromes include impaired male fertility in the clinical picture, although a comprehensive analysis of genetic causes of the syndromology perspective of male reproduction is not yet available. Objectives (1) To develop a catalog of syndromes and corresponding genes associated with impaired male fertility and (2) to visualize an up‐to‐date genome–phenome network of syndromic male subfertility. Materials and methods Published literature was retrieved from the Online Mendelian Inheritance in Man, Orphanet, Human Phenotype Ontology and PubMed databases using keywords “male infertility,” “syndrome,” “gene,” and “case report”; time period from 1980 to September, 2021. Retrieved data were organized as a catalog and complemented with identification numbers of syndromes (MIM ID) and genes (Gene ID). The genome–phenome network and the phenome network were visualized using Cytoscape and Gephi software platforms. Protein–protein interaction analysis was performed using STRING tool. Results Retrieved syndromes were presented as (1) a catalog containing 63 syndromes and 93 associated genes, (2) a genome–phenome network including CHD7 and WT1 genes and Noonan and Kartagener syndromes, and (3) a phenome network including 63 syndromes, and 25 categories of clinical features. Discussion The developed catalog will contribute to the advances and translational impact toward understanding the factors of syndromic male infertility. Visualized networks provide simple, flexible tools for clinicians and researchers to quickly generate hypotheses and gain a deeper understanding of underlying mechanisms affecting male reproduction. Conclusion Recognition of the significance of genome–phenome visualization as part of network medicine can help expedite efforts toward unravelling molecular mechanisms and enable advances personal/precision medicine of male reproduction and other complex traits.
Collapse
Affiliation(s)
- Špela Mikec
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domžale, Slovenia
| | - Živa Kolenc
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domžale, Slovenia
| | - Borut Peterlin
- University Medical Center Ljubljana, Clinical Institute of Medical Genetics, Ljubljana, Slovenia
| | - Simon Horvat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domžale, Slovenia
| | - Neža Pogorevc
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domžale, Slovenia
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domžale, Slovenia
| |
Collapse
|
8
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
9
|
Yu Q. Slc26a3 (DRA) in the Gut: Expression, Function, Regulation, Role in Infectious Diarrhea and Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:575-584. [PMID: 32989468 DOI: 10.1093/ibd/izaa256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transport of transepithelial Cl- and HCO3- is crucial for the function of the intestinal epithelium and maintains the acid-based homeostasis. Slc26a3 (DRA), as a key chloride-bicarbonate exchanger protein in the intestinal epithelial luminal membrane, participates in the electroneutral NaCl absorption of intestine, together with Na+/H+ exchangers. Increasing recent evidence supports the essential role of decreased DRA function or expression in infectious diarrhea and inflammatory bowel disease (IBD). METHOD In this review, we give an overview of the current knowledge of Slc26a3, including its cloning and expression, function, roles in infectious diarrhea and IBD, and mechanisms of actions. A better understanding of the physiological and pathophysiological relevance of Slc26a3 in infectious diarrhea and IBD may reveal novel targets for future therapy. CONCLUSION Understanding the physiological function, regulatory interactions, and the potential mechanisms of Slc26a3 in the pathophysiology of infectious diarrhea and IBD will define novel therapeutic approaches in future.
Collapse
Affiliation(s)
- Qin Yu
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan City, China
| |
Collapse
|
10
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
12
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
13
|
Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci 2019; 76:3783-3800. [PMID: 31165202 PMCID: PMC11105638 DOI: 10.1007/s00018-019-03170-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal.
- i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
El Khouri E, Whitfield M, Stouvenel L, Kini A, Riederer B, Lores P, Roemermann D, di Stefano G, Drevet JR, Saez F, Seidler U, Touré A. Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Mol Reprod Dev 2018; 85:682-695. [PMID: 30118583 DOI: 10.1002/mrd.23055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
Members of the solute carrier 26 (SLC26) family have emerged as important players in mediating anions fluxes across the plasma membrane of epithelial cells, in cooperation with the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Among them, SLC26A3 acts as a chloride/bicarbonate exchanger, highly expressed in the gastrointestinal, pancreatic and renal tissues. In humans, mutations in the SLC26A3 gene were shown to induce congenital chloride-losing diarrhea (CLD), a rare autosomal recessive disorder characterized by life-long secretory diarrhea. In view of some reports indicating subfertility in some male CLD patients together with SLC26-A3 and -A6 expression in the male genital tract and sperm cells, we analyzed the male reproductive parameters and functions of SLC26A3 deficient mice, which were previously reported to display CLD gastro-intestinal features. We show that in contrast to Slc26a6, deletion of Slc26a3 is associated with severe lesions and abnormal cytoarchitecture of the epididymis, together with sperm quantitative, morphological and functional defects, which altogether compromised male fertility. Overall, our work provides new insight into the pathophysiological mechanisms that may alter the reproductive functions and lead to male subfertility in CLD patients, with a phenotype reminiscent of that induced by CFTR deficiency in the male genital tract.
Collapse
Affiliation(s)
- Elma El Khouri
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Marjorie Whitfield
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Laurence Stouvenel
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Archana Kini
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Patrick Lores
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | | | | | - Joël R Drevet
- CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Fabrice Saez
- CNRS, UMR6293, INSERM U1103, GReD, Université Clermont Auvergne, Aubière, France
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Aminata Touré
- INSERM, U1016, Institut Cochin, Departement of Development, Reproduction and Cancer, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
16
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
17
|
Wedenoja S, Khamaysi A, Shimshilashvili L, Anbtawe-Jomaa S, Elomaa O, Toppari J, Höglund P, Aittomäki K, Holmberg C, Hovatta O, Tapanainen JS, Ohana E, Kere J. A missense mutation in SLC26A3 is associated with human male subfertility and impaired activation of CFTR. Sci Rep 2017; 7:14208. [PMID: 29079751 PMCID: PMC5660164 DOI: 10.1038/s41598-017-14606-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Chloride absorption and bicarbonate excretion through exchange by the solute carrier family 26 member 3 (SLC26A3) and cystic fibrosis transmembrane conductance regulator (CFTR) are crucial for many tissues including sperm and epithelia of the male reproductive tract. Homozygous SLC26A3 mutations cause congenital chloride diarrhea with male subfertility, while homozygous CFTR mutations cause cystic fibrosis with male infertility. Some homozygous or heterozygous CFTR mutations only manifest as male infertility. Accordingly, we studied the influence of SLC26A3 on idiopathic infertility by sequencing exons of SLC26A3 in 283 infertile and 211 control men. A heterozygous mutation c.2062 G > C (p.Asp688His) appeared in nine (3.2%) infertile men, and additionally, in two (0.9%) control men, whose samples revealed a sperm motility defect. The p.Asp688His mutation is localized in the CFTR-interacting STAS domain of SLC26A3 and enriched in Finland, showing a significant association with male infertility in comparison with 6,572 Finnish (P < 0.05) and over 120,000 global alleles (P < 0.0001) (ExAC database). Functional studies showed that while SLC26A3 is a strong activator of CFTR-dependent anion transport, SLC26A3-p.Asp688His mutant retains normal Cl−/HCO3− exchange activity but suppresses CFTR, despite unaffected domain binding and expression. These results suggest a novel mechanism for human male infertility─impaired anion transport by the coupled SLC26A3 and CFTR.
Collapse
Affiliation(s)
- Satu Wedenoja
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FI-00014, Helsinki, Finland.
| | - Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liana Shimshilashvili
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shireen Anbtawe-Jomaa
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Outi Elomaa
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, and Department of Pediatrics, Turku University Hospital, FI-20014, Turku, Finland
| | - Pia Höglund
- City of Kauniainen, Health Care Services, FI-02700, Kauniainen, Finland
| | - Kristiina Aittomäki
- HUSLAB, Laboratory of Genetics, Helsinki University Hospital, and Genome-Scale Biology research program, University of Helsinki, FI-00029, Helsinki, Finland
| | - Christer Holmberg
- Hospital for Children and Adolescents, University of Helsinki and Helsinki University Hospital, FI-00014, Helsinki, Finland
| | - Outi Hovatta
- Department of Clinical Science, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Juha S Tapanainen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FI-00014, Helsinki, Finland.,Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, FI-90220, Oulu, Finland
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Juha Kere
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, FI-00014, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183, Huddinge, Sweden.,Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, England
| |
Collapse
|
18
|
Pierucci-Alves F, Akoyev V, Schultz BD. Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiol Rep 2015; 3:3/4/e12380. [PMID: 25907791 PMCID: PMC4425982 DOI: 10.14814/phy2.12380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to test for expression of HCO3 (-) exchangers SLC26A3 and SLC26A6 in primary cultures of porcine vas deferens epithelial cells (1°PVD) and native porcine vas deferens. Quantitative RT-PCR revealed that mRNA coding for SLC26A6 was six times more abundant than mRNA coding for SLC26A3 in 1°PVD cells. Western blot analyses combined with surface biotinylation of 1°PVD demonstrated SLC26A3 and SLC26A6 immunoreactivities in whole-cell lysates and apical surfaces of monolayers. Laser scanning confocal microscopy (LSCM) of the 1°PVD cell monolayers demonstrated that SLC26A3 immunoreactivity was primarily in the apical region but present throughout the basal-apical cellular axis, whereas SLC26A6 immunoreactivity was present in the apical region and sometimes accumulated in the nuclear region. LSCM also demonstrated SLC26A3 and SLC26A6 immunoreactivities present along the entire apical lining of the native porcine vas deferens epithelium and in basal cells. The patterns and apparent abundance of SLC26A3 and SLC26A6 immunoreactivities in the proximal vas deferens were not different from the corresponding immunoreactivities in the distal region. There is no evidence of preferential expression of SLC26A3 or SLC26A6 in any portion of the vas deferens, as has been proposed for epithelia that secrete HCO3 (-) in other duct systems. Thus, vas deferens epithelia express transporters throughout the duct that can contribute to rapid alkalinization of the luminal contents as it has been demonstrated in vivo.
Collapse
Affiliation(s)
| | - Vladimir Akoyev
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Bruce D Schultz
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
19
|
Xu H, Chen H, Li J, Zhao Y, Ghishan FK. Disruption of NHE8 expression impairs Leydig cell function in the testes. Am J Physiol Cell Physiol 2014; 308:C330-8. [PMID: 25472965 DOI: 10.1152/ajpcell.00289.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sodium/hydrogen exchanger (NHE) isoforms are expressed in the testes, and they play various roles in cell volume regulation, intracellular pH regulation, and fluid absorption. NHE8, the most recently characterized NHE family member, is detected in the Leydig cells in humans and mice in great abundance by immunohistochemistry in the current study. Male mice lacking NHE8 expression were infertile. Despite having intact male reproductive organs, male NHE8-/- mice have smaller testes and lacked spermatozoon in the seminiferous tubules and the epididymis. At the age of 39 wk, few spermogonia were seen in the testis in NHE8-/- mice. Although male NHE8-/- mice have normal serum levels of luteinizing hormone and follicle-stimulating hormone, serum testosterone level was significantly reduced. These mice have decreased expression of luteinizing hormone receptor in the testes. In NHE8 small-interfering RNA-transfected mouse Leydig cells (MLTC-1), silencing of NHE8 decreased the expression of luteinizing hormone receptor by ∼70%. Moreover, loss of NHE8 function in Leydig cells resulted in disorganized luteinizing hormone receptor membrane distribution. Therefore, male infertility in NHE8-/- mice is at least partially due to the disruption of luteinizing hormone receptor distribution and consequent low testosterone production, which leads to Sertoli cell dysfunction. Our work identified a novel role of NHE8 in male fertility through its effect on modifying luteinizing hormone receptor function.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Huacong Chen
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Jing Li
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Yang Zhao
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Fayez K Ghishan
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Browne JA, Yang R, Song L, Crawford GE, Leir SH, Harris A. Open chromatin mapping identifies transcriptional networks regulating human epididymis epithelial function. Mol Hum Reprod 2014; 20:1198-207. [PMID: 25180270 DOI: 10.1093/molehr/gau075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The epithelium lining the epididymis in the male reproductive tract maintains a luminal environment that promotes sperm cell maturation. This process is dependent on the coordinated expression of many genes that encode proteins with a role in epithelial transport. We previously generated genome-wide maps of open chromatin in primary human epididymis epithelial (HEE) cells to identify potential regulatory elements controlling coordinated gene expression in the epididymis epithelium. Subsequent in silico analysis identified transcription factor-binding sites (TFBS) that were over-represented in the HEE open chromatin, including the motif for paired box 2 (PAX2). PAX2 is a critical transcriptional regulator of urogenital tract development, which has been well studied in the kidney but is unexplored in the epididymis. Due to the limited lifespan of primary HEE cells in culture, we investigated the role of PAX2 in an immortalized HEE cell line (REP). First, REP cells were evaluated by DNase I digestion followed by high-throughput sequencing and the PAX2-binding motif was again identified as an over-represented TFBS within intergenic open chromatin, though on fewer chromosomes than in the primary HEE cells. To identify PAX2-target genes in REP cells, RNA-seq analysis was performed after siRNA-mediated depletion of PAX2 and compared with that with a non-targeting siRNA. In response to PAX2-repression, 3135 transcripts were differentially expressed (1333 up-regulated and 1802 down-regulated). Novel PAX2 targets included multiple genes encoding proteins with predicted functions in the epididymis epithelium.
Collapse
Affiliation(s)
- James A Browne
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical School, Durham, NC, USA Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical School, Durham, NC, USA Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A. Intracellular pH in sperm physiology. Biochem Biophys Res Commun 2014; 450:1149-58. [PMID: 24887564 PMCID: PMC4146485 DOI: 10.1016/j.bbrc.2014.05.100] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.
Collapse
Affiliation(s)
- Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Ana Laura González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
22
|
Chan HC, Sun X. SLC26 anion exchangers in uterine epithelial cells and spermatozoa: clues from the past and hints to the future. Cell Biol Int 2013; 38:1-7. [PMID: 24115633 DOI: 10.1002/cbin.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022]
Abstract
The solute carrier 26 (SLC26) family emerges as a distinct class of anion transporters with its members SLC26A3 (Slc26a3) and SLC26A6 (Slc26a6) reported to be electrogenic Cl(-)/HCO3(-) exchangers. While it is known that uterine fluid has high HCO3(-) content and that HCO3(-) is essential for sperm capacitation, the molecular mechanisms underlying the transport of HCO3(-) across uterine epithelial cells and sperm have not been fully investigated. The present review re-examines the results from early reports studying anion transport, finding clues for the involvement of Cl(-)/HCO3(-) anion exchangers in electrogenic HCO3(-) transport across endometrial epithelium. We also summarise recent work on Slc26a3 and Slc26a6 in uterine epithelial cells and sperm, revealing their functional role in working closely with the cystic fibrosis transmembrane conductance regulator (CFTR) for HCO3(-) transport in these cells. The possible involvement of these anion exchangers in other HCO3(-) dependent reproductive processes and their implications for infertility are also discussed.
Collapse
Affiliation(s)
- Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | |
Collapse
|
23
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
24
|
Liu Y, Wang DK, Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 2012; 86:99. [PMID: 22262691 DOI: 10.1095/biolreprod.111.096826] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCO(3)(-) plays critically important roles during virtually the entire process of reproduction in mammals, including spermatogenesis, sperm capacitation, fertilization, and development of early stage embryos. Therefore, the acid-base balance in the male and female reproductive tracts must be finely modulated. The fluid milieu in the epididymis is acidic, containing very low concentration of HCO(3)(-). In this acidic low HCO(3)(-) environment, mature sperm are rendered quiescent in the epididymis. In contrast, the luminal fluid in the female uterus and oviduct is alkaline, with very high concentration of HCO(3)(-) that is essential for sperm to fulfill fertilization. HCO(3)(-) transporter of solute carrier 4 (SLC4) and SLC26 families represent the major carriers for HCO(3)(-) transport across the plasma membrane. These transporters play critical roles in intracellular pH regulation and transepithelial HCO(3)(-) transport. The physiological roles of these transporters in mammalian reproduction are of fundamental interest to investigators. Here we review recent progress in understanding the expression of HCO(3)(-) transporters in reproductive tract tissues as well as the physiological roles of these transporters in mammalian reproduction.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology, Wuhan, China
| | | | | |
Collapse
|
25
|
Pierucci-Alves F, Yi S, Schultz BD. Transforming growth factor beta 1 induces tight junction disruptions and loss of transepithelial resistance across porcine vas deferens epithelial cells. Biol Reprod 2012; 86:36. [PMID: 21957188 DOI: 10.1095/biolreprod.111.092262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells lining the male excurrent duct contribute to male fertility by employing a number of physiological mechanisms that generate a luminal microenvironment conducive to spermatozoa maturation and storage. Among these mechanisms, male duct epithelia establish intercellular tight junctions that constitute a barrier to paracellular diffusion of water, solutes, large molecules, and cells. Mechanisms regulating the male duct epithelial barrier remain unidentified. Transforming growth factor beta (TGFB) is a regulatory cytokine present in high concentrations in human semen. This study examined whether TGFB has any effects on epithelial function exhibited by primary cultures of porcine vas deferens epithelia. TGFB1 exposure caused a 70%-99% decrease in basal transepithelial electrical resistance (R(TE), a sensitive indicator of barrier integrity), while a significant decrease in anion secretory response to forskolin was detected at the highest levels of TGFB1 exposure employed. SB431542, a selective TGFB receptor I (TGFBR1) inhibitor, prevented decreases in barrier function. Results also demonstrated that TGFB1 exposure modifies the distribution pattern of tight junction proteins occludin and claudin 7. TGFBR1 is localized at the apical border of the native porcine vas deferens epithelium. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) 11 (also known as p38-MAPK) did not alter the effect of TGFB1 on R(TE) significantly. These data suggest that epithelia lining the vas deferens are subject to disruptions in the physical barrier if active TGFB becomes bioavailable in the luminal fluid, which might be expected to compromise fertility.
Collapse
|
26
|
Chávez JC, Hernández-González EO, Wertheimer E, Visconti PE, Darszon A, Treviño CL. Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod 2012; 86:1-14. [PMID: 21976599 DOI: 10.1095/biolreprod.111.094037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl(-) equilibrium potential appears to be close to the cell resting Em, opening of Cl(-) channels could not support the [Cl(-)](i) increase observed during capacitation. Alternatively, the [Cl(-)](i) increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl(-)](i) and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na(+)/H(+) regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl(-)](i) increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | |
Collapse
|
27
|
Wedenoja S, Pekansaari E, Höglund P, Mäkelä S, Holmberg C, Kere J. Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 2011; 32:715-22. [DOI: 10.1002/humu.21498] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/01/2011] [Indexed: 12/22/2022]
|
28
|
Liu Y, Xu JY, Wang DK, Wang L, Chen LM. Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 2011; 98:112-9. [PMID: 21600280 DOI: 10.1016/j.ygeno.2011.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/27/2011] [Indexed: 12/26/2022]
Abstract
Na(+)-coupled HCO(3)(-) transporters (NCBTs) of the SLC4 family play critical roles in pH regulation as well as transepithelial HCO(3)(-) transport. We systematically examined, in the mouse reproductive tract tissues, the mRNA expression of five NCBTs as well as the five NBCe1 (Slc4a4) variants NBCe1-A through -E, of which NBCe1-D and NBCe1-E are novel. Cloning of NBCe1-D and NBCe1-E, both lacking a 27-nucleotide cassette I, reveals a novel alternative splicing unit in the mouse Slc4a4 gene. Transcripts of Slc4a4 lacking cassette I are expressed in diverse murine tissues as shown by RT-PCR analysis and in diverse tissues of other vertebrate species as shown by blast against GenBank database. Genomic sequence analysis indicates that cassette I of SLC4A4 is conserved in all NCBT genes except for SLC4A5, which presumably lost cassette I during its evolution. Our present study represents an important step towards understanding the molecular physiology of NBCe1, and presumably other NCBTs.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology,Wuhan, Hubei Province 430074, China
| | | | | | | | | |
Collapse
|
29
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
30
|
Wedenoja S, Höglund P, Holmberg C. Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther 2010; 31:477-85. [PMID: 19912155 DOI: 10.1111/j.1365-2036.2009.04197.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Congenital chloride diarrhoea in a newborn is a medical emergency, requiring early diagnostics and treatment to prevent severe dehydration and infant mortality. While most of the 250 cases reported arise from Finland, Poland and Arab countries, single cases with this autosomal recessive disorder appear worldwide. Such congenital chloride diarrhoea rarity makes diagnosis difficult. Life-long salt substitution with NaCl and KCl stabilizes fluid, electrolyte and acid-base balance diagnosis. When properly treated, the long-term outcome is favourable. AIM To summarize data on congenital chloride diarrhoea diagnosis, pathophysiology and treatment, and to provide guidelines for both acute and long-term management of congenital chloride diarrhoea. METHODS Data are based on MEDLINE search for 'chloride diarrhoea', in addition to clinical experience in the treatment of the largest known series of patients. RESULTS Treatment of congenital chloride diarrhoea involves (i) life-long salt substitution; (ii) management of acute dehydration and hypokalaemia during gastroenteritis or other infections; and (iii) recognition and treatment of other manifestations of the disease, such as intestinal inflammation, renal impairment and male subfertility. CONCLUSIONS This review summarizes data on congenital chloride diarrhoea and provides guidelines for treatment. After being a mostly paediatric problem, adult patients constitute a rare challenge for gastroenterologists worldwide.
Collapse
Affiliation(s)
- S Wedenoja
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
31
|
Pierucci-Alves F, Duncan CL, Lillich JD, Schultz BD. Porcine vas deferens luminal pH is acutely increased by systemic xylazine administration. Biol Reprod 2009; 82:132-5. [PMID: 19684336 DOI: 10.1095/biolreprod.109.078857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Data are accumulating to demonstrate that pH regulation in the male reproductive tract has a vital role in modulating sperm cell fertilizing capacity, and therefore male fertility. Bicarbonate uptake by sperm cells is required for the achievement of motility levels required for fertilization. Vas deferens epithelial cells can carry out measurable bicarbonate secretion, but the available literature to date reports that the vas deferens luminal content is typically acidic. This study aimed to determine pH in the boar vas deferens lumen and whether modulatory mechanisms exist for regulation of pH in this compartment of the male reproductive tract. A fiberoptic pH probe was used to assess pH in the vas deferens of anesthetized adult boars. The mean pH, derived from multiple measurements at variable positions along the vas deferens lumen, was 7.39 +/- 0.09. Furthermore, administration of xylazine, an alpha-2 adrenergic receptor agonist rapidly (<10 min) alkalinized the vas deferens lumen in most cases. Because the duct was transected proximal to the site of measurements, the observations rule out the possibility that alkalinization resulted from secretion in more proximal portions of the duct. These results indicate that the boar vas deferens lumen can be alkaline, and they suggest that porcine vas deferens epithelia increase net bicarbonate secretion in vivo after systemic alpha-2 adrenergic stimulation. This secretory response greatly changes the luminal environment to which sperm cells are exposed, which will initiate or enhance motility, and is expected to modulate male fertility.
Collapse
|
32
|
Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Höglund P, Chan HC, Shi QX. Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3- exchanger (SLC26A3) and CFTR. Biol Reprod 2008; 80:115-23. [PMID: 18784352 DOI: 10.1095/biolreprod.108.068528] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.
Collapse
Affiliation(s)
- Wen Ying Chen
- Unit of Reproductive Physiology, Institute of Reproductive Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Obstet Gynecol 2007; 19:289-96. [PMID: 17495648 DOI: 10.1097/gco.0b013e3281fc29db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kujala M, Hihnala S, Tienari J, Kaunisto K, Hästbacka J, Holmberg C, Kere J, Höglund P. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 2007; 133:775-84. [PMID: 17504921 DOI: 10.1530/rep.1.00964] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Appropriate intraluminal microenvironment in the epididymis is essential for maturation of sperm. To clarify whether the anion transporters SLC26A2, SLC26A6, SLC26A7, and SLC26A8 might participate in generating this proper intraluminal milieu, we studied the localization of these proteins in the human efferent and the epididymal ducts by immunohistochemistry. In addition, immunohistochemistry of several SLC26-interacting proteins was performed: the Na+/H+exchanger 3 (NHE3), the Cl−channel cystic fibrosis transmembrane conductance regulator (CFTR), the proton pump V-ATPase, their regulator Na+/H+exchanger regulating factor 1 (NHERF-1), and carbonic anhydrase II (CAII). Our results show that SLC26A6, CFTR, NHE3, and NHERF-1 are co-expressed on the apical side of the nonciliated cells, and SLC26A2 appears in the cilia of the ciliated cells in the human efferent ducts. In the epididymal ducts, SLC26A6, CFTR, NHERF-1, CAII, and V-ATPase (B and E subunits) were co-localized to the apical mitochondria rich cells, while SLC26A7 was expressed in a subgroup of basal cells. SLC26A8 was not found in the structures studied. This is the first study describing the localization of SLC26A2, A6 and A7, and NHERF-1 in the efferent and the epididymal ducts. Immunolocalization of human CFTR, NHE3, CAII, and V-ATPase in these structures differs partly from previous reports from rodents. Our findings suggest roles for these proteins in male fertility, either independently or through interaction and reciprocal regulation with co-localized proteins shown to affect fertility, when disrupted.
Collapse
Affiliation(s)
- Minna Kujala
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|