1
|
Jiang W, Hou X, Peng G, Xia Y, Cao Y. Fungal ergot alkaloids: Metabolic pathways, biological functions, and advances in synthetic reprogramming. Biotechnol Adv 2025; 81:108578. [PMID: 40204004 DOI: 10.1016/j.biotechadv.2025.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Ergot alkaloids (EAs) are a class of secondary metabolites produced by fungi. These compounds are predominantly synthesized by Ascomycota, with variations in types and biosynthetic pathways among different fungal species. The EA synthesis has minimal impact on the normal growth and development of most EA-producing fungi, but serves as a virulence factor that influences the biocontrol functions of entomopathogenic fungi and symbiotic fungi in plants. In the medical field, EAs have been widely used for treating neurological disorders such as Parkinson's disease. However, the biosynthetic pathways of EAs are highly complex and significantly influenced by environmental factors, resulting in low yields from field production or chemical synthesis. To address the global demand for EAs, various strategies have been developed to reprogram the biosynthetic pathways in some chassis strains, aiming to simplify the process and increase EA production. This review summarizes the biosynthetic pathways and regulatory mechanisms of EAs in fungi, their biological functions, and recent advances in strategies for synthetic reprogramming.
Collapse
Affiliation(s)
- Wanling Jiang
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Xingyu Hou
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China.
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China.
| |
Collapse
|
2
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
3
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
4
|
Doi Y, Wakana D, Kitaoka S, Sato F, Tanaka E, Takeda H, Hosoe T. Ergot alkaloids in sclerotia collected in Japan: synthetic profiles and induction of apoptosis by Clavine-type compounds. J Nat Med 2023; 77:306-314. [PMID: 36635416 DOI: 10.1007/s11418-022-01673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The genus Claviceps (Clavicipitaceae) is famous for producing ergot alkaloids (EAs) in sclerotia. EAs can cause ergotism, resulting in convulsions and necrosis when ingested, making these compounds a serious concern for food safety. Agroclavine (2), a typical Clavine-type EA, is a causative agent of ergotism and is listed as a compound to be monitored by the European Food Safety Authority. Clavine-type EAs are known to cause cytotoxicity, but the mechanism has not been elucidated. We performed annexin V and PI double-staining followed by flow cytometric analysis to detect apoptosis in HepG2 and PANC-1 cells after exposure to Clavine-type EAs. Clavine-type EAs reduced cell viability and induced apoptosis in both cell lines. We then performed LC-MS analysis of EAs from 41 sclerotia samples of Claviceps collected in Japan. 24 out of 41 sclerotia extracts include peptide-type EAs (ergosine/inine: 4/4', ergotamine: 5, ergocornine/inine: 6/6', α-ergocryptine/inine: 8/8', and ergocristine/inine: 9/9') and 19 sclerotia extracts among 24 sclerotia detected peptide type EAs include Clavine-type EAs (pyroclavine: 1, agroclavine: 2, festuclavine: 3) by LC-MS. We then performed a metabolomic analysis of the EAs in the sclerotia using principal component analysis (PCA). The PCA score plots calculated for EAs suggested the existence of four groups with different EA production patterns. One of the groups was formed by the contribution of Clavine-type EAs. These results suggest that Clavine-type EAs are a family of compounds requiring attention in food safety and livestock production in Japan.
Collapse
Affiliation(s)
- Yuji Doi
- Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Daigo Wakana
- Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Satoshi Kitaoka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Fumiaki Sato
- Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Eiji Tanaka
- Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Hisashi Takeda
- Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Tomoo Hosoe
- Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan.
| |
Collapse
|
5
|
Kishimoto S, Matsubara Y, Watanabe K. Alkaloid Biosynthetic Enzyme Generates Diastereomeric Pair via Two Distinct Mechanisms. J Am Chem Soc 2022; 144:5485-5493. [PMID: 35302734 DOI: 10.1021/jacs.1c13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ergopeptines constitute one of the representative classes of ergoline alkaloids and carry a tripeptide extension on the lysergic acid core. In the current study, we discovered and structurally characterized newly isolated ergopeptine-like compounds named lentopeptins from a filamentous fungus Aspergillus lentulus, a close relative of A. fumigatus. Interestingly, in lentopeptins, the common lysergic acid moiety of ergopeptines is replaced by a cinnamic acid moiety at the N-terminus of the peptide segment. Moreover, lentopeptins lack the C-terminal proline residue necessary for the spontaneous cyclization of the peptide extension. Herein, we report the atypical lentopeptin biosynthetic pathway identified through targeted deletion of the len cluster biosynthetic genes predicted from the genome sequence. Further in vitro characterizations of the thiolation-terminal condensation-like (T-CT) didomain of the nonribosomal peptide synthetase LenA and its site-specific mutants revealed the mechanism of peptide release via diketopiperazine formation, an activity previously unreported for CT domains. Most intriguingly, in vitro assays of the cytochrome P450 LenC illuminated the unique mechanisms to generate two diastereomeric products. Lentopeptin A forms via a stereospecific hydroxylation, followed by a spontaneous bicyclic lactam core formation, while lentopeptin B is produced through an initial dehydrogenation, followed by a bicyclic lactam core formation and stereospecific hydration. Our results showcase how nature exploits common biosynthetic enzymes to forge new complex natural products effectively (213/250).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuya Matsubara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Application of recyclable CRISPR/Cas9 tools for targeted genome editing in the postharvest pathogenic fungi Penicillium digitatum and Penicillium expansum. Curr Genet 2022; 68:515-529. [PMID: 35298666 DOI: 10.1007/s00294-022-01236-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Abstract
Penicillium digitatum and Penicillium expansum are plant pathogenic fungi that cause the green and blue mold diseases, respectively, leading to serious postharvest economic losses worldwide. Moreover, P. expansum can produce mycotoxins, which are hazardous compounds to human and animal health. The development of tools that allow multiple and precise genetic manipulation of these species is crucial for the functional characterization of their genes. In this sense, CRISPR/Cas9 represents an excellent opportunity for genome editing due to its efficiency, accuracy and versatility. In this study, we developed protoplast generation and transformation protocols and applied them to implement the CRISPR/Cas9 technology in both species for the first time. For this, we used a self-replicative, recyclable AMA1-based plasmid which allows unlimited number of genomic modifications without the limitation of integrative selection markers. As test case, we successfully targeted the wetA gene, which encodes a regulator of conidiophore development. Finally, CRISPR/Cas9-derived ΔwetA strains were analyzed. Mutants showed reduced axenic growth, differential pathogenicity and altered conidiogenesis and germination. Additionally, P. digitatum and P. expansum ΔwetA mutants showed distinct sensitivity to fungal antifungal proteins (AFPs), which are small, cationic, cysteine-rich proteins that have become interesting antifungals to be applied in agriculture, medicine and in the food industry. With this work, we demonstrate the feasibility of the CRISPR/Cas9 system, expanding the repertoire of genetic engineering tools available for these two important postharvest pathogens and open up the possibility to adapt them to other economically relevant phytopathogenic fungi, for which toolkits for genetic modifications are often limited.
Collapse
|
7
|
Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia. Toxins (Basel) 2021; 13:toxins13120861. [PMID: 34941699 PMCID: PMC8704706 DOI: 10.3390/toxins13120861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from four different grain crops separated the C. purpurea strains into two distinct metabolomic classes based on ergot alkaloid content. Variances in C. purpurea alkaloid profiles were correlated to genetic differences within the lpsA gene of the ergot alkaloid biosynthetic gene cluster from previously published genomes and from newly sequenced, long-read genome assemblies of Canadian strains. Based on gene cluster composition and unique polymorphisms, we hypothesize that the alkaloid content of C. purpurea sclerotia is currently undergoing adaptation. The patterns of lpsA gene diversity described in this small subset of Canadian strains provides a remarkable framework for understanding accelerated evolution of ergot alkaloid production in Claviceps purpurea.
Collapse
|
8
|
Sarmiento-Villamil JL, de Oliveira TC, Naruzawa ES, Bernier L. An Efficient Strategy for Obtaining Mutants by Targeted Gene Deletion in Ophiostoma novo-ulmi. Front Microbiol 2021; 12:699783. [PMID: 34335533 PMCID: PMC8317267 DOI: 10.3389/fmicb.2021.699783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
The dimorphic fungus Ophiostoma novo-ulmi is the highly aggressive pathogen responsible for the current, highly destructive, pandemic of Dutch elm disease (DED). Genome and transcriptome analyses of this pathogen previously revealed that a large set of genes expressed during dimorphic transition were also potentially related to plant infection processes, which seem to be regulated by molecular mechanisms different from those described in other dimorphic pathogens. Then, O. novo-ulmi can be used as a representative species to study the lifestyle of dimorphic pathogenic fungi that are not shared by the "model species" Candida albicans and Ustilago maydis. In order to gain better knowledge of molecular aspects underlying infection process and symptom induction by dimorphic fungi that cause vascular wilt disease, we developed a high-throughput gene deletion protocol for O. novo-ulmi. The protocol is based on transforming a Δmus52 O. novo-ulmi mutant impaired for non-homologous end joining (NHEJ) as the recipient strain, and transforming this strain with the latest version of OSCAR plasmids. The latter are used for generating deletion constructs containing the toxin-coding Herpes simplex virus thymidine kinase (HSVtk) gene which prevents ectopic integration of the T-DNA in Ophiostoma DNA. The frequency of gene deletion by homologous recombination (HR) at the ade1 locus associated with purine nucleotide biosynthesis was up to 77.8% in the Δmus52 mutant compared to 2% in the wild-type (WT). To validate the high efficiency of our deletion gene methodology we deleted ade7, which also belongs to the purine nucleotide pathway, as well as bct2, ogf1, and opf2 which encode fungal binuclear transcription factors (TFs). The frequency of gene replacement by HR for these genes reached up to 94%. We expect that our methodology combining the use of NHEJ deficient strains and OSCAR plasmids will function with similar high efficiencies for other O. novo-ulmi genes and other filamentous fungi.
Collapse
Affiliation(s)
- Jorge Luis Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Thais Campos de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Erika Sayuri Naruzawa
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Collège Communautaire du Nouveau-Brunswick, Réseau CCNB-INNOV, Grand Falls, NB, Canada
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
9
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
10
|
Santhanam P, Labbé C, Fietto LG, Bélanger RR. A reassessment of flocculosin-mediated biocontrol activity of Pseudozyma flocculosa through CRISPR/Cas9 gene editing. Fungal Genet Biol 2021; 153:103573. [PMID: 34029708 DOI: 10.1016/j.fgb.2021.103573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Pseudozyma flocculosa is an epiphytic yeast with powerful antagonistic activity against powdery mildews. This activity has been associated with the production of a rare antifungal glycolipid, flocculosin. In spite of the discovery of a specific gene cluster for flocculosin synthesis, attempts to ascribe a functional role to the molecule have been hampered by the inability to efficiently transform P. flocculosa. In this study, two different approaches, target gene replacement by homologous recombination (HR) and CRISPR-Cas9 based genome-editing, were utilized to decipher the role of flocculosin in the biocontrol activity of P.flocculosa. It was possible to alter the production of flocculosin through edition of fat1 by HR, but such mutants displayed abnormal phenotypes and the inability to produce sporidia. Sequencing analyses revealed that transformation by HR led to multiple insertions in the genome explaining the pleiotrophic effects of the approach. On the other hand, CRISPR-Cas9 transformation yielded one mutant that was altered specifically in the proper synthesis of flocculosin. Notwithstanding the loss of flocculosin production, such mutant was phenotypically similar to the wild-type, and when tested for its biocontrol activity against powdery mildew, displayed the same efficacy. These results offer strong evidence that flocculosin-mediated antibiosis is not responsible for the mode of action of P. flocculosa and highlight the potential of CRISPR-Cas9 for functional studies of otherwise difficult-to-transform fungi such as P. flocculosa.
Collapse
Affiliation(s)
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Luciano Gomes Fietto
- Département de Phytologie, Université Laval, Québec, QC, Canada; Universidade Federal de Viçosa, Departamento de Bioquímica e Biologia Molecular, Viçosa, MG, Brazil
| | | |
Collapse
|
11
|
Králová M, Frébortová J, Pěnčík A, Frébort I. Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. N Biotechnol 2020; 61:69-79. [PMID: 33188977 DOI: 10.1016/j.nbt.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022]
Abstract
The parasitic fungus Claviceps purpurea has been used for decades by the pharmaceutical industry as a valuable producer of ergot alkaloids. As the biosynthetic pathway of ergot alkaloids involves a common precursor L-tryptophan, targeted genetic modification of the related genes may improve production yield. In this work, the S76L mutated version of the trpE gene encoding anthranilate synthase was constitutively overexpressed in the fungus with the aim of overcoming feedback inhibition of the native enzyme by an excess of tryptophan. In another approach, the dmaW gene encoding dimethylallyltryptophan synthase, which produces a key intermediate for the biosynthesis of ergot alkaloids, was also constitutively overexpressed. Each of the above manipulations led to a significant increase (up to 7-fold) in the production of ergot alkaloids in submerged cultures.
Collapse
Affiliation(s)
- Michaela Králová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Aleš Pěnčík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71 Czech Republic.
| |
Collapse
|
12
|
Králová M, Bergougnoux V, Frébort I. CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. J Biotechnol 2020; 325:341-354. [PMID: 33053363 DOI: 10.1016/j.jbiotec.2020.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/09/2023]
Abstract
Claviceps purpurea is a filamentous fungus well known as a widespread plant pathogen, but it is also an important ergot alkaloid producer exploited by the pharmaceutic industry. In this work, we demonstrated that CRISPR/Cas9 can be a tool for directed mutagenesis in C. purpurea targeting pyr4 and TrpE genes encoding the orotidine 5'-phosphate decarboxylase involved in pyrimidine biosynthesis and the α-subunit of the anthranilate synthase involved in tryptophan biosynthesis, respectively. After protoplast transformation and single spore isolation, homokaryotic mutants showing uridine or tryptophan auxotrophy were selected. In all cases, insertions or insertions combined with deletions were found mostly 3 bp upstream of the PAM sequence. However, transformation efficiencies of CRISPR/Cas9 and CRISPR/Cas9 mediated homology-directed repair only slightly improved in comparison to homologous recombination-mediated knocking-out of the TrpE gene. Moreover, Trp auxotrophs were non-infectious towards rye plants likely due to a decreased production of the plant hormones auxins, which are synthesized by C. purpurea from indole-3-glycerolphosphate in Trp-dependent and Trp-independent biosynthetic pathways, and help the fungus to colonize the plant host. It was demonstrated that the CRISPR/Cas9 vector containing autonomous replicative sequence AMA1 can be fully removed by further culturing of C. purpurea on non-selective media. This method enables introducing multiple mutations in Claviceps and makes feasible metabolic engineering of industrial strains.
Collapse
Affiliation(s)
- Michaela Králová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
13
|
CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme Microb Technol 2020; 133:109463. [DOI: 10.1016/j.enzmictec.2019.109463] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
14
|
Qiao YM, Yu RL, Zhu P. Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv 2019; 9:35124-35134. [PMID: 35530690 PMCID: PMC9074735 DOI: 10.1039/c9ra06908a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
The revolutionary discovery of penicillin only marks the start of our exploration for valuable fungal natural products. Advanced genome sequencing technologies have translated the fungal genome into a huge reservoir of "recipes" - biosynthetic gene clusters (BGCs) - for biosynthesis. Studying complex fungal genetics demands specific gene manipulation strategies. This review summarizes the current progress in efficient gene targeting in fungal cells and heterologous expression systems for expressing fungal BGCs of fungal secondary metabolites.
Collapse
Affiliation(s)
- Yun-Ming Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Rui-Lin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| |
Collapse
|
15
|
Kindinger F, Nies J, Becker A, Zhu T, Li SM. Genomic Locus of a Penicillium crustosum Pigment as an Integration Site for Secondary Metabolite Gene Expression. ACS Chem Biol 2019; 14:1227-1234. [PMID: 31141338 DOI: 10.1021/acschembio.9b00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterologous expression of secondary metabolite genes and gene clusters has been proven to be a successful strategy for identification of new natural products of cryptic or silent genes hidden in the genome sequences. It is also a useful tool to produce designed compounds by synthetic biology approaches. In this study, we demonstrate the potential usage of the gene locus pcr4401 in the fast-growing filamentous fungus Penicillium crustosum as an integration site for heterologous gene expression. The deduced polyketide synthase (PKS) Pcr4401 is involved in the dihydroxynaphthalene (DHN)-melanin pigment formation, and its deletion in P. crustosum PRB-2 led to an albino phenotype. Heterologous expression of pcr4401 in Aspergillus nidulans proved its function as the melanin precursor YWA1 synthase. To ensure gene expression after genomic integration and to easily identify the potential transformants by visualization, the gene locus of pcr4401 was chosen as an integration site. For heterologous expression in P. crustosum, the expression constructs were created by ligation-independent homologous recombination in Escherichia coli or Saccharomyces cerevisiae. A pyrG deficient strain was also created, so that both the pyrG and hph resistance gene can be used as selection markers. Successful expression in P. crustosum was demonstrated by using one uncharacterized PKS gene from Aspergillus and two from Penicillium strains. All three genes were successfully introduced, heterologously expressed, and their biosynthetic products elucidated. The results presented in this study demonstrated that P. crustosum can be used as a suitable host for heterologous expression of secondary metabolite genes.
Collapse
Affiliation(s)
- Florian Kindinger
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jonas Nies
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Anke Becker
- LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Tianjiao Zhu
- Ocean University of China, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Yushan Road 5, 266003 Qingdao, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
16
|
Deletion of TpKu70 facilitates gene targeting in Talaromyces pinophilus and identification of TpAmyR involvement in amylase production. World J Microbiol Biotechnol 2017; 33:171. [PMID: 28849313 DOI: 10.1007/s11274-017-2331-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Talaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools. In this study, a putative TpKu70 encoding the Ku70 homolog involved in the classic non-homologous end-joining pathway was deleted in T. pinophilus 1-95. ΔTpKu70 displayed no apparent defect in vegetative growth and enzyme production, and presented similar sensitivity to benomyl, bleomycin, and UV, when compared with the wild-type T. pinophilus strain 1-95. Seven genes that encode putative transcription factors, including TpAmyR, were successfully knocked out in ΔTpKu70 at 61.5-100% of homologous recombination frequency, which is significantly higher than that noted in the wild-type. Interestingly, ΔTpAmyR produced approximately 20% of amylase secreted by the parent strain ΔTpKu70 in medium containing soluble starch from corn as the sole carbon source. Real-time quantitative reverse transcription PCR showed that TpAmyR positively regulated the expression of genes encoding α-amylase and glucoamylase. Thus, this study provides a useful tool for genetic analysis of T. pinophilus, and identification of a key role for the transcription factor TpAmyR in amylase production in T. pinophilus.
Collapse
|
17
|
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Collapse
|
18
|
Abstract
Ergot alkaloids are a class of indole derivatives produced by the genera of Ascomycota includingClaviceps,Aspergillus,Penicillium, andEpichloë.
Collapse
Affiliation(s)
- Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Meng-Yao Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| |
Collapse
|
19
|
Dopstadt J, Neubauer L, Tudzynski P, Humpf HU. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines. PLoS One 2016; 11:e0158945. [PMID: 27390873 PMCID: PMC4938161 DOI: 10.1371/journal.pone.0158945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.
Collapse
Affiliation(s)
- Julian Dopstadt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Lisa Neubauer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Paul Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
- * E-mail:
| |
Collapse
|
20
|
Qi X, Su X, Guo H, Qi J, Cheng H. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World J Microbiol Biotechnol 2015; 31:1889-97. [PMID: 26475327 DOI: 10.1007/s11274-015-1907-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
Abstract
To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus.
Collapse
|
21
|
Negård M, Uhlig S, Kauserud H, Andersen T, Høiland K, Vrålstad T. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex. Toxins (Basel) 2015; 7:1431-56. [PMID: 25928134 PMCID: PMC4448156 DOI: 10.3390/toxins7051431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/24/2022] Open
Abstract
The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.
Collapse
Affiliation(s)
- Mariell Negård
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Silvio Uhlig
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of the Chemical and Biological Working Environment, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Tom Andersen
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Klaus Høiland
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| | - Trude Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
22
|
Genetics, genomics and evolution of ergot alkaloid diversity. Toxins (Basel) 2015; 7:1273-302. [PMID: 25875294 PMCID: PMC4417967 DOI: 10.3390/toxins7041273] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/18/2023] Open
Abstract
The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.
Collapse
|
23
|
Mousa WK, Raizada MN. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. FRONTIERS IN PLANT SCIENCE 2015; 6:231. [PMID: 25914708 PMCID: PMC4392301 DOI: 10.3389/fpls.2015.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 05/10/2023]
Abstract
The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
24
|
Diversification of ergot alkaloids in natural and modified fungi. Toxins (Basel) 2015; 7:201-18. [PMID: 25609183 PMCID: PMC4303823 DOI: 10.3390/toxins7010201] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
Several fungi in two different families--the Clavicipitaceae and the Trichocomaceae--produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product.
Collapse
|
25
|
|
26
|
Suzuki K, Inoue H. Recombination and Gene Targeting in Neurospora. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Gerhards N, Neubauer L, Tudzynski P, Li SM. Biosynthetic pathways of ergot alkaloids. Toxins (Basel) 2014; 6:3281-95. [PMID: 25513893 PMCID: PMC4280535 DOI: 10.3390/toxins6123281] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.
Collapse
Affiliation(s)
- Nina Gerhards
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany.
| | - Lisa Neubauer
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany.
| |
Collapse
|
28
|
|
29
|
Abstract
An update on new developments in the field of ergot alkaloid biosynthesis since 2011 is highlighted.
Collapse
Affiliation(s)
- Dorota Jakubczyk
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Johnathan Z. Cheng
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| | - Sarah E. O'Connor
- The John Innes Centre
- Department of Biological Chemistry
- Norwich NR4 7UH, UK
| |
Collapse
|
30
|
Cyclolization of D-Lysergic Acid Alkaloid Peptides. ACTA ACUST UNITED AC 2014; 21:146-55. [DOI: 10.1016/j.chembiol.2013.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/22/2022]
|
31
|
Bloemendal S, Löper D, Terfehr D, Kopke K, Kluge J, Teichert I, Kück U. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. J Biotechnol 2014; 169:51-62. [DOI: 10.1016/j.jbiotec.2013.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
|
32
|
Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ. The epichloae: alkaloid diversity and roles in symbiosis with grasses. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:480-8. [PMID: 23850071 PMCID: PMC3874428 DOI: 10.1016/j.pbi.2013.06.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 05/20/2023]
Abstract
Epichloae (Epichloë and Neotyphodium species; Clavicipitaceae) are fungi that live in systemic symbioses with cool-season grasses, and many produce alkaloids that are deterrent or toxic to herbivores. The epichloae colonize much of the aerial plant tissues, and most benignly colonize host seeds to transmit vertically. Of their four chemical classes of alkaloids, the ergot alkaloids and indole-diterpenes are active against mammals and insects, whereas peramine and lolines specifically affect insects. Comparative genomic analysis of Clavicipitaceae reveals a distinctive feature of the epichloae, namely, large repeat blocks in their alkaloid biosynthesis gene loci. Such repeat blocks can facilitate gene losses, mutations, and duplications, thus enhancing diversity of alkaloid structures within each class. We suggest that alkaloid diversification is selected especially in the vertically transmissible epichloae.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA.
| | | | | | | | | | | |
Collapse
|
33
|
He Y, Liu Q, Shao Y, Chen F. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 2013; 97:4965-76. [PMID: 23546425 DOI: 10.1007/s00253-013-4851-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/25/2023]
Abstract
Normally, gene targeting by homologous recombination occurs rarely during a transformation process since non-homologous recombination is predominant in filamentous fungi. In our previous researches, the average gene replacement frequency (GRF) in Monascus ruber M7 was as low as 15 %. To develop a highly efficient gene targeting system for M. ruber M7, two M. ruber M7 null mutants of ku70 (MrΔku70) and ku80 (MrΔku80) were constructed which had no apparent defects in the development including vegetative growth, colony phenotype, microscopic morphology and spore yield compared with M. ruber M7. In addition, the production of some significant secondary metabolites such as pigments and citrinin had no differences between the two disruptants and the wild-type strain. Further results revealed that the GRFs of triA (encoding a putative acetyltransferase) were 42.2 % and 61.5 % in the MrΔku70 and MrΔku80 strains, respectively, while it was only about 20 % in M. ruber M7. Furthermore, GRFs of these two disruptants at other loci (the pigE, fmdS genes in MrΔku70 and the ku70 gene in MrΔku80) were investigated, and the results indicated that GRFs in the MrΔku70 strain and the MrΔku80 strain were doubled and tripled compared with that in M. ruber M7, respectively. Therefore, the ku70 and ku80 null mutants of M. ruber M7, especially the ku80-deleted strain, will be excellent hosts for efficient gene targeting.
Collapse
Affiliation(s)
- Yi He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O'Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 2013; 9:e1003323. [PMID: 23468653 PMCID: PMC3585121 DOI: 10.1371/journal.pgen.1003323] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023] Open
Abstract
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Collapse
|
35
|
Schardl CL, Young CA, Faulkner JR, Florea S, Pan J. Chemotypic diversity of epichloae, fungal symbionts of grasses. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.04.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum. Microbiol Res 2012; 167:173-8. [DOI: 10.1016/j.micres.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/27/2023]
|
37
|
Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis. J Ind Microbiol Biotechnol 2012; 39:917-25. [PMID: 22350115 DOI: 10.1007/s10295-012-1097-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Streptomyces avermitilis is an industrially important soil bacterium known for production of avermectins, which are antiparasitic agents useful in animal health care, agriculture, and treatment of human infections. ku genes play a key role in the non-homologous end-joining pathway for repair of DNA double strand breaks. We identified homologs of eukaryotic ku70 and ku80 genes, termed ku1 and ku2, in S. avermitilis. Mutants with deletion of ku1, ku2, and both genes were constructed and their phenotypic changes were characterized. Deletion of ku genes had no apparent adverse effects on growth, spore formation, or avermectin production. The ku mutants, in comparison to wild-type strain, were slightly more sensitive to the DNA-damaging agent ethyl methanesulfonate, but not to UV exposure or to bleomycin. Gene targeting frequencies by homologous recombination were higher in the ku mutants than in wild-type strain. We conclude that ku-deleted strains will be useful hosts for efficient gene targeting and will facilitate functional analysis of genes in S. avermitilis and other industrially important bacterial strains.
Collapse
|
38
|
Wallwey C, Li SM. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 2011; 28:496-510. [DOI: 10.1039/c0np00060d] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Wang NY, Yang SL, Lin CH, Chung KR. Gene inactivation in the citrus pathogenic fungus Alternaria alternata defect at the Ku70 locus associated with non-homologous end joining. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0640-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 2010; 57:13-23. [PMID: 20872221 PMCID: PMC3023040 DOI: 10.1007/s00294-010-0322-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/07/2010] [Accepted: 09/10/2010] [Indexed: 11/17/2022]
Abstract
The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1.
Collapse
|
41
|
De Jong JF, Ohm RA, De Bekker C, Wösten HA, Lugones LG. Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 2010; 310:91-5. [DOI: 10.1111/j.1574-6968.2010.02052.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 2010; 76:1822-30. [PMID: 20118373 DOI: 10.1128/aem.00737-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I.
Collapse
|
43
|
New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 2010; 86:51-62. [DOI: 10.1007/s00253-009-2416-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
44
|
Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence. Microbiology (Reading) 2009; 155:3922-3933. [DOI: 10.1099/mic.0.030825-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The putative Claviceps purpurea homologue of the Saccharomyces cerevisiae stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (Secale cereale). Gene replacement mutants of Cl. purpurea mid1 were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca2+ supplementation, in contrast to mid1 mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca2+ concentrations indicates some role of Mid1 in Ca2+ homeostasis. The major effect of mid1 deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of in vitro-infected rye ovaries demonstrated that the Δmid1 mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.
Collapse
|
45
|
Lorenz N, Haarmann T, Pazoutová S, Jung M, Tudzynski P. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. PHYTOCHEMISTRY 2009; 70:1822-32. [PMID: 19695648 DOI: 10.1016/j.phytochem.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/14/2009] [Accepted: 05/26/2009] [Indexed: 05/02/2023]
Abstract
Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).
Collapse
Affiliation(s)
- Nicole Lorenz
- Westf. Wilhelms-Universität, Institut für Botanik, Münster, Germany
| | | | | | | | | |
Collapse
|
46
|
Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2009; 85:1081-94. [DOI: 10.1007/s00253-009-2168-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
|
47
|
Haarmann T, Rolke Y, Giesbert S, Tudzynski P. Ergot: from witchcraft to biotechnology. MOLECULAR PLANT PATHOLOGY 2009; 10:563-77. [PMID: 19523108 PMCID: PMC6640538 DOI: 10.1111/j.1364-3703.2009.00548.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.
Collapse
Affiliation(s)
- Thomas Haarmann
- Institut für Botanik, Westf. Wilhelms-Universität Münster, Germany
| | | | | | | |
Collapse
|
48
|
You BJ, Lee MH, Chung KR. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch Microbiol 2009; 191:615-22. [PMID: 19506835 DOI: 10.1007/s00203-009-0489-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/22/2009] [Accepted: 05/25/2009] [Indexed: 12/24/2022]
Abstract
To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen.
Collapse
Affiliation(s)
- Bang-Jau You
- School of Chinese Medicine Resources, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | |
Collapse
|
49
|
Snoek I, van der Krogt Z, Touw H, Kerkman R, Pronk J, Bovenberg R, van den Berg M, Daran J. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 2009; 46:418-26. [DOI: 10.1016/j.fgb.2009.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
50
|
Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies. EUKARYOTIC CELL 2009; 8:800-4. [PMID: 19286985 DOI: 10.1128/ec.00072-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strategies for promoting high-efficiency homologous gene replacement have been developed and adopted for many filamentous fungal species. The next generation of analysis requires the ability to manipulate gene expression and to tag genes expressed from their endogenous loci. Here we present a suite of molecular tools that provide versatile solutions for fungal high-throughput functional genomics studies based on locus-specific modification of any target gene. Additionally, case studies illustrate caveats to presumed overexpression constructs. A tunable expression system and different tagging strategies can provide valuable phenotypic information for uncharacterized genes and facilitate the analysis of essential loci, an emerging problem in systematic deletion studies of haploid organisms.
Collapse
|