1
|
Luo C, Liu D, Yu Z, Fan Z, Xu H, Zhou S, Zhu X, Liu H, Shao L, Wu Y, Li Z, Sun F, Zhan J, Xie C. Germline-specific deletion of testis-highly expressed Lrwd1 reveals nonessential roles in male fertility. Theriogenology 2025; 241:117426. [PMID: 40203731 DOI: 10.1016/j.theriogenology.2025.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Genetic etiologies constitute a major contributor to male factor infertility, a global health concern impacting over 7% of the reproductive-aged male population. Comprehensive transcriptomic profiling has identified more than 2300 mouse testicular-predominant genes, with knockout models functionally validating the critical role of numerous loci in preserving fertility. However, the biological significance of large portions of the male germ cell genes remains unclear. The present study aimed to investigate the function of leucine-rich repeats and WD40 repeat domain-containing protein 1 (Lrwd1) in male reproduction. Here we generated germ cell-specific Lrwd1 knockout mice with Stra8-Cre (Lrwd1-sKO) using CRISPR/Cas9 technology and assessed their fertility. Our results demonstrated that the absence of Lrwd1 did not affect the fertility of male mice, and no significant differences in sperm morphology were observed between Lrwd1-sKO and control mice. Histological analysis of testicular and epididymal tissues revealed that seminiferous tubules contained all stages of germ cell development, including mature spermatozoa, without noticeable alterations. Additionally, the progression of spermatocytes through prophase I was not impaired in ablation of Lrwd1 in germ cell. These findings suggest that Lrwd1 is not essential for spermatogenesis or male fertility in mice, indicating that it does not play a critical role in reproductive function under normal physiological conditions.
Collapse
Affiliation(s)
- Chunhai Luo
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Dalin Liu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Ziqi Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Zhiwei Fan
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Haoran Xu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Shumin Zhou
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xuanjing Zhu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Hanchao Liu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Lifu Shao
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Yunhao Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Junfeng Zhan
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Chong Xie
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
2
|
Pan PY, Ke CC, Wang YY, Lin YH, Ku WC, Au CF, Chan CC, Huang CY, Lin YH. Proteomic profiling of TBC1 domain family member 21-null sperms reveals the critical roles of TEKT 1 in their tail defects. Dev Dyn 2024; 253:1024-1035. [PMID: 38822685 DOI: 10.1002/dvdy.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Approximately 7% of the males exhibit reduced fertility; however, the regulatory genes and pathways involved remain largely unknown. TBC1 domain family member 21 (TBC1D21) contains a conserved RabGAP catalytic domain that induces GDP/GTP exchange to inactivate Rabs by interacting with microtubules. We previously reported that Tbc1d21-null mice exhibit severe sperm tail defects with a disrupted axoneme, and that TBC1D21 interacts with RAB10. However, the pathological mechanisms underlying the Tbc1d21 loss-induced sperm tail defects remain unknown. RESULTS Murine sperm from wild-type and Tbc1d21-null mice were comparatively analyzed using proteomic assays. Over 1600 proteins were identified, of which 15 were significantly up-regulated in Tbc1d21-null sperm. Notably, several tektin (TEKT) family proteins, belonging to a type of intermediate filament critical for stabilizing the microtubular structure of cilia and flagella, were significantly up-regulated in Tbc1d21-/- sperm. We also found that TBC1D21 interacts with TEKT1. In addition, TEKT1 co-localized with RAB10 during sperm tail formation. Finally, we found Tbc1d21-null sperm exhibited abnormal accumulation of TEKT1 in the midpiece region, accompanied by disrupted axonemal structures. CONCLUSIONS These results reveal that TBC1D21 modulates TEKTs protein localization in the axonemal transport system during sperm tail formation.
Collapse
Affiliation(s)
- Pei-Yi Pan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hua Lin
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chin-Fong Au
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chying-Chyuan Chan
- Department of Obstetrics and Gynecology, Taipei City Hospital, Zhongxing Branch and Branch for Women and Children, Taipei, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Kothalawala SD, Günther S, Schuppe H, Pilatz A, Wagenlehner F, Kliesch S, O'Donnell L, Fietz D. Identification of differentially expressed genes in human testis biopsies with defective spermatogenesis. Reprod Med Biol 2024; 23:e12616. [PMID: 39677330 PMCID: PMC11646353 DOI: 10.1002/rmb2.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Sperm morphology and motility are major contributors to male-factor infertility, with many genes predicted to be involved. This study aimed to elucidate differentially expressed transcripts in human testis tissues of normal and abnormal spermatogenesis that could reveal new genes that may regulate sperm morphology and function. Methods Human testis biopsies were collected from men with well-characterized phenotypes of normal spermatogenesis, spermatid arrest, and Sertoli cell-only phenotype, and transcriptional differences were quantified by RNA-sequencing (RNA-Seq). Differentially expressed genes (DEGs) were filtered based on predominant expression in spermatids and gene functional annotations relevant to sperm morphology and motility. Selected 10 DEGs were validated by qRT-PCR and the localization of two proteins was determined in testis biopsies. Results The analysis revealed 6 genes (SPATA31E1, TEKT3, SLC9C1, PDE4A, CFAP47, and TNC) that are excellent candidates for novel genes enriched in developing human sperm. The immunohistochemical localization of two proteins, ORAI1 and SPATA31E1, in testis biopsies, verified that both are expressed in developing human germ cells, with SPATA31E1 enriched in late spermatocytes and spermatids. Conclusion This study identified human germ cell-enriched genes that could play functional roles in spermiogenesis and could thus be important in the development of morphologically normal, motile sperm.
Collapse
Affiliation(s)
- Shashika D. Kothalawala
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Stefan Günther
- Max‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans‐Christian Schuppe
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and AndrologyUniversity of MuensterMuensterGermany
| | - Liza O'Donnell
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| |
Collapse
|
4
|
Wagner AO, Turk A, Kunej T. Towards a Multi-Omics of Male Infertility. World J Mens Health 2023; 41:272-288. [PMID: 36649926 PMCID: PMC10042660 DOI: 10.5534/wjmh.220186] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023] Open
Abstract
Infertility is a common problem affecting one in six couples and in 30% of infertile couples, the male factor is a major cause. A large number of genes are involved in spermatogenesis and a significant proportion of male infertility phenotypes are of genetic origin. Studies on infertility have so far primarily focused on chromosomal abnormalities and sequence variants in protein-coding genes and have identified a large number of disease-associated genes. However, it has been shown that a multitude of factors across various omics levels also contribute to infertility phenotypes. The complexity of male infertility has led to the understanding that an integrated, multi-omics analysis may be optimal for unravelling this disease. While there is a vast array of different factors across omics levels associated with infertility, the present review focuses on known factors from the genomics, epigenomics, transcriptomics, proteomics, metabolomics, glycomics, lipidomics, miRNomics, and integrated omics levels. These include: repeat expansions in AR, POLG, ATXN1, DMPK, and SHBG, multiple SNPs, copy number variants in the AZF region, disregulated miRNAs, altered H3K9 methylation, differential MTHFR, MEG3, PEG1, and LIT1 methylation, altered protamine ratios and protein hypo/hyperphosphorylation. This integrative review presents a step towards a multi-omics approach to understanding the complex etiology of male infertility. Currently only a few genetic factors, namely chromosomal abnormalities and Y chromosome microdeletions, are routinely tested in infertile men undergoing intracytoplasmic sperm injection. A multi-omics approach to understanding infertility phenotypes may yield a more holistic view of the disease and contribute to the development of improved screening methods and treatment options. Therefore, beside discovering as of yet unknown genetic causes of infertility, integrating multiple fields of study could yield valuable contributions to the understanding of disease development. Future multi-omics studies will enable to synthesise fragmented information and facilitate biomarker discovery and treatments in male infertility.
Collapse
Affiliation(s)
- Ana Ogrinc Wagner
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Aleksander Turk
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia.
| |
Collapse
|
5
|
Chen H, Li P, Du X, Zhao Y, Wang L, Tian Y, Song X, Shuai L, Bai X, Chen L. Homozygous Loss of Septin12, but not its Haploinsufficiency, Leads to Male Infertility and Fertilization Failure. Front Cell Dev Biol 2022; 10:850052. [PMID: 35547809 PMCID: PMC9082362 DOI: 10.3389/fcell.2022.850052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The SEPTIN12 gene has been associated with male infertility. Male Septin12+/− chimera mice were infertile, supporting the prevailing view that SEPTIN12 haploinsufficiency causes male infertility. In this study, we identified a heterozygous mutation on SEPTIN12, c.72C>A (p.Cys24Ter) in the male partner of a patient couple, who had a previous fertilization failure (FF) after intracytoplasmic sperm injection (ICSI) and became pregnant after ICSI together with artificial oocyte activation (AOA). To investigate the role of SEPTIN12 in FF and oocyte activation, we constructed Septin12 knockout mice. Surprisingly, Septin12−/− male mice, but not Septin12+/− male mice, are infertile, and have reduced sperm counts and abnormal sperm morphology. Importantly, AOA treatment enhances the 2-cell embryo rate of ICSI embryos injected with Septin12−/− sperm, indicating that FF caused by male Septin12 deficiency is overcome by AOA. Mechanistically, loss of PLCζ around the acrosome might be the reason for FF of Septin12−/− sperm. Taken together, our data indicated that homozygous knockout of Septin12, but not Septin12 haploinsufficiency, leads to male infertility and FF.
Collapse
Affiliation(s)
- Haixia Chen
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Li
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Xiaoling Du
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lingling Wang
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Ye Tian
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Song
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaohong Bai
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingyi Chen
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| |
Collapse
|
6
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
7
|
Hung JH, Cheng HY, Tsai YC, Pan HA, Omar HA, Chiu CC, Su YM, Lin YM, Teng YN. LRWD1 expression is regulated through DNA methylation in human testicular embryonal carcinoma cells. Basic Clin Androl 2021; 31:12. [PMID: 34011267 PMCID: PMC8136200 DOI: 10.1186/s12610-021-00130-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels. RESULTS The results revealed the presence of a CpG island up of 298 bps (- 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2'-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity. CONCLUSIONS Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males' infertility.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Yi Cheng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center; Department of Sport Management, and Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Mei Su
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Ming Lin
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan.
| |
Collapse
|
8
|
Scovell JM, Bournat JC, Szafran AT, Solis M, Moore J, Rivera A, Chen CH, Zhang J, Wilken N, Seth A, Jorgez CJ. PRSS50 is a testis protease responsible for proper sperm tail formation and function. Development 2021; 148:240271. [PMID: 33913480 DOI: 10.1242/dev.197558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenoteratozoospermia. We have identified protease serine 50 (PRSS50) as having a crucial role in sperm development, because Prss50-null mice presented with impaired fertility and sperm tail abnormalities. PRSS50 could also be involved in centrosome function because these mice showed a threefold increase in acephalic sperm (head-tail junction defect), sperm with multiple heads (spermatid division defect) and sperm with multiple tails, including novel two conjoined sperm (complete or partial parts of several flagellum on the same plasma membrane). Our data support that, in the testis, as in tumorigenesis, PRSS50 activates NFκB target genes, such as the centromere protein leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1), which is required for heterochromatin maintenance. Prss50-null testes have increased IκκB, and reduced LRWD1 and histone expression. Low levels of de-repressed histone markers, such as H3K9me3, in the Prss50-null mouse testis may cause increases in post-meiosis proteins, such as AKAP4, affecting sperm formation. We provide important insights into the complex mechanisms of sperm development, the importance of testis proteases in fertility and a novel mechanism for MMAF.
Collapse
Affiliation(s)
- Jason M Scovell
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T Szafran
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minerva Solis
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Zhang
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Wilken
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| | - Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Han B, Yan Z, Yu S, Ge W, Li Y, Wang Y, Yang B, Shen W, Jiang H, Sun Z. Infertility network and hub genes for nonobstructive azoospermia utilizing integrative analysis. Aging (Albany NY) 2021; 13:7052-7066. [PMID: 33621950 PMCID: PMC7993690 DOI: 10.18632/aging.202559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility owing to the absence of sperm during ejaculation as a result of failed spermatogenesis. The molecular mechanisms of NOA have not been well studied. Here, we revealed the dysregulated differentially expressed genes in NOA and related signaling pathways or biological processes. Cluster features of biological processes include spermatogenesis, fertilization, cilium movement, penetration of zona pellucida, sperm chromatin condensation, and being significantly enriched metabolic pathways in proximal tubule bicarbonate reclamation, aldosterone synthesis and secretion, glycolysis and glycogenesis pathways in NOA using Gene Ontology analysis and pathway enrichment analysis. The NOA gene co-expression network was constructed by weighted gene co-expression network analysis to identify the hub genes (CHD5 and SPTBN2). In addition, we used another Gene Expression Omnibus dataset (GSE45887) to validate these hub genes. Furthermore, we used the Seurat package to classify testicular tissue cells from NOA patients and to characterize the differential expression of hub genes in different cell types from different adult males based on the scRNA-seq dataset (GSE106487). These results provide new insights into the pathogenesis of NOA. Of particular note, CHD5 and SPTBN2 may be potential biomarkers for the diagnosis and treatment of NOA.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zihui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai Yu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqi Li
- Department of Urology, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Wei Shen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui Jiang
- Department of Urology, Department of Andrology, Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Zhongyi Sun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
10
|
Kmonickova V, Frolikova M, Steger K, Komrskova K. The Role of the LINC Complex in Sperm Development and Function. Int J Mol Sci 2020; 21:E9058. [PMID: 33260574 PMCID: PMC7730847 DOI: 10.3390/ijms21239058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Collapse
Affiliation(s)
- Vera Kmonickova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Molecular Andrology, Justus-Liebig University, 35392 Giessen, Germany;
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| |
Collapse
|
11
|
Wang YY, Ke CC, Chen YL, Lin YH, Yu IS, Ku WC, O’Bryan MK, Lin YH. Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice. PLoS Genet 2020; 16:e1009020. [PMID: 32976492 PMCID: PMC7549768 DOI: 10.1371/journal.pgen.1009020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Approximately 2-15% of couples experience infertility, and around half of these cases are attributed to male infertility. We previously identified TBC1D21 as a sterility-related RabGAP gene derived from infertile men. However, the in vivo function of TBC1D21 in male fertility remains unclear. Here, we show that loss of Tbc1d21 in mice resulted in male infertility, characterized by defects in sperm tail structure and diminished sperm motility. The mitochondria of the sperm-tail had an abnormal irregular arrangement, abnormal diameter, and structural defects. Moreover, the axoneme structure of sperm tails was severely disturbed. Several TBC1D21 interactors were selected via proteomic analysis and functional grouping. Two of the candidate interactors, a subunit protein of translocase in the outer membrane of mitochondria (TOMM20) and an inner arm component of the sperm tail axoneme (Dynein Heavy chain 7, DNAH7), confirmed in vivo physical co-localization with TBC1D21. In addition, TOMM20 and DNAH7 detached and dispersed outside the axoneme in Tbc1d21-deficient sperm, instead of aligning with the axoneme. From a clinical perspective, the transcript levels of TBC1D21 in sperm from teratozoospermia cases were significantly reduced when compared with those in normozoospermia. We concluded that TBC1D21 is critical for mitochondrial and axoneme development of mammalian sperm.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Chun Ke
- PhD Program in Nutrition & Food science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Urology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hua Lin
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Moira K. O’Bryan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Rafaee A, Mohseni Meybodi A, Yaghmaei P, Hosseini SH, Sabbaghian M. Single-nucleotide polymorphism c.474G>A in the SEPT12 gene is a predisposing factor in male infertility. Mol Reprod Dev 2019; 87:251-259. [PMID: 31880374 DOI: 10.1002/mrd.23310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/13/2019] [Indexed: 01/12/2023]
Abstract
SEPT12 is a testis-specific gene involved in the terminal differentiation of male germ cells. SEPT12 protein is required for sperm head-tail formation and acts as a fundamental constituent of sperm tail annulus. In this study, we screened genetic variations in exons 5, 6, 7 of the SEPT12 and assessed the annulus status in teratozoospermic, globozoospermic, and patients with immotile short tail sperm. DNA sequencing was performed for 90 teratozoospermic and 30 normozoospermic individuals. Immunocytochemistry, transmission electron microscopy and western blotting were conducted to evaluate annulus status and the expression level of SEPT12 in patients with a distinct exonic variation (c.474G>A), respectively. Five polymorphisms identified within the desired regions of the SEPT12, among them c.474G>A had the potential to induce aberrant splicing results in the expression of a truncated protein. The annulus was detected in most of the spermatozoa from teratozoospermic and normozoospermic men with c.474G>A. In contrast, in the patient with short tail sperm defect carrying c.474G>A, 99% of spermatozoa were devoid of the annulus. Based on our findings there would be no association between exons 5, 6, 7 polymorphisms of the SEPT12 gene and the occurrence of mentioned disease but c.474G>A would be a predisposing factor in male infertility.
Collapse
Affiliation(s)
- Alemeh Rafaee
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Uysal F, Akkoyunlu G, Ozturk S. Decreased expression of DNA methyltransferases in the testes of patients with non-obstructive azoospermia leads to changes in global DNA methylation levels. Reprod Fertil Dev 2019; 31:1386-1394. [PMID: 31030726 DOI: 10.1071/rd18246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
DNA methylation plays key roles in epigenetic regulation during mammalian spermatogenesis. DNA methyltransferases (DNMTs) function in de novo and maintenance methylation processes by adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinucleotide sites. Azoospermia is one of the main causes of male infertility, and is classified as obstructive (OA) or non-obstructive (NOA) azoospermia based on histopathological characteristics. The molecular background of NOA is still largely unknown. DNA methylation performed by DNMTs is implicated in the transcriptional regulation of spermatogenesis-related genes. The aim of the present study was to evaluate the cellular localisation and expression levels of the DNMT1, DNMT3A and DNMT3B proteins, as well as global DNA methylation profiles in testicular biopsy samples obtained from men with various types of NOA, including hypospermatogenesis (hyposperm), round spermatid (RS) arrest, spermatocyte (SC) arrest and Sertoli cell-only (SCO) syndrome. In the testicular biopsy samples, DNMT1 expression and global DNA methylation levels decreased gradually from the hyposperm to SCO groups (P P P <0.05). Although both DNMT1 and DNMT3A were localised in the cytoplasm and nucleus of the spermatogenic cells, staining for DNMT3B was more intensive in the nucleus of spermatogenic cells. In conclusion, the findings suggest that significant changes in DNMT expression and global DNA methylation levels in spermatogenic cells may contribute to development of male infertility in the NOA groups. Further studies are needed to determine the molecular biological effects of the altered DNMT expression and DNA methylation levels on development of male infertility.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey; and Department of Histology and Embryology, Ankara University School of Medicine, 06100, Ankara, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey; and Corresponding author
| |
Collapse
|
14
|
Testis-Specific SEPT12 Expression Affects SUN Protein Localization and is Involved in Mammalian Spermiogenesis. Int J Mol Sci 2019; 20:ijms20051163. [PMID: 30866452 PMCID: PMC6429073 DOI: 10.3390/ijms20051163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
Male infertility is observed in approximately 50% of all couples with infertility. Intracytoplasmic sperm injection (ICSI), a conventional artificial reproductive technique for treating male infertility, may fail because of a severe low sperm count, immotile sperm, immature sperm, and sperm with structural defects and DNA damage. Our previous studies have revealed that mutations in the septin (SEPT)-coding gene SEPT12 cause teratozoospermia and severe oligozoospermia. These spermatozoa exhibit morphological defects in the head and tail, premature chromosomal condensation, and nuclear damage. Sperm from Sept12 knockout mice also cause the developmental arrest of preimplantation embryos generated through in vitro fertilization and ICSI. Furthermore, we found that SEPT12 interacts with SPAG4, a spermatid nuclear membrane protein that is also named SUN4. Loss of the Spag4 allele in mice also disrupts the integration nuclear envelope and reveals sperm head defects. However, whether SEPT12 affects SPAG4 during mammalian spermiogenesis remains unclear. We thus conducted this study to explore this question. First, we found that SPAG4 and SEPT12 exhibited similar localizations in the postacrosomal region of elongating spermatids and at the neck of mature sperm through isolated murine male germ cells. Second, SEPT12 expression altered the nuclear membrane localization of SPAG4, as observed through confocal microscopy, in a human testicular cancer cell line. Third, SEPT12 expression also altered the localizations of nuclear membrane proteins: LAMINA/C in the cells. This effect was specifically due to the expression of SEPT12 and not that of SEPT1, SEPT6, SEPT7, or SEPT11. Based on these results, we suggest that SEPT12 is among the moderators of SPAG4/LAMIN complexes and is involved in the morphological formation of sperm during mammalian spermiogenesis.
Collapse
|
15
|
Lin CH, Shen YR, Wang HY, Chiang CW, Wang CY, Kuo PL. Regulation of septin phosphorylation: SEPT12 phosphorylation in sperm septin assembly. Cytoskeleton (Hoboken) 2018; 76:137-142. [PMID: 30160375 DOI: 10.1002/cm.21491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
The sperm annulus, a septin-based ring structure, is important for reproductive physiology. It is composed of SEPT12-based septin core complex followed by assembling as octameric filament. In clinical examinations, mutations of Septin12 result in male infertility, immotile sperm, as well as sperm with defective annuli. The dynamic assembly of septin filaments is regulated by several post-translational modifications, including sumoylation, acetylation, and phosphorylation. Here, we briefly review the biological significance and the regulation of SEPT12 phosphorylation in the mammalian sperm physiology. During mammalian spermiogenesis, the phosphorylation of SEPT12 on Ser198 residue is important in regulating mammalian annulus architectures. SEPT12 phosphomimetic knock-in mice displayed poor male fertility due to weak sperm motility and loss of the sperm annulus. SEPT12 is phosphorylated via Protein kinase A (PKA), and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Taken together, the phosphorylation status of SEPT12 is crucial for its function in regulating the mammalian sperm physiology.
Collapse
Affiliation(s)
- Chun-Hsiang Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
16
|
Kuo PL, Tseng JY, Chen HI, Wu CY, Omar HA, Wang CY, Cheng HY, Hsu CC, Fu TF, Teng YN. Identification of SEPTIN12 as a novel target of the androgen and estrogen receptors in human testicular cells. Biochimie 2018; 158:1-9. [PMID: 30513371 DOI: 10.1016/j.biochi.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022]
Abstract
SEPTIN12 (SEPT12) is a testis-enriched gene that is downregulated in the testis of infertile men with severe spermatogenic defects. While SEPT12 is involved in spermatogenic failure and sperm motility disorder, SEPT12 transcriptional regulation is still unknown. Here we report the promoter region of SEPT12 as a 245 bp segment upstream of the transcription start site. One androgen receptor (AR) and two estrogen receptor α (ERα) binding sites in this region were initially identified by bioinformatics prediction and confirmed by chromatin immunoprecipitation assay. Truncated ERα or AR binding sites decreased the promoter activity, which indicated that the ERα and AR are essential for the SEPT12 promoter. On the other hand, the promoter activity was enhanced by the treatment with 17β-estradiol (E2) and 5α-dihydrotestosterone (5α-DHT). Thus, one androgen and two estrogen hormone responsive elements located in the promoter of SEPT12 gene can regulate SEPT12 expression. Two single nucleotide polymorphisms (SNPs), rs759992 T > C and rs3827527 C > T, were observed in the SEPT12 gene promoter region and were able to decrease the promoter activity. In conclusion, the current work identified the promoter of the human SEPT12 gene and provided key evidence about its transcriptional regulation via E2 and 5α-DHT. Since SEPT12 has an important role in spermatogenesis, SEPT12 expression analysis can be developed as a potential tool for the assessment of environmental or food pollution by hormones or for the evaluation of the risk of endocrine-disrupting chemicals (EDCs) in general.
Collapse
Affiliation(s)
- Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, 701, Taiwan
| | - Jie-Yun Tseng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Hau-Inh Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chia-Yun Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, College of Medicine, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, 701, Taiwan
| | - Han-Yi Cheng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Chao-Chin Hsu
- Institute of Reproductive Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Tzu-Fun Fu
- Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, 701, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan.
| |
Collapse
|
17
|
Geng D, Yang X, Zhang H, Liu X, Yu Y, Jiang Y, Liu R, Zhang G. Association of single nucleotide polymorphism c.673C>A/p.Gln225Lys in SEPT12 gene with spermatogenesis failure in male idiopathic infertility in Northeast China. J Int Med Res 2018; 47:992-998. [PMID: 30488758 PMCID: PMC6381467 DOI: 10.1177/0300060518811770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Male infertility is a complex multifactorial disease affecting approximately 10% of couples who want to have children. Some cases of infertility can be explained by genetic factors. Septins are members of the GTPase superfamily, which are involved in diverse biological processes including morphogenesis, compartmentalization, cytokinesis, and apoptosis. The septin 12 gene, SEPT12, is expressed exclusively in post-meiotic male germ cells and is considered as a critical gene for spermatogenesis. In this study, we evaluated 200 patients with non-obstructive azoospermia and detected mutations of 25 spermatogenesis-associated genes by targeted exome sequencing. We report a missense SEPT12 variant, c.673C>A/p.Gln225Lys, in an infertile man with non-obstructive azoospermia. The variation was located inside the GTPase domain and had a SIFT score of 0.02 (<0.50) and was considered to be 'probably damaging' by PolyPhen. This case may provide clues to help establish the relationship between SEPT12 gene alterations and some cases of idiopathic male infertility. The role of this variant should thus be investigated further.
Collapse
Affiliation(s)
- Dongfeng Geng
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Yang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongguo Zhang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojun Liu
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Yang Yu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuting Jiang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruizhi Liu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China.,*These authors contributed equally to this work
| | - Guirong Zhang
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China.,*These authors contributed equally to this work
| |
Collapse
|
18
|
Ke CC, Lin YH, Wang YY, Wu YY, Chen MF, Ku WC, Chiang HS, Lai TH. TBC1D21 Potentially Interacts with and Regulates Rap1 during Murine Spermatogenesis. Int J Mol Sci 2018; 19:ijms19113292. [PMID: 30360518 PMCID: PMC6274753 DOI: 10.3390/ijms19113292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022] Open
Abstract
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography–tandem mass spectrometry (nano LC–MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis.
Collapse
Affiliation(s)
- Chih-Chun Ke
- PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ying-Yu Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan County 33305, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 10630, Taiwan.
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan.
| |
Collapse
|
19
|
Huang CY, Wang YY, Chen YL, Chen MF, Chiang HS, Kuo PL, Lin YH. CDC42 Negatively Regulates Testis-Specific SEPT12 Polymerization. Int J Mol Sci 2018; 19:ijms19092627. [PMID: 30189608 PMCID: PMC6163814 DOI: 10.3390/ijms19092627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Septin (SEPT) genes encode well-preserved polymerizing GTP-binding cytoskeletal proteins. The cellular functions of SEPTs consist of mitosis, cytoskeletal remodeling, cell polarity, and vesicle trafficking through interactions with various types of cytoskeletons. We discovered that mutated SEPTIN12 in different codons resulted in teratozoospermia or oligozoospermia. In mouse models with a defective Septin12 allele, sperm morphology was abnormal, sperm count decreased, and sperms were immotile. However, the regulators of SEPT12 are completely unknown. Some studies have indicated that CDC42 negatively regulates the polymerization of SEPT2/6/7 complexes in mammalian cell lines. In this study, we investigated whether CDC42 modulates SEPT12 polymerization and is involved in the terminal differentiation of male germ cells. First, through scanning electron microscopy analysis, we determined that the loss of Septin12 caused defective sperm heads. This indicated that Septin12 is critical for the formation of sperm heads. Second, CDC42 and SEPT12 were similarly localized in the perinuclear regions of the manchette at the head of elongating spermatids, neck region of elongated spermatids, and midpiece of mature spermatozoa. Third, wild-type CDC42 and CDC42Q61L (a constitutive-acting-mutant) substantially repressed SEPT12 polymerization, but CDC42T17N (a dominant-negative-acting mutant) did not, as evident through ectopic expression analysis. We concluded that CDC42 negatively regulates SEPT12 polymerization and is involved in terminal structure formation of sperm heads.
Collapse
Affiliation(s)
- Chia-Yen Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Ying-Liang Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
20
|
Hung JH, Wee SK, Omar HA, Su CH, Chen HY, Chen PS, Chiu CC, Wu MS, Teng YN. Nuclear factor erythroid-2-related factor regulates LRWD1 expression and cellular adaptation to oxidative stress in human embryonal carcinoma cells. Biochimie 2018; 148:99-106. [PMID: 29544732 DOI: 10.1016/j.biochi.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
Leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1) is implicated in the regulation of signal transduction, transcription, RNA processing and tumor development. However, LRWD1 transcriptional regulation is not fully understood. This study aimed to investigate the relationship between LRWD1 expression and reactive oxygen species (ROS) level in human embryonal carcinoma cell line, NT2/D1 cells, which will help in understanding the transcriptional regulatory role of ROS in cells. Results showed that the exposure of NT2/D1 cells to various concentrations of hydrogen peroxide (H2O2) and the nitric oxide (NO) donor sodium nitroprusside (SNP) caused a significant increase in the mRNA and protein expression of LRWD1. In addition, LRWD1 promoter luciferase reporter assay, and Chromatin Immunoprecipitation assay (CHIP assay) showed that nuclear factor erythroid-2-related factor (Nrf2) was involved in the regulation of LRWD1 expression in response to oxidative stress. The involvement of Nrf2 was confirmed by shRNA-mediated knockdown of Nrf2 in NT2/D1 cells, which caused a significant decrease in LRWD1 expression in response to oxidative stress. Similarly, LRWD1 knockdown resulted in the accumulation of H2O2 and superoxide anion radical (O2-). Blocking ROS production by N-acetyl cysteine (NAC) protected NT2/D1 shLRWD1cells from H2O2-induced cell death. Collectively, oxidative stress increased LRWD1 expression through a Nrf2-dependent mechanism, which plays an important role in cellular adaptation to oxidative stress. These results highlight an evidence, on the molecular level, about LRWD1 transcriptional regulation under oxidative stress.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC; Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC
| | - Shi-Kae Wee
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chia-Hui Su
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC
| | - Hsing-Yi Chen
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC
| | - Pin-Shern Chen
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Ming-Syuan Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, ROC.
| |
Collapse
|
21
|
Razavi SM, Sabbaghian M, Jalili M, Divsalar A, Wolkenhauer O, Salehzadeh-Yazdi A. Comprehensive functional enrichment analysis of male infertility. Sci Rep 2017; 7:15778. [PMID: 29150651 PMCID: PMC5693951 DOI: 10.1038/s41598-017-16005-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis is a multifactorial process that forms differentiated sperm cells in a complex microenvironment. This process involves the genome, epigenome, transcriptome, and proteome to ensure the stability of the spermatogonia and supporting cells. The identification of signaling pathways linked to infertility has been hampered by the inherent complexity and multifactorial aspects of spermatogenesis. Systems biology is a promising approach to unveil underlying signaling pathways and genes and identify putative biomarkers. In this study, we analyzed thirteen microarray libraries of infertile humans and mice, and different classes of male infertility were compared using differentially expressed genes and functional enrichment analysis. We found regulatory processes, immune response, glutathione transferase and muscle tissue development to be among the most common biological processes in up-regulated genes, and genes involved in spermatogenesis were down-regulated in maturation arrest (MArrest) and oligospermia cases. We also observed the overexpression of genes involved in steroid metabolism in post-meiotic and meiotic arrest. Furthermore, we found that the infertile mouse model most similar to human MArrest was the Dazap1 mutant mouse. The results of this study could help elucidate features of infertility etiology and provide the basis for diagnostic markers.
Collapse
Affiliation(s)
- Seyed Morteza Razavi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mahdi Jalili
- Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Ali Salehzadeh-Yazdi
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany.
| |
Collapse
|
22
|
Wang CY, Hong YH, Syu JS, Tsai YC, Liu XY, Chen TY, Su YM, Kuo PL, Lin YM, Teng YN. LRWD1 Regulates Microtubule Nucleation and Proper Cell Cycle Progression in the Human Testicular Embryonic Carcinoma Cells. J Cell Biochem 2017; 119:314-326. [PMID: 28569402 DOI: 10.1002/jcb.26180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023]
Abstract
Leucine-rich repeats and WD repeat domain containing protein 1 (LRWD1) is a testis-specific protein that mainly expressed in the sperm neck where centrosome is located. By using microarray analysis, LRWD1 is identified as a putative gene that involved in spermatogenesis. However, its role in human male germ cell development has not been extensively studied. When checking in the semen of patients with asthenozoospermia, teratozoospermia, and asthenoteratozoospermia, the level of LRWD1 in the sperm neck was significantly reduced with a defective neck or tail. When checking the sub-cellular localization of LRWD1 in the cells, we found that LRWD1 resided in the centrosome and its centrosomal residency was independent of microtubule transportation in NT2/D1, the human testicular embryonic carcinoma, cell line. Depletion of LRWD1 did not induce centrosome re-duplication but inhibited microtubule nucleation. In addition, the G1 arrest were observed in LRWD1 deficient NT2/D1 cells. Upon LRWD1 depletion, the levels of cyclin E, A, and phosphorylated CDK2, were reduced. Overexpression of LRWD1 promoted cell proliferation in NT2/D1, HeLa, and 239T cell lines. In addition, we also observed that autophagy was activated in LRWD1 deficient cells and inhibition of autophagy by chloroquine or bafilomycin A1 promoted cell death when LRWD1 was depleted. Thus, we found a novel function of LRWD1 in controlling microtubule nucleation and cell cycle progression in the human testicular embryonic carcinoma cells. J. Cell. Biochem. 119: 314-326, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Han Hong
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Jhih-Siang Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Xiu-Ying Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Ting-Yu Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yin-Mei Su
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yung-Ming Lin
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| |
Collapse
|
23
|
Differential expression of microRNAs and their messengerRNA targets in men with normal spermatogenesis versus Sertoli cell-only syndrome. UROLOGICAL SCIENCE 2017. [DOI: 10.1016/j.urols.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Abstract
Infertility affects approximately 15% of couples, and male factor is responsible for 30%-50% of all infertility. The most severe form of male infertility is testicular failure, and the typical phenotype of testicular failure is severely impaired spermatogenesis resulting in azoospermia or severe oligozoospermia. Although the etiology of testicular failure remains poorly understood, genetic factor typically is an underlying cause. Modern assisted reproductive techniques have revolutionized the treatment of male factor infertility, allowing biological fatherhood to be achieved by many men who would otherwise have been unable to become father to their children through natural conception. Therefore, identifying genetic abnormalities in male is critical because of the potential risk of transmission of genetic abnormalities to the offspring. Recently, along with other intense researches ongoing, whole-genome approaches have been used increasingly in the genetic studies of male infertility. In this review, we focus on the genetics of testicular failure and provide an update on the advances in the study of genetics of male infertility.
Collapse
Affiliation(s)
| | | | | | - Dolores J Lamb
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Lin YH, Ke CC, Wang YY, Chen MF, Chen TM, Ku WC, Chiang HS, Yeh CH. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis. Int J Mol Sci 2017; 18:ijms18010097. [PMID: 28067790 PMCID: PMC5297731 DOI: 10.3390/ijms18010097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023] Open
Abstract
According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu-Su Memorial Hospital, Taipei 11101, Taiwan.
| |
Collapse
|
26
|
SEPT12-NDC1 Complexes Are Required for Mammalian Spermiogenesis. Int J Mol Sci 2016; 17:ijms17111911. [PMID: 27854341 PMCID: PMC5133908 DOI: 10.3390/ijms17111911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
Male factor infertility accounts for approximately 50 percent of infertile couples. The male factor-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile sperm, immature sperm, abnormally structured sperm, and sperm with nuclear damage. Our knockout and knock-in mice models demonstrated that SEPTIN12 (SEPT12) is vital for the formation of sperm morphological characteristics during spermiogenesis. In the clinical aspect, mutated SEPT12 in men results in oligozoospermia or teratozoospermia or both. Sperm with mutated SEPT12 revealed abnormal head and tail structures, decreased chromosomal condensation, and nuclear damage. Furthermore, several nuclear or nuclear membrane-related proteins have been identified as SEPT12 interactors through the yeast 2-hybrid system, including NDC1 transmembrane nucleoporin (NDC1). NDC1 is a major nuclear pore protein, and is critical for nuclear pore complex assembly and nuclear morphology maintenance in mammalian cells. Mutated NDC1 cause gametogenesis defects and skeletal malformations in mice, which were detected spontaneously in the A/J strain. In this study, we characterized the functional effects of SEPT12–NDC1 complexes during mammalian spermiogenesis. In mature human spermatozoa, SEPT12 and NDC1 are majorly colocalized in the centrosome regions; however, NDC1 is only slightly co-expressed with SEPT12 at the annulus of the sperm tail. In addition, SEPT12 interacts with NDC1 in the male germ cell line through coimmunoprecipitation. During murine spermiogenesis, we observed that NDC1 was located at the nuclear membrane of spermatids and at the necks of mature spermatozoa. In male germ cell lines, NDC1 overexpression restricted the localization of SEPT12 to the nucleus and repressed the filament formation of SEPT12. In mice sperm with mutated SEPT12, NDC1 dispersed around the manchette region of the sperm head and annulus, compared with concentrating at the sperm neck of wild-type sperm. These results indicate that SEPT12–NDC1 complexes are involved in mammalian spermiogenesis.
Collapse
|
27
|
He T, Surdez D, Rantala JK, Haapa-Paananen S, Ban J, Kauer M, Tomazou E, Fey V, Alonso J, Kovar H, Delattre O, Iljin K. High-throughput RNAi screen in Ewing sarcoma cells identifies leucine rich repeats and WD repeat domain containing 1 (LRWD1) as a regulator of EWS-FLI1 driven cell viability. Gene 2016; 596:137-146. [PMID: 27760381 DOI: 10.1016/j.gene.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022]
Abstract
A translocation leading to the formation of an oncogenic EWS-ETS fusion protein defines Ewing sarcoma. The most frequent gene fusion, present in 85 percent of Ewing sarcomas, is EWS-FLI1. Here, a high-throughput RNA interference screen was performed to identify genes whose function is critical for EWS-FLI1 driven cell viability. In total, 6781 genes were targeted by siRNA molecules and the screen was performed both in presence and absence of doxycycline-inducible expression of the EWS-FLI1 shRNA in A673/TR/shEF Ewing sarcoma cells. The Leucine rich repeats and WD repeat Domain containing 1 (LRWD1) targeting siRNA pool was the strongest hit reducing cell viability only in EWS-FLI1 expressing Ewing sarcoma cells. LRWD1 had been previously described as a testis specific gene with only limited information on its function. Analysis of LRWD1 mRNA levels in patient samples indicated that high expression associated with poor overall survival in Ewing sarcoma. Gene ontology analysis of LRWD1 co-expressed genes in Ewing tumors revealed association with DNA replication and analysis of differentially expressed genes in LRWD1 depleted Ewing sarcoma cells indicated a role in connective tissue development and cellular morphogenesis. Moreover, EWS-FLI1 repressed genes with repressive H3K27me3 chromatin marks were highly enriched among LRWD1 target genes in A673/TR/shEF Ewing sarcoma cells, suggesting that LRWD1 contributes to EWS-FLI1 driven transcriptional regulation. Taken together, we have identified LRWD1 as a novel regulator of EWS-FLI1 driven cell viability in A673/TR/shEF Ewing sarcoma cells, shown association between high LRWD1 mRNA expression and aggressive disease and identified processes by which LRWD1 may promote oncogenesis in Ewing sarcoma.
Collapse
Affiliation(s)
- Tao He
- VTT Technical Research Centre of Finland, Turku, Finland
| | - Didier Surdez
- Institut Curie, Unité de génétique somatique, Paris, France; Genetics and Biology of Cancers Unit, Institut Curie, PSL Research University, Paris, France; INSERM U830, Institut Curie Research Center, Paris, France
| | | | | | - Jozef Ban
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maximilian Kauer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Eleni Tomazou
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Vidal Fey
- VTT Technical Research Centre of Finland, Turku, Finland
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria; Department of Pediatrics, Medical University, Vienna, Austria
| | - Olivier Delattre
- Institut Curie, Unité de génétique somatique, Paris, France; Genetics and Biology of Cancers Unit, Institut Curie, PSL Research University, Paris, France; INSERM U830, Institut Curie Research Center, Paris, France; Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | | |
Collapse
|
28
|
Ozturk S, Sozen B, Uysal F, Bassorgun IC, Usta MF, Akkoyunlu G, Demir N. The poly(A)-binding protein genes, EPAB, PABPC1, and PABPC3 are differentially expressed in infertile men with non-obstructive azoospermia. J Assist Reprod Genet 2016; 33:335-348. [PMID: 26843391 DOI: 10.1007/s10815-016-0654-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Azoospermia is one of the major causes of male infertility and is basically classified into obstructive (OA) and non-obstructive azoospermia (NOA). The molecular background of NOA still largely remains elusive. It has been shown that the poly(A)-binding proteins (PABPs) essentially play critical roles in stabilization and translational control of the mRNAs during spermatogenesis. METHODS In the present study, we aim to evaluate expression levels of the PABP genes, EPAB, PABPC1, and PABPC3, in the testicular biopsy samples and in the isolated spermatocyte (SC) and round spermatid (RS) fractions obtained from men with various types of NOA including hypospermatogenesis (hyposperm), RS arrest, SC arrest, and Sertoli cell-only syndrome (SCO). RESULTS In the testicular biopsy samples, both PABPC1 and PABPC3 mRNA expressions were gradually decreased from hyposperm to SCO groups (P < 0.05), whereas there was no remarkable difference for the EPAB expression among groups. The expression levels of cytoplasmically localized PABPC1 and PABPC3 proteins dramatically reduced from hyposperm to SCO groups (P < 0.05). In the isolated SC and RS fractions, the EPAB, PABPC1, and PABPC3 mRNA expressions were gradually decreased from hyposperm to SC arrest groups (P < 0.05). Similarly, both PABPC1 and PABPC3 proteins were expressed at higher levels in the SC and RS fractions from hyposperm group when compared to the SC and RS fractions from either RS arrest or SC arrest group (P < 0.05). CONCLUSION Our findings suggest that observed significant alterations in the PABPs expression may have an implication for development of different NOA forms.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Berna Sozen
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Ibrahim C Bassorgun
- Department of Pathology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Mustafa F Usta
- Department of Urology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
29
|
Padhi A, Ma L. A testis-specific gene within a widely expressed gene: Contrasting evolutionary patterns of two differentially expressed mammalian proteins encoded by a single gene, CAMK4. Anim Genet 2015; 46:683-92. [PMID: 26388303 DOI: 10.1111/age.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 11/28/2022]
Abstract
Understanding the patterns of genetic variations within fertility-related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca(2+) /calmodulin-dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46-0.64 × 10(-9) nucleotide substitutions/site/year), whereas the testis-specific CaS gene, which is predominantly expressed in post-meiotic cells, evolves at least three to four times faster (1.48-1.98 × 10(-9) substitutions/site/year). Concomitantly, maximum-likelihood-based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis-specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC-biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC-biased gene conversion in the evolution of CaS that mimics positive selection.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD, USA
| |
Collapse
|
30
|
Yeh CH, Kuo PL, Wang YY, Wu YY, Chen MF, Lin DY, Lai TH, Chiang HS, Lin YH. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One 2015; 10:e0120722. [PMID: 25775403 PMCID: PMC4361620 DOI: 10.1371/journal.pone.0120722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ying-Yu Wu
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| | - Mei-Feng Chen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei City, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Zhongli City, Taoyuan County, Taiwan
| | - Han-Sun Chiang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| |
Collapse
|
31
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Tsai YC, Teng YN, Hung JH, Wu CH, Kuo YT, Kuo PL, Chiu CC, Huang B. Correlation between leucine rich domain and the stability of LRWD1 protein in human NT2/D1 cells. Adv Med Sci 2014; 59:266-72. [PMID: 25170821 DOI: 10.1016/j.advms.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE LRWD1 is a protein that contains LRR and WDs domains and is important in regulating spermatogenesis. However, the roles of LRR or WDs domains in the expression of LRWD1 remain unclear. MATERIALS AND METHODS The NT2/D1 cells separately transfected with full length of LRWD1 gene (LRWD(WT)) or genes with deleted sequences in the LRR domain (LRWD1(ΔLRR)), WD1 domain (LRWD1(ΔWD1)), WD2 domain (LRWD1(ΔWD2)), WD3 domain (LRWD1(ΔWD3)) and entire three WD domains (LRWD1(Δ3×WD)) were applied to investigate the expression levels of LRWD1 protein by either Western blot or flow cytometry. The associated proteins in these mutated LRWD1 proteins were identified by mass spectrometry. RESULTS Deletion of the LRR domain significantly decreased the expression of LRWD1 protein. With the treatment of MG132, the LRR domain may functions in preventing LRWD1 protein from proteasome-mediated degradation. In the co-immunoprecipitation analysis, protein receptor of tumor necrosis factor 2 (TNFR2) was specifically observed to be associated with LRR-deficient LRWD1 protein. CONCLUSIONS The LRR domain is significantly correlated to the stability of LRWD1 protein. Determining if the stability is modulated by TNFR2 is worthy of further study.
Collapse
|
33
|
Abu-Halima M, Hammadeh M, Backes C, Fischer U, Leidinger P, Lubbad AM, Keller A, Meese E. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 2014; 102:989-997.e1. [PMID: 25108464 DOI: 10.1016/j.fertnstert.2014.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To validate a set of five microRNAs (miRNAs) as specific biomarkers for the assessment of male infertility. DESIGN Quantitative real-time polymerase chain reaction (qRT-PCR) validation study. SETTING University research and clinical institutes. PATIENT(S) Two hundred twenty-six men presenting at an infertility clinic. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Validation analysis of a set of miRNAs in human purified spermatozoa and testicular biopsies. RESULT(S) Five miRNAs (hsa-miR-34b*, hsa-miR-34b, hsa-miR-34c-5p, hsa-miR-429, and hsa-miR-122) were confirmed with the use of qRT-PCR analysis in validation sets in patients with different forms of spermatogenic impairments (subfertile and nonobstructive azoospermia [NOA]) and control subjects. We found that hsa-miR-429 was significantly increased and the four other miRNAs were decreased in both tested groups compared with normal control subjects. Computing the area under the receiver operating characteristic curve (AUC) value for each of the five miRNAs, we showed that they separated the tested groups with high accuracy (range 0.777-0.988), except for hsa-miR-429 (AUC 0.475), in patient samples with NOA. Furthermore, with the use of support vector machine classification combining these five miRNAs, we found that they discriminated individuals with, respectively, subfertility and NOA from control subjects with an accuracy of 98.65% and 99.91%, a specificity of 98.44% and 99.69%, and a sensitivity of 98.83% and 100%. CONCLUSION(S) Our finding suggests that these five miRNAs have potential as novel noninvasive biomarkers to diagnose patients with subfertility. Except for hsa-miR-429, the combination of these miRNAs with other conventional tests would improve the diagnostic accuracy for detecting patients with different forms of NOA.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany; Department of Obstetrics and Gynecology, IVF and Andrology Laboratory, Saarland University, Saar, Germany.
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| | - Christina Backes
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| | - Ulrike Fischer
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| | - Petra Leidinger
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| | | | - Andreas Keller
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, IVF and Andrology Laboratory, Saarland University, Saar, Germany
| |
Collapse
|
34
|
STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells. PLoS One 2014; 9:e93303. [PMID: 24667656 PMCID: PMC3965560 DOI: 10.1371/journal.pone.0093303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
Serine/threonine kinase 31 (STK31) is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.
Collapse
|
35
|
MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril 2014; 101:78-86.e2. [DOI: 10.1016/j.fertnstert.2013.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
|
36
|
SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci 2013; 14:22102-16. [PMID: 24213608 PMCID: PMC3856054 DOI: 10.3390/ijms141122102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/- chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and β-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and β-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and β-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and β-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and β-tubulins, in SEPTIN12+/+/+/- chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis.
Collapse
|
37
|
Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis. Fertil Steril 2013; 100:1686-94.e1-7. [PMID: 24012201 DOI: 10.1016/j.fertnstert.2013.07.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To identify potential biomarkers of azoospermia to determine a particular stage of spermatogenetic differentiation. DESIGN GeneChip Human Gene 1.0 ST microarray with validation at mRNA and protein levels. SETTING Basic research laboratory. PATIENT(S) Men with various types of nonobstructive azoospermia (n = 18) and with normal spermatogenesis (n = 4). INTERVENTION(S) Obtaining 31 testicular biopsy samples. MAIN OUTCOME MEASURE(S) Gene expression analysis using the Affymetrix Human Gene 1.0 ST microarrays on 14 selected genes according to the highest fold change, verified with quantitative polymerase chain reaction and on independent set of microarray samples. Western blot and immunohistochemistry were additionally performed. RESULT(S) The comparative analysis of gene expression profiles in the infertile and control groups resulted in the selection of 4,946 differentially expressed genes. AKAP4, UBQLN3, CAPN11, GGN, SPACA4, SPATA3, and FAM71F1 were the most significantly down-regulated genes in infertile patients. Global analysis also led to identification of up-regulated genes-WBSCR28, ADCY10, TMEM225, SPATS1, FSCN3, GTSF1L, and GSG1-in men with late maturation arrest. Moreover, the results from quantitative polymerase chain reaction and Western blot largely confirmed the microarray data. CONCLUSION(S) The set of selected genes can be used to create a molecular diagnostic tool to determine the degree of spermatogenic impairment for men with idiopathic nonobstructive azoospermia.
Collapse
|
38
|
Miyamoto T, Koh E, Tsujimura A, Miyagawa Y, Saijo Y, Namiki M, Sengoku K. Single-nucleotide polymorphisms in theLRWD1gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome. Andrologia 2013; 46:273-6. [DOI: 10.1111/and.12077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- T. Miyamoto
- Department of Obstetrics and Gynecology; School of Medicine; Asahikawa Medical University; Asahikawa Japan
| | - E. Koh
- Department of Integrated Cancer Therapy and Urology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - A. Tsujimura
- Department of Urology; Osaka University Graduate School of Medicine; Suita Japan
| | - Y. Miyagawa
- Department of Urology; Osaka University Graduate School of Medicine; Suita Japan
| | - Y. Saijo
- Division of Community Medicine and Epidemiology; Department of Health Science; Asahikawa Medical University; Asahikawa Japan
| | - M. Namiki
- Department of Integrated Cancer Therapy and Urology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - K. Sengoku
- Department of Obstetrics and Gynecology; School of Medicine; Asahikawa Medical University; Asahikawa Japan
| |
Collapse
|
39
|
Characterization of 3-hydroxyisobutyrate dehydrogenase, HIBADH, as a sperm-motility marker. J Assist Reprod Genet 2013; 30:505-12. [PMID: 23423614 DOI: 10.1007/s10815-013-9954-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Asthenozoospermia is a major cause of male infertility. However, the molecular mechanisms underlying sperm-motility defects remain largely unknown in the majority of cases. In our previous study, we applied a proteomic approach to identify unknown proteins that were downregulated in spermatozoa with low motility compared to spermatozoa with good motility. Several sperm motility- related proteins have been identified. In this study, 3-hydroxyisobutyrate dehydrogenase (HIBADH), one of the proteins identified using the proteomic tools, is further characterized. METHODS Reverse-transcription polymerase chain reactions (RT-PCR), western blotting, and immunofluorescence assays (IFA) were preformed to investigate the expression pattern. The enzymatic activity of HIBADH was evaluated in sperm with good (>50 %), moderate (< 50 %) and lower motility (< 20 %). RESULTS Using RT-PCR, we found that transcripts of HIBADH are enriched in the cerebellum, heart, skeletal muscle, uterus, placenta, and testes of male humans. In western blotting, it is expressed in the placenta, testes, and spermatozoa. During spermiogenesis, HIBADH is located at the mid-piece (a specialized development from the mitochondria) of elongating, elongated, and mature sperm. The enzymatic activity of HIBADH in sperm with moderate and lower motility were significantly reduced compared with good motility (P<0.0001 and P<0.05, respectively). CONCLUSIONS Our study indicated that HIBADH is involved in the mitochondrial function of spermatozoa, and maintains sperm motility. It may serve as a sperm-motility marker.
Collapse
|
40
|
Hamada AJ, Esteves SC, Agarwal A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics (Sao Paulo) 2013; 68 Suppl 1:39-60. [PMID: 23503954 PMCID: PMC3583155 DOI: 10.6061/clinics/2013(sup01)06] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022] Open
Abstract
Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in azoospermic men, given that their results may play vital role in not only identifying the etiology but also in preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception techniques. In the present review, we examine the current genetic information associated with azoospermia based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a critical appraisal of use of genetic testing in this subset of infertile patients.
Collapse
Affiliation(s)
- Alaa J Hamada
- Cleveland Clinic, Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland, Ohio, USA
| | | | | |
Collapse
|
41
|
Teng YN, Chuang PJ, Liu YW. Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) gene. Int J Mol Sci 2012; 14:625-39. [PMID: 23275029 PMCID: PMC3565286 DOI: 10.3390/ijms14010625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022] Open
Abstract
The human Leucine-rich Repeats and WD repeat Domain containing 1 (LRWD1) gene was originally identified by cDNA microarray as one of the genes down-regulated in the testicular tissues of patients with severe spermatogenic defects. Human LRWD1 is a testicular-enriched protein that is present predominantly in the cytoplasm of spermatocytes and spermatids and colocalizes with the centrosome at the base of sperm tail. Reporter assay, Chromatin immunoprecipitation (ChIP) analysis, and gel electrophoretic mobility shift assay (EMSA) were used to identify the core promoter region of LRWD1. A 198 bp segment upstream of the LRWD1 transcription initiation site exhibited promoter activity. The LRWD1 core promoter lacked a TATA box but contained a NF-κB binding site. Chromatin immunoprecipitation (ChIP) analysis and gel electrophoretic mobility shift assay (EMSA) showed basal binding of the NF-κB subunit to the LRWD1 promoter. LRWD1 promoter activity was positively regulated by NF-κB, and this regulation was dependent on the presence of the conserved κB site in the LRWD1 promoter region. Our data suggest that NF-κB is an important regulator for the expression of LRWD1. This is the first study showing that the expression of the testis-enriched LRWD1 gene is regulated by NF-κB.
Collapse
Affiliation(s)
- Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-2133111 (ext. 795); Fax: +886-6-2606153
| | - Po-Jung Chuang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Sec. 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan; E-Mail:
| | - Yo-Wen Liu
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan; E-Mail:
| |
Collapse
|
42
|
Abstract
At present many couples face difficulties when trying to conceive that may have a genetic basis. The male factor is the cause of infertility as often as the female. Therefore it is important to identify key genes involved in spermatogenesis which may be linked to male infertility. This review discusses the identification of a range of genes associated with male fertility using microarrays. Based on differences in gene expression profiles between fertile and infertile male subgroups or between fetal and adult male gonads, many genes important for spermatogenesis have been discovered. Genes that are critical at particular stages of spermatogenesis were defined and can be considered as potential male fertility biomarkers. The studies described showed that microarrays may be potentially used as a diagnostic platform to increase the efficacy of diagnosis and perhaps treatment of infertile males.
Collapse
|
43
|
Li J, Guo W, Li F, He J, Yu Q, Wu X, Li J, Mao X. HnRNPL as a key factor in spermatogenesis: Lesson from functional proteomic studies of azoospermia patients with sertoli cell only syndrome. J Proteomics 2012; 75:2879-91. [DOI: 10.1016/j.jprot.2011.12.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
|
44
|
Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH, Wu CM, Hsu CC, Chiang HS, Kuo PL. SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One 2012; 7:e34011. [PMID: 22479503 PMCID: PMC3316533 DOI: 10.1371/journal.pone.0034011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
It is estimated that 10-15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12(+/+)/Septin12(+/-) chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Hau-Inh Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, College of Engineering, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ching-Ming Wu
- Department of Cell Biology & Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chao-Chin Hsu
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki M, Horikawa M, Saijo Y, Sengoku K. Single nucleotide polymorphisms in the SEPTIN12 gene may be associated with azoospermia by meiotic arrest in Japanese men. J Assist Reprod Genet 2012; 29:47-51. [PMID: 22116646 PMCID: PMC3252415 DOI: 10.1007/s10815-011-9679-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022] Open
Abstract
PURPOSE To investigate the association between SEPTIN12 gene variants and the risk of azoospermia caused by meiotic arrest. METHODS Mutational analysis of the SEPTIN12 gene was performed using DNA from 30 Japanese patients with azoospermia by meiotic arrest and 140 fertile male controls. RESULTS The frequencies of the c.204G>C (Gln38His) allele and the CC genotype were significantly higher in patients than in fertile controls (p < 0.05). CONCLUSION The c.204G>C (Gln38His) variant in the SEPTIN12 gene was associated with increased susceptibility to azoospermia caused by meiotic arrest.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Midorigaokahigashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ogorevc J, Dovc P, Kunej T. Comparative Genomics Approach to Identify Candidate Genetic Loci for Male Fertility. Reprod Domest Anim 2011; 46:229-39. [DOI: 10.1111/j.1439-0531.2010.01648.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Teng YN, Liao MH, Lin YB, Kuo PL, Kuo TY. Expression of lrwd1 in mouse testis and its centrosomal localization. ACTA ACUST UNITED AC 2011; 33:832-40. [PMID: 20180869 DOI: 10.1111/j.1365-2605.2009.01038.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mouse leucine-rich repeats and WD repeat domain containing 1 (lrwd1) gene is located on chromosome 5qG2 and spans over 13 kilobases. It encodes a novel protein of 648-amino acid protein that shares 78.3% amino acid sequence identity with the human LRWD1 protein. We used an oligopeptide as immunogen to generate an anti-lrwd1 antibody in rabbits. Both Northern and Western blot results indicated that the expression of lrwd1 is testis specific. Immunostaining of mouse testis sections detected high levels of lrwd1 signals in the cytoplasm of primary spermatocytes to mature spermatozoa and much weaker signals in spermatogonia. On mature spermatozoa, the anti-lrwd1 antibody stained strongly the connection region between the head and the neck where the centrosome is located. Additional immunostaining and immunoprecipitation showed colocalization and interaction between lrwd1 and γ-tubulin respectively, implicating lrwd1 as a candidate centrosomal protein. These results suggest that lrwd1 may play an important role in spermatogenesis.
Collapse
Affiliation(s)
- Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Taiwan.
| | | | | | | | | |
Collapse
|
48
|
Lin YH, Lin YM, Kuo YC, Wang YY, Kuo PL. Identification and characterization of a novel Rab GTPase-activating protein in spermatids. ACTA ACUST UNITED AC 2010; 34:e358-67. [DOI: 10.1111/j.1365-2605.2010.01126.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Das PJ, Paria N, Gustafson-Seabury A, Vishnoi M, Chaki SP, Love CC, Varner DD, Chowdhary BP, Raudsepp T. Total RNA isolation from stallion sperm and testis biopsies. Theriogenology 2010; 74:1099-1106, 1106e1-2. [DOI: 10.1016/j.theriogenology.2010.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/17/2010] [Accepted: 04/24/2010] [Indexed: 01/09/2023]
|
50
|
Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Sato H, Namiki M, Sengoku K. Current concepts of human azoospermia and its causes. Reprod Med Biol 2010; 9:121-127. [PMID: 29699334 PMCID: PMC5904842 DOI: 10.1007/s12522-010-0054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022] Open
Abstract
Infertility is a serious social problem in advanced nations today. One of the most important causes is the male factor. Striking progress has been achieved in recent years in elucidating the mechanisms of spermatogenesis in mice by experimental methods represented by the knockout mouse. Although many factors associated with male infertility are known in mice, the translation of this information to people has been slow. This is because the knockout mouse phenotype cannot necessarily be reproduced faithfully in humans. However, it is known that environmental factors, chromosomal defects and several specific gene mutations result in human male infertility. In this review, we first discuss the environmental factors considered likely to be involved in male infertility, and secondly we describe the Y chromosome and several important genes on the Y chromosome that play critical roles in spermatogenesis in humans. Then, we demonstrate the three critical genes identified in our laboratory in autosomes involved in human spermatogenesis, the SYCP3, MEI1 and PARP-2. Finally, we explain the future directionality and possibilities of research in this field.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and GynecologyAsahikawa Medical CollegeMidorigaokahigashi 2‐1‐1‐1078‐8510AsahikawaHokkaidoJapan
| | - Akira Tsujimura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yasushi Miyagawa
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Eitetsu Koh
- Department of Integrated Cancer Therapy and UrologyKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Hisashi Sato
- Department of Obstetrics and GynecologyAsahikawa Medical CollegeMidorigaokahigashi 2‐1‐1‐1078‐8510AsahikawaHokkaidoJapan
| | - Mikio Namiki
- Department of Integrated Cancer Therapy and UrologyKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Kazuo Sengoku
- Department of Obstetrics and GynecologyAsahikawa Medical CollegeMidorigaokahigashi 2‐1‐1‐1078‐8510AsahikawaHokkaidoJapan
| |
Collapse
|