1
|
Saxena V, Patil P, Khodke P, Kumbhar BV. Exploring purine analogues as inhibitors against Katanin, a microtubule severing enzyme using molecular modeling approach. Sci Rep 2024; 14:32095. [PMID: 39738711 PMCID: PMC11686324 DOI: 10.1038/s41598-024-83723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Katanin, a key protein in cellular architecture, plays a crucial role in severing microtubules, which are vital components of the cytoskeleton. Given its central involvement in cell division and proliferation, katanin represents a promising target for therapeutic intervention, particularly in cancer treatment. Inhibiting katanin's function could potentially hinder the uncontrolled growth of cancerous cells, making it an attractive target for novel anti-cancer therapies. Previous studies have shown that purine-based compounds exhibit a strong affinity for microtubule-severing enzymes. In this study, we aim to identify potential purine-type inhibitors of katanin using molecular modeling techniques. A total of 276,280 purine-type compounds from the PubChem database were subjected to structure-based high-throughput virtual screening, followed by ADME prediction, PASS analysis, and molecular docking studies. These efforts led to the identification of two potent compounds: PubChem CID 122589735 and 123629569, which demonstrated strong binding interactions with katanin. Molecular dynamics simulations further revealed that these compounds effectively altered katanin's conformation when compared to ATP. Additionally, binding energy calculations indicated that PubChem CID 122589735 exhibited the strongest binding affinity for katanin, with the binding free energy ranking as follows: 122589735 > 123629569 > ATP. Our findings suggest that the screened compounds, particularly PubChem CID 122589735, hold promise as potential katanin inhibitor. These compounds could play a significant role in the development of new anti-cancer therapies targeting a variety of carcinoma. Future research, including in vitro and in vivo studies, is essential to assess the efficacy and safety of these inhibitors, paving the way for innovative cancer treatments.
Collapse
Affiliation(s)
- Vibhuti Saxena
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Pruthanka Patil
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
2
|
Mao BP, Pan M, Shan Y, Wang YN, Li H, Wu J, Zhu X, Hu E, Cheng CY, Shangguan W. Katanin regulatory subunit B1 (KATNB1) regulates BTB dynamics through changes in cytoskeletal organization. FASEB J 2024; 38:e70049. [PMID: 39275889 DOI: 10.1096/fj.202400966r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
In this study, we have explored the role of the KATNB1 gene, a microtubule-severing protein, in the seminiferous epithelium of the rat testis. Our data have shown that KATNB1 expressed in rat brain, testes, and Sertoli cells. KATNB1 was found to co-localize with α-tubulin showing a unique stage-specific distribution across the seminiferous epithelium. Knockdown of KATNB1 by RNAi led to significant disruption of the tight junction (TJ) permeability barrier function in primary Sertoli cells cultured in vitro with an established functional TJ-barrier, as well as perturbations in the microtubule and actin cytoskeleton organization. The disruption in these cytoskeletal structures, in turn, led to improper distribution of TJ and basal ES proteins essential for maintaining the Sertoli TJ function. More importantly, overexpression of KATNB1 in the testis in vivo was found to block cadmium-induced blood-testis barrier (BTB) disruption and testis injury. KATNB1 exerted its promoting effects on BTB and spermatogenesis through corrective spatiotemporal expression of actin- and microtubule-based regulatory proteins by maintaining the proper organization of cytoskeletons in the testis, illustrating its plausible therapeutic implication. In summary, Katanin regulatory subunit B1 (KATNB1) plays a crucial role in BTB and spermatogenesis through its effects on the actin- and microtubule-based cytoskeletons in Sertoli cells and testis, providing important insights into male reproductive biology.
Collapse
Affiliation(s)
- Bai-Ping Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Mingdong Pan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Shan
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanjing Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ende Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangning Shangguan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Jin Z, Zhang ZC, Xiao CY, Li MQ, Li QR, Gao LL. CRMP5 participates in oocyte meiosis by regulating spastin to correct microtubule-kinetochore misconnection. ZYGOTE 2024; 32:21-27. [PMID: 38047349 DOI: 10.1017/s0967199423000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Collapse
Affiliation(s)
- Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhi-Cai Zhang
- Department of Dispatching Management, Zibo Medical Emergency Command Center, Zibo, Shandong, 255030, China
| | - Chen-Yu Xiao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Mei-Qi Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Qian-Ru Li
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lei-Lei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Liu T, Ma J, Hou D, Wang W, Cao H. Haplotype-GGGT in long non-coding RNA MALAT1 inhibits brain metastatic lung cancer and lymph nodes of lung cancer via the MALAT1/miR-328/KATNB1. Aging (Albany NY) 2023; 15:1918-1930. [PMID: 36934373 PMCID: PMC10085600 DOI: 10.18632/aging.204563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
The up-regulation of Katanin P8 has been reported to be correlated with a larger tumor size and lymph node metastasis in non-small-cell lung cancer (NSCLC) patients. And lncRNA MALAT1 was demonstrated to promote the proliferation of chronic myeloid leukemia cells via modulating miR-328. 135 lung cancer patients were divided into 6 groups according to their genotypes of MALAT1. The expression of KATNB1 was negatively correlated with the GGGT genotype of MALAT1. Decreased lymph node size and tumor size of brain metastatic lung were observed in patients with GGGT genotype of MALAT1. The luciferase activities of MALAT1 and KATNB1 were remarkably suppressed by miR-328 in A549 and H460. And the down-regulation of MALAT1 or up-regulation of miR-328 significantly repressed the KATNB1 expression in A549 and H460 cells. MALAT1 expression was reduced in patients carrying haplotype GGGT. A signaling pathway of MALAT1/miR-328/KATNB1 was established to explain the down-regulation of KATNB1 mRNA in patients carrying haplotype GGGT and reduced lymph node size in lung cancer and tumor size in brain metastatic lung cancer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People’s Hospital, Dingbian, Yulin, Shaanxi 718600, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Hetao Cao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
5
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
7
|
Hartmann K, Fietz D. In Situ Hybridization of Estrogen Receptors α and β in the Human Testis. Methods Mol Biol 2022; 2418:95-112. [PMID: 35119662 DOI: 10.1007/978-1-0716-1920-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ hybridization (ISH) is an excellent method for detecting RNA in histological sections, both to detect gene expression and to assign gene expression to a distinct cell population. Therefore, ISH may be used in basic cell biology to detect the expression of certain genes within a tissue containing various cell populations. Here, we describe the detection and cellular localization of two estrogen receptors, both isoforms of the genomic estrogen receptor (ERα and ERβ) in the human testis.
Collapse
Affiliation(s)
- Katja Hartmann
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
8
|
Lynn NA, Martinez E, Nguyen H, Torres JZ. The Mammalian Family of Katanin Microtubule-Severing Enzymes. Front Cell Dev Biol 2021; 9:692040. [PMID: 34414183 PMCID: PMC8369831 DOI: 10.3389/fcell.2021.692040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The katanin family of microtubule-severing enzymes is critical for cytoskeletal rearrangements that affect key cellular processes like division, migration, signaling, and homeostasis. In humans, aberrant expression, or dysfunction of the katanins, is linked to developmental, proliferative, and neurodegenerative disorders. Here, we review current knowledge on the mammalian family of katanins, including an overview of evolutionary conservation, functional domain organization, and the mechanisms that regulate katanin activity. We assess the function of katanins in dividing and non-dividing cells and how their dysregulation promotes impaired ciliary signaling and defects in developmental programs (corticogenesis, gametogenesis, and neurodevelopment) and contributes to neurodegeneration and cancer. We conclude with perspectives on future katanin research that will advance our understanding of this exciting and dynamic class of disease-associated enzymes.
Collapse
Affiliation(s)
- Nicole A. Lynn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Martinez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hieu Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Azhar M, Altaf S, Uddin I, Cheng J, Wu L, Tong X, Qin W, Bao J. Towards Post-Meiotic Sperm Production: Genetic Insight into Human Infertility from Mouse Models. Int J Biol Sci 2021; 17:2487-2503. [PMID: 34326689 PMCID: PMC8315030 DOI: 10.7150/ijbs.60384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Declined quality and quantity of sperm is currently the major cause of patients suffering from infertility. Male germ cell development is spatiotemporally regulated throughout the whole developmental process. While it has been known that exogenous factors, such as environmental exposure, diet and lifestyle, et al, play causative roles in male infertility, recent progress has revealed abundant genetic mutations tightly associated with defective male germline development. In mammals, male germ cells undergo dramatic morphological change (i.e., nuclear condensation) and chromatin remodeling during post-meiotic haploid germline development, a process termed spermiogenesis; However, the molecular machinery players and functional mechanisms have yet to be identified. To date, accumulated evidence suggests that disruption in any step of haploid germline development is likely manifested as fertility issues with low sperm count, poor sperm motility, aberrant sperm morphology or combined. With the continually declined cost of next-generation sequencing and recent progress of CRISPR/Cas9 technology, growing studies have revealed a vast number of disease-causing genetic variants associated with spermiogenic defects in both mice and humans, along with mechanistic insights partially attained and validated through genetically engineered mouse models (GEMMs). In this review, we mainly summarize genes that are functional at post-meiotic stage. Identification and characterization of deleterious genetic variants should aid in our understanding of germline development, and thereby further improve the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Muhammad Azhar
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Saba Altaf
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Islam Uddin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Jinbao Cheng
- The 901th hospital of Joint logistics support Force of PLA, Anhui, China
| | - Limin Wu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Xianhong Tong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| |
Collapse
|
10
|
Wei X, Liu W, Zhu X, Li Y, Zhang X, Chen J, Isachenko V, Sha Y, Lu Z. Biallelic mutations in KATNAL2 cause male infertility due to oligo-astheno-teratozoospermia. Clin Genet 2021; 100:376-385. [PMID: 34096614 DOI: 10.1111/cge.14009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, and most of idiopathic OAT patients are thought to be caused by genetic defects. Here, we recruited 38 primary infertile patients with the OAT phenotype and 40 adult men with proven fertility for genetic analysis and identified biallelic mutations of KATNAL2 by whole-exome sequencing in two cases. F013/II:1, from a consanguineous family, carried the KATNAL2 c.328C > T:p.Arg110X homozygous mutations. The other carried c.55A > G: p.Lys19Glu and c.169C > T: p Arg57Trp biallelic mutations. None of the KATNAL2 variants were found in the 40 adult men with proven fertility. The spermatozoa from patients with KATNAL2 biallelic mutations exhibited conspicuous defects in maturation, head morphology, and the structure of mitochondrial sheaths and flagella. KATNAL2 was mainly expressed in the pericentriolar material and mitochondrial sheath of the spermatozoa from control subjects, but it was undetectable in the spermatozoa from the patients. Furthermore, Katnal2 null male mice were infertile and displayed an OAT phenotype. Our results proved that the biallelic mutations in KATNAL2 cause male infertility and OAT in humans for the first time, to our knowledge, which could enrich the genetic defect spectrum of OAT and be beneficial for its accurate genetic screening and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- Obstetrics and Gynaecology Centre, Department of Obstetrics and Gynaecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Youzhu Li
- Reproductive Medicine Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jing Chen
- Research Group for Reproductive Medicine, Department of Obstetrics and Gynaecology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, Department of Obstetrics and Gynaecology, Medical Faculty, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Centre for Clinical Genetics, School of Medicine & Women and Children's Hospital, Xiamen University, Xiamen, Fujian, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Wang L, Yan M, Wu S, Mao B, Wong CKC, Ge R, Sun F, Cheng CY. Microtubule Cytoskeleton and Spermatogenesis-Lesson From Studies of Toxicant Models. Toxicol Sci 2020; 177:305-315. [PMID: 32647867 PMCID: PMC7548287 DOI: 10.1093/toxsci/kfaa109] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies have shown that mammalian testes, in particular the Sertoli cells, are highly susceptible to exposure of environmental toxicants, such as cadmium, perfluorooctanesulfonate, phthalates, 2,5-hexanedione and bisphenol A. However, important studies conducted by reproductive toxicologists and/or biologists in the past have been treated as toxicology reports per se. Yet, many of these studies provided important mechanistic insights on the toxicant-induced testis injury and reproductive dysfunction, relevant to the biology of the testis and spermatogenesis. Furthermore, recent studies have shown that findings obtained from toxicant models are exceedingly helpful tools to unravel the biology of testis function in particular spermatogenesis, including specific cellular events associated with spermatid transport to support spermiogenesis and spermiation. In this review, we critically evaluate some recent data, focusing primarily on the molecular structure and role of microtubules in cellular function, illustrating the importance of toxicant models to unravel the biology of microtubule cytoskeleton in supporting spermatogenesis, well beyond information on toxicology. These findings have opened up some potential areas of research which should be carefully evaluated in the years to come.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Siwen Wu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
12
|
Sansone A, Isidori AM, Kliesch S, Schlatt S. Immunohistochemical characterization of the anti-Müllerian hormone receptor type 2 (AMHR-2) in human testes. Endocrine 2020; 68:215-221. [PMID: 32026338 PMCID: PMC7160062 DOI: 10.1007/s12020-020-02210-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE In males, AMH is secreted by immature Sertoli cells; following exposure to endogenous androgens, Sertoli cells undergo a process of maturation which ultimately inhibits AMH expression to undetectable levels in the serum. However, expression of AMH receptor (AMHR-2) has never been studied in human testes, and high intratubular concentrations of AMH have been reported in recent literature. We therefore assessed expression of AMHR-2 in several testicular tissue samples by immunohistochemistry (IHC). METHODS The IHC method was first validated on tissue samples from healthy human testis (n = 2) and from marmoset ovary (n = 1). The same method was then used for assessment on testicular histopathology specimens from patients with mixed atrophy (MA, n = 2), spermatogenetic arrest (SA, n = 2), Sertoli cell-only syndrome (SCO, n = 1), Klinefelter syndrome (KS, n = 1), and nonseminomatous germ cell tumors (NSGCT, n = 1). Tissue samples from two subjects at different pubertal stages (AndroProtect (AP), aged 5 and 14 years) with hematological malignancies were also retrieved. RESULTS In adult men, AMHR-2 was expressed on peritubular mesenchymal cells, with patterns closely mirroring α-smooth muscle actin expression. Similar patterns were preserved in almost all conditions; however, in nonseminomatous germ cell tumors the tissue architecture was lost, including AMHR-2 expression. More positive and diffuse staining was observed in tissue samples from prepubertal testes. CONCLUSIONS In specimens from both healthy and affected testes, AMHR-2 expression appears weaker in adult than in prepubertal tissue sections. The persistence of AMHR-2 expression seemingly hints at a possible effect of intratesticular AMH on the tubular walls.
Collapse
Affiliation(s)
- A Sansone
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149, Münster, Germany
- Department of Experimental Medicine, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149, Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149, Münster, Germany.
| |
Collapse
|
13
|
Ye Q, Zhang M, Yin Y. Katanin P80 correlates with larger tumor size, lymph node metastasis, and advanced TNM stage and predicts poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020; 34:e23141. [PMID: 31944409 PMCID: PMC7171325 DOI: 10.1002/jcla.23141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective The present study aimed to investigate the correlation of katanin P80 expression with clinicopathological features and survival profile in non–small‐cell lung cancer (NSCLC) patients. Methods Totally, 398 NSCLC patients treated by pulmonary resection were enrolled and their tumor specimens were collected to determine katanin P80 expression by immunohistochemistry (IHC) assay. Clinical data were collected at diagnosis, and survival data including disease‐free survival (DFS) and overall survival (OS) were assessed after treatment. Results There were 195 (49.0%) patients with katanin P80 high expression and 203 (51.0%) patients with katanin P80 low expression, respectively. Meanwhile, katanin P80 high expression was associated with larger tumor size (P = .001), lymph node (LYN) metastasis (P = .005), and advanced TNM stage (P = .001). As for survival data, katanin P80 high expression was correlated with reduced DFS (P < .001) and OS (P < .001). And forward stepwise multivariate Cox's regression revealed that katanin P80 high expression was an independent predictor for decreased DFS (P < .001) and OS (P < .001). Besides, further analysis indicated that DFS (P < .001) and OS (P < .001) were the shortest in patients with katanin P80 high+++ expression, followed by patients with katanin P80 high++ expression and then those with katanin P80 high + expression and katanin P80 low expression. Conclusion Katanin P80 correlates with larger tumor size, LYN metastasis, and advanced TNM stage, and serves as a potential biomarker for predicting poor survival in NSCLC patients.
Collapse
Affiliation(s)
- Qing Ye
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Zhang
- Teaching and Research Division of Internal Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Yiping Yin
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
14
|
DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 2019; 10:2278. [PMID: 31123254 PMCID: PMC6533336 DOI: 10.1038/s41467-019-09972-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia. Sustained sperm production is dependent on activity of undifferentiated spermatogonia. Here, the authors demonstrate an essential role for RNA helicase DDX5 in maintenance of spermatogonia in adults through control of gene transcription plus RNA processing and export.
Collapse
|
15
|
Li X, Liu J, Shi PF, Fu P. Katanin P80 expression correlates with lymph node metastasis and worse overall survival in patients with breast cancer. Cancer Biomark 2019; 23:363-371. [PMID: 30223388 DOI: 10.3233/cbm-181369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the correlation of katanin P80 expression with clinicopathological features and overall survival (OS) in surgical breast cancer (BC) patients. METHODS Four hundred and fourteen BC patients underwent surgery were analyzed in this retrospective cohort study. Katanin P80 expression was examined by immunofluorescence assay. The median follow-up duration was 118.0 months (quantiles: 99.0-140.5 months), the last follow-up date was Jul 1st 2017. RESULTS Eighty-five patients (20.5%) with katanin P80 positive expression and 329 patients (79.5%) with katanin P80 negative expression were observed in this research. Katanin P80 positive expression was correlated with higher N stage (p< 0.001) and TNM stage (p< 0.001). K-M curve and log-rank test revealed that katanin P80 positive patients presented with shorter OS compared with katanin P80 negative patients (p< 0.001). Multivariate Cox's regression analysis disclosed that katanin P80 positive expression (p< 0.001) and histologic grade (p< 0.001) could independently predict unfavorable OS. Furthermore, subgroups analysis was performed, which illuminated that katanin P80 positive expression was correlated with shorter OS in all subgroups divided by molecular subtyping and TNM stage (all p< 0.05) except in TNM stage I subgroup (p= 0.573). CONCLUSION Katanin P80 expression positively correlated with lymph node metastasis and could abe a novel biomarker for prognosis in BC patients.
Collapse
Affiliation(s)
- Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Sansone A, Kliesch S, Isidori AM, Schlatt S. AMH and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 2019; 7:131-138. [DOI: 10.1111/andr.12597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- A. Sansone
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
- Department of Experimental Medicine Section of Medical Pathophysiology Food Science and Endocrinology – Sapienza University of Rome Rome Italy
| | - S. Kliesch
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
| | - A. M. Isidori
- Department of Experimental Medicine Section of Medical Pathophysiology Food Science and Endocrinology – Sapienza University of Rome Rome Italy
| | - S. Schlatt
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
| |
Collapse
|
17
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
18
|
Furtado MB, Merriner DJ, Berger S, Rhodes D, Jamsai D, O'Bryan MK. Mutations in the Katnb1 gene cause left-right asymmetry and heart defects. Dev Dyn 2017; 246:1027-1035. [PMID: 28791777 DOI: 10.1002/dvdy.24564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. RESULTS Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. CONCLUSIONS Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, Maine.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - D Jo Merriner
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Danielle Rhodes
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Duangporn Jamsai
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Moira K O'Bryan
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| |
Collapse
|