1
|
Sa SW, Wang LL, Ma QH. Association of Zona Pellucida Gene Variants With Female Infertility: A Retrospective Genetic Analysis. BJOG 2025; 132 Suppl 2:75-82. [PMID: 39932488 DOI: 10.1111/1471-0528.18094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE We investigated the clinical characteristics and pregnancy outcomes of patients with zona pellucida (ZP) gene variants undergoing assisted reproductive technology (ART) treatment, to identify variants associated with female infertility. DESIGN Retrospective study. SETTING University-based reproductive medicine centre. POPULATION Twelve patients in whom only empty follicles or degenerated oocytes were retrieved after controlled ovulation stimulation and for whom no successful pregnancies were achieved after ART treatment. METHODS Next-generation sequencing (NGS) and Sanger sequencing were performed on DNA obtained from peripheral blood of the patients. The VCF files generated by the Genome Analysis Toolkit were functionally annotated using SnpEff with reference to the refSeq, gnomAD, dbSNP, InhouseSNP, ClinVar and dbNSFP databases. MAIN OUTCOME MEASURES American College of Medical Genetics and Genomics (ACMG) annotation of the SnpEff results was performed using InterVar. RESULTS We identified 14 ZP variants, including eight novel variants. These included heterozygous variants in ZP1, ZP2 and ZP3. These findings contribute to the understanding of ZP gene variants and their roles in the diagnosis of an abnormal ZP. CONCLUSIONS ZP gene variants are associated with female infertility, which can potentially affect ART outcomes. Therefore, ZP gene variant screening should be performed in female patients experiencing ART failure with pertinent clinical and laboratory indicators to guide personalised treatment and enhance fertility outcomes. However, further research is required to confirm the functional impact of these variants.
Collapse
Affiliation(s)
- Sha-Wei Sa
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li-Li Wang
- Sichuan Jinxin Xinan Women & Children Hospital, Chengdu, China
| | - Qian-Hong Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Dong Y, Zhao S, Zhao H. ZP2: the precision regulator of egg coat architecture during fertilization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1779-1780. [PMID: 38805066 DOI: 10.1007/s11427-024-2611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Yi Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Cao G, Yu L, Fang J, Shi R, Li H, Lu F, Shen X, Zhu X, Wang S, Kong N. ZP1-Y262C mutation causes abnormal zona pellucida formation and female infertility in humans. Front Genet 2024; 15:1407202. [PMID: 38966008 PMCID: PMC11222594 DOI: 10.3389/fgene.2024.1407202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.
Collapse
Affiliation(s)
- Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixin Shi
- Center for Reproductive Medicine and Obstetrics and Gynecology, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Huijun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feifei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Fang J, Sun H, Chen L, Wang J, Lin F, Xu Z, Zhu L, Wang S. Embryological characteristics and clinical outcomes of oocytes with different degrees of abnormal zona pellucida during assisted reproductive treatment. ZYGOTE 2024; 32:7-13. [PMID: 38018399 DOI: 10.1017/s0967199423000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Abnormalities in the zona pellucida (ZP) adversely affect oocyte maturation, embryo development and pregnancy outcomes. However, the assessment of severity is challenging. To evaluate the effects of different degrees of ZP abnormalities on embryo development and clinical outcomes, in total, 590 retrieval cycles were scored and divided into four categories (control, mild, moderate and severe) based on three parameters: perivitelline space, percentage of immature oocytes and percentage of oocytes with abnormal morphology. As the severity of abnormal ZP increased, both the number of retrieved oocytes and mature oocytes decreased. The fertilization rate did not differ significantly among groups. The rates of embryo cleavage and day-3 high-quality embryos in the mild group and the moderate group did not vary significantly between the two groups but were significantly higher than those in the severe group. The blastulation rates of the abnormal ZP groups were similar; however, they were lower than those of the control group. Moreover, the cycle cancellation rate of the severe abnormal ZP group was as high as 66.20%, which was significantly higher than that of the other three groups. Although the rates of cumulative clinical pregnancy and live births were lower than those in the control group, they were comparable among the abnormal ZP groups. There were no differences in the neonatal outcomes of the different groups. Together, ZP abnormalities show various degrees of severity, and in all patients regardless of the degree of ZP abnormalities who achieve available embryos, there will be an opportunity to eventually give birth.
Collapse
Affiliation(s)
- Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Hua Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Jie Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Fei Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Zhipeng Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Lihua Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing210008, China
| |
Collapse
|
5
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
6
|
Gupta SK. Zona pellucida glycoproteins: Relevance in fertility and development of contraceptive vaccines. Am J Reprod Immunol 2023; 89:e13535. [PMID: 35249246 DOI: 10.1111/aji.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Mammalian zona pellucida (ZP) is composed of three to four glycoproteins, which plays an important role during fertilization. Mutations in the genes encoding zona proteins are reported in women with empty follicle syndrome, degenerated oocytes and those with an abnormal or no ZP further emphasizing their relevance during fertility. Immunization with either native or recombinant ZP glycoproteins/proteins leads to curtailment of fertility in various animal species. Observed infertility is frequently associated with ovarian pathology characterized by follicular atresia and degenerative changes in ZP, which may be due to oophoritogenic T cell epitope(s) within ZP glycoproteins. To avoid ovarian dystrophy, B cell epitopes of ZP glycoproteins have been mapped by using bio-effective monoclonal antibodies. Immunization with the immunogens encompassing the mapped B cell epitopes by and large led to amelioration of follicular atresia. However, their use for human application will require more rigorous research to establish their safety and reversibility of the contraceptive effect. Nonetheless, to minimize human-animal conflicts, ZP-based contraceptive vaccines have been used successfully in the population management of free-ranging animal species such as feral horses, white-tailed deer and elephants. To control zoonotic diseases, attempts are also underway to control the population of other animal species including stray dogs, which acts as one of the major vectors for the rabies virus.
Collapse
Affiliation(s)
- Satish K Gupta
- Basic Medical Sciences Division, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
7
|
Novel variants in ZP1, ZP2 and ZP3 associated with empty follicle syndrome and abnormal zona pellucida. Reprod Biomed Online 2023; 46:847-855. [PMID: 36931917 DOI: 10.1016/j.rbmo.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
RESEARCH QUESTION Which genetic variants might explain the causes of empty follicle syndrome (EFS) and abnormal zona pellucida (ZP) and affect the success of treatment with assisted reproductive technologies (ART)? DESIGN Whole-exome sequencing was performed in probands with EFS and abnormal ZP. Sanger sequencing was used for variant validation. Using HEK-293T cells, the effects of ZP1 and ZP2 variants on protein expression were explored by western blotting, and the effect of the ZP1 variant on protein location was investigated via immunofluorescence. The protein structure was also analysed to investigate the pathogenicity of variants. RESULTS A homozygous nonsense variant in ZP1 (c.874C>T, p.Gln292*) was detected in a patient with EFS. A novel homozygous frameshift variant in ZP2 (c.836_837delAG, p.Glu279Valfs*6) and a novel heterozygous missense variant in ZP3 (c.1159G>A, p.Val387Met) were identified in two patients with ZP morphological abnormalities, respectively. Western blotting and immunofluorescence analysis showed that the ZP1 variant results in a premature stop codon, leading to the truncated ZP1 protein. The ZP2 variant, which is situated in the N-terminus, triggers the degradation of a premature termination protein. Additionally, the patient with the ZP3 variant achieved clinical pregnancy following intracytoplasmic sperm injection treatment. CONCLUSIONS These findings expand the mutational spectrum of ZP1, ZP2 and ZP3, and provide new evidence for genetic diagnosis of female infertility. The targeted genetic diagnosis of ZP genes is recommended to choose appropriate fertilization methods and improve success rates of treatment with ART.
Collapse
|
8
|
Pujalte M, Camo M, Celton N, Attencourt C, Lefranc E, Jedraszak G, Scheffler F. A ZP1 gene mutation in a patient with empty follicle syndrome: A case report and literature review. Eur J Obstet Gynecol Reprod Biol 2023; 280:193-197. [PMID: 36529558 DOI: 10.1016/j.ejogrb.2022.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Genuine empty follicle syndrome (gEFS) is a rare cause of female infertility; it is defined as the presence of cumulus-oocyte complexes (COCs) in follicular fluid but the absence of oocytes after denudation in an in vitro fertilization (IVF) programme. Mutations in one of the four genes encoding zona pellucida (ZP) proteins have been implicated in gEFS. The objectives of the present study were to explore the molecular basis of idiopathic infertility in a 35-year-old woman with gEFS (observed after four ovarian retrievals), compare her phenotype and genotype with those of other patients described in the literature, and discuss therapeutic approaches that could be adopted by reproductive health centres in this situation. Sequencing of the ZP genes revealed a new homozygous missense variant in ZP1: c.1097G > A;p.(Arg366Gln). The variant is located in the ZP-N domain, which is essential for ZP protein polymerization. An immunohistochemical assessment of an ovarian biopsy confirmed the absence of ZP1 protein. The novel variant appears to prevent ZP assembly, which would explain the absence of normal oocytes after denudation in our patient (and despite the retrieval of COCs). ZP gene sequencing should be considered for patients with a phenotype suggestive of gEFS. An etiological genetic diagnosis enables appropriate genetic counselling and a switch to an IVF programme (with a suitable denudation technique) or an oocyte donation programme.
Collapse
Affiliation(s)
- Mathilde Pujalte
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Maïté Camo
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Noémie Celton
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Christophe Attencourt
- Department of Anatomy and Pathological Cytology, Amiens University Hospital, Amiens, France
| | - Elodie Lefranc
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Guillaume Jedraszak
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France; EMATIM UR4666, CURS, Jules Verne University of Picardy, Amiens, France
| | - Florence Scheffler
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France; Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France.
| |
Collapse
|
9
|
Zhou J, Wang M, Yang Q, Li D, Li Z, Hu J, Jin L, Zhu L. Can successful pregnancy be achieved and predicted from patients with identified ZP mutations? A literature review. Reprod Biol Endocrinol 2022; 20:166. [PMID: 36476320 PMCID: PMC9730648 DOI: 10.1186/s12958-022-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In mammals, normal fertilization depends on the structural and functional integrity of the zona pellucida (ZP), which is an extracellular matrix surrounding oocytes. Mutations in ZP may affect oogenesis, fertilization and early embryonic development, which may cause female infertility. METHODS A PubMed literature search using the keywords 'zona pellucida', 'mutation' and 'variant' limited to humans was performed, with the last research on June 30, 2022. The mutation types, clinical phenotypes and pregnancy outcomes were summarized and analyzed. The naive Bayes classifier was used to predict clinical pregnancy outcomes for patients with ZP mutations. RESULTS A total of 29 publications were included in the final analysis. Sixty-nine mutations of the ZP genes were reported in 87 patients with different clinical phenotypes, including empty follicle syndrome (EFS), ZP-free oocytes (ZFO), ZP-thin oocytes (ZTO), degenerated and immature oocytes. The phenotypes of patients were influenced by the types and location of the mutations. The most common effects of ZP mutations are protein truncation and dysfunction. Three patients with ZP1 mutations, two with ZP2 mutations, and three with ZP4 mutations had successful pregnancies through Intracytoplasmic sperm injection (ICSI) from ZFO or ZTO. A prediction model of pregnancy outcome in patients with ZP mutation was constructed to assess the chance of pregnancy with the area under the curve (AUC) of 0.898. The normalized confusion matrix showed the true positive rate was 1.00 and the true negative rate was 0.38. CONCLUSION Phenotypes in patients with ZP mutations might be associated with mutation sites or the degree of protein dysfunction. Successful pregnancy outcomes could be achieved in some patients with identified ZP mutations. Clinical pregnancy prediction model based on ZP mutations and clinical characteristics will be helpful to precisely evaluate pregnancy chance and provide references and guidance for the clinical treatment of relevant patients.
Collapse
Affiliation(s)
- Juepu Zhou
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Meng Wang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Qiyu Yang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Dan Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Zhou Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Juan Hu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lei Jin
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lixia Zhu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
10
|
Li W, Li Q, Xu X, Wang C, Hu K, Xu J. Novel mutations in TUBB8 and ZP3 cause human oocyte maturation arrest and female infertility. Eur J Obstet Gynecol Reprod Biol 2022; 279:132-139. [DOI: 10.1016/j.ejogrb.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/25/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
|
11
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Hou M, Zhu L, Jiang J, Liu Z, Li Z, Jia W, Hu J, Zhou X, Zhang D, Luo Y, Peng X, Xi Q, Jin L, Zhang X. Novel Heterozygous Mutations in ZP2 Cause Abnormal Zona Pellucida and Female Infertility. Reprod Sci 2022; 29:3047-3054. [PMID: 35595959 DOI: 10.1007/s43032-022-00958-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
Zona pellucida (ZP) which is an extracellular matrix consisting of ZP1, ZP2, ZP3, and ZP4 plays a vital role in oocyte maturity, early embryonic development, and fertilization process. Any alterations of structure or function may lead to the abnormal formation of ZP and female infertility. Two novel heterozygous mutations c.1859G > A (p.Cys620Tyr) and c.1421 T > C (p.Leu474Pro) in ZP2 gene were recognized in three patients from two unrelated families with abnormal ZP and female infertility in this study. The expression constructs carrying wild-type ZP2 gene, c.1859G > A (p.Cys620Tyr) mutant ZP2 gene, and c.1421 T > C (p.Leu474Pro) mutant ZP2 gene were transfected into CHO cells respectively. There was a remarkable decrease in the expression of p.Cys620Tyr mutant protein with western blot. In addition, secretion of p.Leu474Pro mutant protein in the culture medium reduced markedly compared with that of wild-type ZP2 protein. Furthermore, co-immunoprecipitation showed that the p.Leu474Pro mutation affected the interaction between ZP2 and ZP3. Prediction of three-dimensional (3D) structure of the proteins showed that p.Cys620Tyr mutation altered the disulfide bond of ZP2 protein and may affect its function. These findings extend the ranges of mutations of ZP2 gene. Meanwhile, it will be helpful to the precise diagnosis of abnormal ZP.
Collapse
Affiliation(s)
- Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghang Jiang
- Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
13
|
Loeuillet C, Dhellemmes M, Cazin C, Kherraf ZE, Fourati Ben Mustapha S, Zouari R, Thierry-Mieg N, Arnoult C, Ray PF. A recurrent ZP1 variant is responsible for Oocyte Maturation Defect with degenerated oocytes in infertile females. Clin Genet 2022; 102:22-29. [PMID: 35460069 PMCID: PMC9327729 DOI: 10.1111/cge.14144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
A female factor is present in approximately 70% of couple infertility, often due to ovulatory disorders. In oocyte maturation defect (OMD), affected patients have a primary infertility with normal menstrual cycles but produce no oocyte, degenerated (atretic) or abnormal oocytes blocked at different stages of maturation. Four genes have so far been associated with OMD: PATL2, TUBB8, WEE2, and ZP1. In our initial study, 6 out of 23 OMD subjects were shown to carry the same PATL2 homozygous loss of function variant and one patient had a TUBB8 truncating variant. Here, we included four additional OMD patients and reanalyzed all 27 subjects. In addition to the seven patients with a previously identified defect, five carried the same deleterious homozygous ZP1 variant (c.1097G>A; p.Arg366Gln). All the oocytes from ZP1‐associated patients appeared shriveled and dark indicating that the abnormal ZP1 protein induced oocyte death and degeneration. Overall ZP1‐associated patients had degenerated or absent oocytes contrary to PATL2‐associated subjects who had immature oocytes blocked mainly at the germinal vesicle stage. In this cohort of North African OMD patients, whole exome sequencing permitted to diagnose 44% of the patients studied and to identify a new frequent ZP1 variant.
Collapse
Affiliation(s)
- Corinne Loeuillet
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Magali Dhellemmes
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France.,Laboratoire Eurofins Biomnis, Département de Génétique Moléculaire, Lyon, France
| | - Zine-Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | | | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| |
Collapse
|
14
|
Novel mutations in ZP2 and ZP3 cause female infertility in three patients. J Assist Reprod Genet 2022; 39:1205-1215. [PMID: 35366744 PMCID: PMC9107549 DOI: 10.1007/s10815-022-02466-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The aim of this study was to identify the disease-causing mutations found in three infertile female patients who were diagnosed with abnormal zona pellucida (ZP) and empty follicle syndrome (EFS). METHODS We performed whole-exome sequencing and Sanger sequencing to identify and verify the disease-causing mutations. Additionally, we performed Western blotting and mini-gene splicing assay to assess the effects of the mutations. RESULTS We identified two novel compound heterozygous mutations in the ZP2 gene, a patient with an abnormal ZP carrying a novel compound heterozygous mutation (c.1695-2A>G and c.1831G>T, p.V611F) and a patient with EFS carrying a novel compound heterozygous mutation (c.1695-2A>G and c.1924 C>T, p.R642*). Furthermore, we identified a patient with typical abnormal ZP carrying a novel heterozygous mutation (c.400G>T, p.A134S) in the ZP3 gene. The splice site mutation (c.1695-2A>G) can cause abnormal pre-mRNA splicing that inserts an extra sequence of 61 bp in the mRNA of ZP2, and the missense mutation (c.1831G>T) can cause a decrease of ZP2 protein in HEK293 cells. CONCLUSION We identified three novel mutations in the ZP2 gene and the ZP3 gene in three Chinese female patients with infertility. Our study expands the spectrum of ZP gene mutations and phenotypes and thus is beneficial in the genetic diagnosis of infertility in females.
Collapse
|
15
|
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol 2022; 19:60-80. [PMID: 35343221 PMCID: PMC8966321 DOI: 10.4274/tjod.galenos.2022.76329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A small proportion of infertile women experience repeated oocyte maturation abnormalities (OMAS). OMAS include degenerated and dysmorphic oocytes, empty follicle syndrome, oocyte maturation arrest (OMA), resistant ovary syndrome and maturation defects due to primary ovarian insufficiency. Genetic factors play an important role in OMAS but still need specifications. This review documents the spectrum of OMAS and to evaluate the multiple subtypes classified as OMAS. In this review, readers will be able to understand the oocyte maturation mechanism, gene expression and their regulation that lead to different subtypes of OMAs, and it will discuss the animal and human studies related to OMAS and lastly the treatment options for OMAs. Literature searches using PubMed, MEDLINE, Embase, National Institute for Health and Care Excellence were performed to identify articles written in English focusing on Oocyte Maturation Abnormalities by looking for the following relevant keywords. A search was made with the specified keywords and included books and documents, clinical trials, animal studies, human studies, meta-analysis, randomized controlled trials, reviews, systematic reviews and options written in english. The search detected 3,953 sources published from 1961 to 2021. After title and abstract screening for study type, duplicates and relevancy, 2,914 studies were excluded. The remaining 1,039 records were assessed for eligibility by full-text reading and 886 records were then excluded. Two hundred and twenty seven full-text articles and 0 book chapters from the database were selected for inclusion. Overall, 227 articles, one unpublished and one abstract paper were included in this final review. In this review study, OMAS were classified and extensively evaluatedand possible treatment options under the light of current information, present literature and ongoing studies. Either genetic studies or in vitro maturation studies that will be handled in the future will lead more informations to be reached and may make it possible to obtain pregnancies.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Ebru Saynur Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Aşkı Ellibeş Kaya
- Private Office, Clinic of Obstetrics and Gynecology Specialist, Samsun, Turkey
| | - Kaan Hatırnaz
- Ondokuz Mayıs University Faculty of Medicine, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Canan Soyer Çalışkan
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Özlem Sezer
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Genetics, Samsun, Turkey
| | | | - Cem Demirel
- Memorial Ataşehir Hospital, In Vitro Fertilization Unit, İstanbul, Turkey
| | | | - Seang Tan
- James Edmund Dodds Chair in ObGyn, Department of ObGyn, McGill University, OriginElle Fertility Clinic and Women, QC, Canada
| | - Michael Dahan
- McGill Reproductive Centre, Department of ObGyn, McGill University Montreal, Quebec, Canada
| |
Collapse
|
16
|
Yang D, Yang H, Yang B, Wang K, Zhu Q, Wang J, Ding F, Rao B, Xue R, Peng J, Wang Q, Cao Y, Zou W, Chen B, Zhang Z. Embryological Characteristics of Human Oocytes With Agar-Like Zona Pellucida and Its Clinical Treatment Strategy. Front Endocrinol (Lausanne) 2022; 13:859361. [PMID: 35813655 PMCID: PMC9259955 DOI: 10.3389/fendo.2022.859361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Zona pellucida (ZP) abnormalities are the cause of low fertility or infertility, agar-like ZP is more common in abnormal ZP. The purpose of this exploration is to systematically analyze the fertilization competence of agar-like ZP oocytes, the development characteristics of subsequent embryos as well as the results of embryo transfer, aiming to explore effective clinical treatment strategies. A total of 58 patients with agar-like ZP were set as the case group and the control group involved 3866 patients, in which the patients' oocytes presented normal ZP. BMI, basal hormone levels, and hormone levels were similar in both groups. The case patients suffered significantly longer infertility years than control (p<0.05), and most patients were diagnosed with pelvic inflammatory diseases. A distinct difference was observed in the structure of oocyte corona cumulus complexes between the two groups. The embryo development parameters, which include the rates of cleavage, high-quality embryo, blastocyst, and high-quality blastocyst in the case group were greatly lower than that in the control group (p<0.05). The rates of cumulative clinical pregnancy and live birth were comparable between the two groups. In the subsequent follow-up, thirty-four of the 58 patients receiving intracytoplasmic single sperm injection (ICSI) or early rescue ICSI (R-ICSI) treatment successfully gave birth to babies, and all of the newborns were with no neonatal defects. In addition, the fertilization rate of the R-ICSI group was significantly lower than that of the ICSI group (p<0.05). The occurrence of agar-like ZP impairs the development competence of human oocytes, however, the human oocytes with agar-like ZP can develop into healthy offspring, and an ICSI regimen is the optimal treatment strategy for them.
Collapse
Affiliation(s)
- Dandan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Han Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Bo Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Kaijuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Qi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jing Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangfang Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bihua Rao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Jing Peng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiushuang Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- *Correspondence: Zhiguo Zhang, ; Beili Chen, ; Weiwei Zou,
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- *Correspondence: Zhiguo Zhang, ; Beili Chen, ; Weiwei Zou,
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- *Correspondence: Zhiguo Zhang, ; Beili Chen, ; Weiwei Zou,
| |
Collapse
|
17
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
18
|
Wang J, Yang X, Sun X, Ma L, Yin Y, He G, Zhang Y, Zhou J, Cai L, Liu J, Ma X. A novel homozygous nonsense mutation in zona pellucida 1 (ZP1) causes human female empty follicle syndrome. J Assist Reprod Genet 2021; 38:1459-1468. [PMID: 33665726 DOI: 10.1007/s10815-021-02136-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To identify a pathogenic gene mutation in a female infertility proband characterized by empty follicle syndrome (EFS) and explore the genetic cause of EFS. METHODS Whole exome sequencing (WES) was performed to identify the candidate pathogenic mutation. Sanger sequencing was used to validate the mutation in family members. The pathogenicity of the identified variant and its possible effects on the protein were evaluated with in silico tools. Immunofluorescence staining was used to study the possible mechanism of the mutation on affected oocyte. RESULTS We identified a family with a novel homozygous nonsense mutation in zona pellucida 1 (ZP1) (c.199G > T [p.Glu67Ter]). Based on bioinformatics analysis, the mutation was predicted to be pathogenic. This variant generates a premature stop codon in exon 2 at the 199th nucleotide, and was inferred to result in a truncated ZP1 protein of 67 amino acids at the ZP-N1 domain. An in vitro study showed that the oocyte of the EFS proband was degenerated and the zona pellucida was absent. Additionally, the mutant ZP1 proteins were localized in the cytoplasm of the degenerated oocyte but not at the surface. CONCLUSIONS The novel mutation in ZP1 is a genetic cause of female infertility characterized by EFS. Our finding expands the genetic spectrum for EFS and will help justify the EFS diagnosis in patients.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xueping Sun
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxiang He
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhou
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Gupta SK. Human Zona Pellucida Glycoproteins: Binding Characteristics With Human Spermatozoa and Induction of Acrosome Reaction. Front Cell Dev Biol 2021; 9:619868. [PMID: 33681199 PMCID: PMC7928326 DOI: 10.3389/fcell.2021.619868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human zona pellucida (ZP) matrix is composed of four glycoproteins designated as ZP glycoprotein -1 (ZP1), -2 (ZP2), -3 (ZP3), and -4 (ZP4). Mutations in the genes encoding human ZP glycoproteins are one of the causative factors leading to abnormal ZP matrix and infertility in women. Relevance of the human ZP glycoproteins in 'sperm-oocyte' binding has been delineated by using either transgenic animal models expressing human zona proteins or purified native/recombinant human zona proteins. Studies based on the purified native/recombinant human zona proteins revealed that ZP1, ZP3, and ZP4 primarily bind to the capacitated acrosome-intact human spermatozoa whereas ZP2 binds to acrosome-reacted spermatozoa. On the contrary, human spermatozoa binds to the eggs obtained from transgenic mouse lines expressing human ZP2 but not to those expressing human ZP1, ZP3, and ZP4 suggesting that ZP2 has an important role in human 'sperm-oocyte' binding. Further studies using transgenic mouse lines showed that the N-terminus of human ZP2 mediate the taxon-specific human sperm-oocyte binding. Both glycans and protein-protein interactions have a role in human gamete interaction. Further studies have revealed that the purified native/recombinant human ZP1, ZP3, and ZP4 are competent to induce acrosome reaction. Human sperm binds to the mouse transgenic eggs expressing human ZP1-4 instead of mouse ZP1-3 proteins, penetrated the ZP matrix and accumulated in the perivitelline space, which were acrosome-reacted suggesting that human ZP2 in transgenic mouse model also induce acrosome reaction. In humans N-linked glycosylation of zona proteins have been shown to play an important role in induction of the acrosome reaction. Hence in humans, based on studies using transgenic mouse model as well as purified native/recombinant zona proteins, it is likely that more than one zona protein is involved in the 'sperm-oocyte' binding and induction of the acrosome reaction.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
20
|
Capalbo A, Poli M, Riera-Escamilla A, Shukla V, Kudo Høffding M, Krausz C, Hoffmann ER, Simon C. Preconception genome medicine: current state and future perspectives to improve infertility diagnosis and reproductive and health outcomes based on individual genomic data. Hum Reprod Update 2020; 27:254-279. [PMID: 33197264 DOI: 10.1093/humupd/dmaa044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our genetic code is now readable, writable and hackable. The recent escalation of genome-wide sequencing (GS) applications in population diagnostics will not only enable the assessment of risks of transmitting well-defined monogenic disorders at preconceptional stages (i.e. carrier screening), but also facilitate identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting reproductive fitness. Through GS, the acquisition and curation of reproductive-related findings will warrant the expansion of genetic assessment to new areas of genomic prediction of reproductive phenotypes, pharmacogenomics and molecular embryology, further boosting our knowledge and therapeutic tools for treating infertility and improving women's health. OBJECTIVE AND RATIONALE In this article, we review current knowledge and potential development of preconception genome analysis aimed at detecting reproductive and individual health risks (recessive genetic disease and medically actionable secondary findings) as well as anticipating specific reproductive outcomes, particularly in the context of IVF. The extension of reproductive genetic risk assessment to the general population and IVF couples will lead to the identification of couples who carry recessive mutations, as well as sub-lethal conditions prior to conception. This approach will provide increased reproductive autonomy to couples, particularly in those cases where preimplantation genetic testing is an available option to avoid the transmission of undesirable conditions. In addition, GS on prospective infertility patients will enable genome-wide association studies specific for infertility phenotypes such as predisposition to premature ovarian failure, increased risk of aneuploidies, complete oocyte immaturity or blastocyst development failure, thus empowering the development of true reproductive precision medicine. SEARCH METHODS Searches of the literature on PubMed Central included combinations of the following MeSH terms: human, genetics, genomics, variants, male, female, fertility, next generation sequencing, genome exome sequencing, expanded carrier screening, secondary findings, pharmacogenomics, controlled ovarian stimulation, preconception, genetics, genome-wide association studies, GWAS. OUTCOMES Through PubMed Central queries, we identified a total of 1409 articles. The full list of articles was assessed for date of publication, limiting the search to studies published within the last 15 years (2004 onwards due to escalating research output of next-generation sequencing studies from that date). The remaining articles' titles were assessed for pertinence to the topic, leaving a total of 644 articles. The use of preconception GS has the potential to identify inheritable genetic conditions concealed in the genome of around 4% of couples looking to conceive. Genomic information during reproductive age will also be useful to anticipate late-onset medically actionable conditions with strong genetic background in around 2-4% of all individuals. Genetic variants correlated with differential response to pharmaceutical treatment in IVF, and clear genotype-phenotype associations are found for aberrant sperm types, oocyte maturation, fertilization or pre- and post-implantation embryonic development. All currently known capabilities of GS at the preconception stage are reviewed along with persisting and forthcoming barriers for the implementation of precise reproductive medicine. WIDER IMPLICATIONS The expansion of sequencing analysis to additional monogenic and polygenic traits may enable the development of cost-effective preconception tests capable of identifying underlying genetic causes of infertility, which have been defined as 'unexplained' until now, thus leading to the development of a true personalized genomic medicine framework in reproductive health.
Collapse
Affiliation(s)
- Antonio Capalbo
- Igenomix Italy, Marostica, Italy.,Igenomix Foundation, INCLIVA, Valencia, Spain
| | | | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Vallari Shukla
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Miya Kudo Høffding
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Centre of Excellence DeNothe, University of Florence, Florence, Italy
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Simon
- Igenomix Foundation, INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain.,Department of Obstetrics and Gynecology BIDMC, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Role of diagnostic intracytoplasmic sperm injection (ICSI) in the management of genetically determined zona pellucida-free oocytes during in vitro fertilization: a case report. ZYGOTE 2020; 28:519-523. [PMID: 32847637 DOI: 10.1017/s0967199420000441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE To report the utilization of diagnostic intracytoplasmic sperm injection (D-ICSI), an ICSI cycle performed in the natural cycle, to obtain information about embryo development potential after sperm injection into zona pellucida (ZP)-free oocytes. MATERIALS AND METHODS We report the case of a couple with primary unexplained infertility with a history of previous failed, in vitro fertilization intracytoplasmic sperm injection (IVF-ICSI) cycles characterized by the presence of ZP-free oocytes. Whole exome sequencing (WES) was carried out to analyse the possible genetic basis of oocyte abnormality. RESULTS Diagnostic ICSI provided information about the embryo development potential from ZP-free oocytes and allowed better planning of the subsequent ICSI cycle. WES revealed that the absence of ZP was likely to be due to a new (ZP1) mutation. The subsequent ICSI cycle resulted in the delivery of a healthy baby. DISCUSSION To the best of our knowledge, our report is the first to describe the use of D-ICSI to determine the feasibility of embryo development and implantation in a patient with ZP1 mutation, resulting in the subsequent delivery of a healthy baby. We used 'diagnostic' ICSI in the normal menstrual cycle to explore the feasibility of embryo development after sperm injection into ZP-free oocytes. Our results may expand the spectrum of diagnostic procedures associated with unexplained infertility.
Collapse
|
22
|
Okutman Ö, Demirel C, Tülek F, Pfister V, Büyük U, Muller J, Charlet-Berguerand N, Viville S. Homozygous Splice Site Mutation in ZP1 Causes Familial Oocyte Maturation Defect. Genes (Basel) 2020; 11:genes11040382. [PMID: 32244758 PMCID: PMC7231235 DOI: 10.3390/genes11040382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.
Collapse
Affiliation(s)
- Özlem Okutman
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle (IPPTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l’infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Cem Demirel
- Memorial Atasehir Hospital, In Vitro Fertilization (IVF) Andrology and Genetics Center, Kucukbakkalkoy mh.Vedat Gunyol cd No:28-30, 34758 Atasehir/Istanbul, Turkey; (C.D.); (F.T.)
| | - Firat Tülek
- Memorial Atasehir Hospital, In Vitro Fertilization (IVF) Andrology and Genetics Center, Kucukbakkalkoy mh.Vedat Gunyol cd No:28-30, 34758 Atasehir/Istanbul, Turkey; (C.D.); (F.T.)
| | - Veronique Pfister
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France; (V.P.); (N.C.-B.)
| | - Umut Büyük
- Hibrigen Biotechnology R&D Industry and Trade Ltd. Co.,Tubitak MAM Teknoloji Serbest Bolgesi, Baris SB Mh 5002.sk Yeni Tek. Binasi ABlok 4, A/101 Gebze/Kocaeli, Turkey;
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Nicolas Charlet-Berguerand
- Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 67404 Illkirch, France; (V.P.); (N.C.-B.)
| | - Stéphane Viville
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle (IPPTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l’infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
23
|
Guerri G, Maniscalchi T, Barati S, Gerli S, Di Renzo GC, Della Morte C, Marceddu G, Casadei A, Laganà AS, Sturla D, Ghezzi F, Garzon S, Unfer V, Bertelli M. Non-syndromic monogenic female infertility. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:68-74. [PMID: 31577258 PMCID: PMC7233646 DOI: 10.23750/abm.v90i10-s.8763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Infertility is a significant clinical problem. It affects 8-12% of couples worldwide, about 30% of whom are diagnosed with idiopathic infertility (infertility lacking any obvious cause). In 2010, the World Health Organization calculated that 1.9% of child-seeking women aged 20-44 years were unable to have a first live birth (primary infertility), and 10.5% of child-seeking women with a prior live birth were unable to have an additional live birth (secondary infertility). About 50% of all infertility cases are due to female reproductive defects. Several chromosome aberrations, diagnosed by karyotype analysis, have long been known to be associated with female infertility and monogenic mutations have also recently been found. Female infertility primarily involves oogenesis. The following phenotypes are associated with monogenic female infertility: premature ovarian failure, ovarian dysgenesis, oocyte maturation defects, early embryo arrest, polycystic ovary syndrome and recurrent pregnancy loss. Here we summarize the genetic causes of non-syndromic monogenic female infertility and the genes analyzed by our genetic test.
Collapse
|
24
|
Nishimura K, Dioguardi E, Nishio S, Villa A, Han L, Matsuda T, Jovine L. Molecular basis of egg coat cross-linking sheds light on ZP1-associated female infertility. Nat Commun 2019; 10:3086. [PMID: 31300655 PMCID: PMC6626044 DOI: 10.1038/s41467-019-10931-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Mammalian fertilisation begins when sperm interacts with the egg zona pellucida (ZP), whose ZP1 subunit is important for fertility by covalently cross-linking ZP filaments into a three-dimensional matrix. Like ZP4, a structurally-related component absent in the mouse, ZP1 is predicted to contain an N-terminal ZP-N domain of unknown function. Here we report a characterisation of ZP1 proteins carrying mutations from infertile patients, which suggests that, in human, filament cross-linking by ZP1 is crucial to form a stable ZP. We map the function of ZP1 to its ZP-N1 domain and determine crystal structures of ZP-N1 homodimers from a chicken homolog of ZP1. These reveal that ZP filament cross-linking is highly plastic and can be modulated by ZP1 fucosylation and, potentially, zinc sparks. Moreover, we show that ZP4 ZP-N1 forms non-covalent homodimers in chicken but not in human. Together, these data identify human ZP1 cross-links as a promising target for non-hormonal contraception.
Collapse
Affiliation(s)
- Kaoru Nishimura
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Shunsuke Nishio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden.
| |
Collapse
|
25
|
Yuan P, Li R, Li D, Zheng L, Ou S, Zhao H, Zhang Q, Wang W. Novel mutation in the ZP1 gene and clinical implications. J Assist Reprod Genet 2019; 36:741-747. [PMID: 30778819 DOI: 10.1007/s10815-019-01404-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Empty follicle syndrome (EFS) is a complex reproductive disorder characterized by the repeated failure to aspirate oocytes from mature ovarian follicles during in vitro fertilization (IVF). In addition to some cases caused by iatrogenic problems and known genetic factors, there are still many unexplained aspects of EFS. Here, we aimed to assess the clinical and genetic characteristics of two EFS patients. METHODS We have characterized two primary infertility patients with EFS in a nonconsanguineous family from China. Both the patients presented similar clinical phenotypes, that is a few granulosa cells but no oocytes could be retrieved during repeated cycles with normal follicular development, E2 levels, and bioavailable hCG plasma levels. Abnormal oocytes were obtained once or twice between multiple IVF cycles. We performed Sanger sequencing of the LHCGR and ZP1~ZP4 genes in the patients, and further bioinformatics analysis was performed to identify pathogenic elements in the genes. RESULTS A novel mutation, c.181C>T (p.Arg61Cys), and a known mutation, c.1169_1176delTTTTCCCA (p.Ile390Thrfs*16), in the ZP1 gene were both identified in patient 2, but no mutations were identified in patient 1. The novel mutation inherited from her mother was absent in the control cohort and the ExAc database. The arginine residue is conserved at this position, and its replacement by cysteine was predicted to be deleterious. In another allele, a paternal frameshift mutation was predicted to introduce premature stop codons, resulting in the deletion of 234 amino acids from the C-terminus of the ZP1 protein. CONCLUSIONS Our findings presented compound heterozygous mutations in ZP1 associated with EFS and abnormal oocytes and provided further new evidence for the genetic basis of EFS and support for the genetic diagnosis of infertile individuals.
Collapse
Affiliation(s)
- Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Ruiqi Li
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Di Li
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Lingyan Zheng
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Songbang Ou
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Haijing Zhao
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Qingxue Zhang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
26
|
|
27
|
Abstract
The egg coat, an extracellular matrix made up of glycoprotein filaments, plays a key role in animal fertilization by acting as a gatekeeper for sperm. Egg coat components polymerize using a common zona pellucida (ZP) "domain" module that consists of two related immunoglobulin-like domains, called ZP-N and ZP-C. The ZP module has also been recognized in a large number of other secreted proteins with different biological functions, whose mutations are linked to severe human diseases. During the last decade, tremendous progress has been made toward understanding the atomic architecture of the ZP module and the structural basis of its polymerization. Moreover, sperm-binding regions at the N-terminus of mollusk and mammalian egg coat subunits were found to consist of domain repeats that also adopt a ZP-N fold. This discovery revealed an unexpected link between invertebrate and vertebrate fertilization and led to the first structure of an egg coat-sperm protein recognition complex. In this review we summarize these exciting findings, discuss their functional implications, and outline future challenges that must be addressed in order to develop a comprehensive view of this family of biomedically important extracellular molecules.
Collapse
Affiliation(s)
- Marcel Bokhove
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|