1
|
The regulation of the sulfur amino acid biosynthetic pathway in Cryptococcus neoformans: the relationship of Cys3, Calcineurin, and Gpp2 phosphatases. Sci Rep 2019; 9:11923. [PMID: 31417135 PMCID: PMC6695392 DOI: 10.1038/s41598-019-48433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023] Open
Abstract
Cryptococcosis is a fungal disease caused by C. neoformans. To adapt and survive in diverse ecological niches, including the animal host, this opportunistic pathogen relies on its ability to uptake nutrients, such as carbon, nitrogen, iron, phosphate, sulfur, and amino acids. Genetic circuits play a role in the response to environmental changes, modulating gene expression and adjusting the microbial metabolism to the nutrients available for the best energy usage and survival. We studied the sulfur amino acid biosynthesis and its implications on C. neoformans biology and virulence. CNAG_04798 encodes a BZip protein and was annotated as CYS3, which has been considered an essential gene. However, we demonstrated that CYS3 is not essential, in fact, its knockout led to sulfur amino acids auxotroph. Western blots and fluorescence microscopy indicated that GFP-Cys3, which is expressed from a constitutive promoter, localizes to the nucleus in rich medium (YEPD); the addition of methionine and cysteine as sole nitrogen source (SD-N + Met/Cys) led to reduced nuclear localization and protein degradation. By proteomics, we identified and confirmed physical interaction among Gpp2, Cna1, Cnb1 and GFP-Cys3. Deletion of the calcineurin and GPP2 genes in a GFP-Cys3 background demonstrated that calcineurin is required to maintain Cys3 high protein levels in YEPD and that deletion of GPP2 causes GFP-Cys3 to persist in the presence of sulfur amino acids. Global transcriptional profile of mutant and wild type by RNAseq revealed that Cys3 controls all branches of the sulfur amino acid biosynthesis, and sulfur starvation leads to induction of several amino acid biosynthetic routes. In addition, we found that Cys3 is required for virulence in Galleria mellonella animal model.
Collapse
|
2
|
Jain S, Sekonyela R, Knox BP, Palmer JM, Huttenlocher A, Kabbage M, Keller NP. Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genet Biol 2018; 117:1-10. [PMID: 29753128 PMCID: PMC6064392 DOI: 10.1016/j.fgb.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
LaeA is a conserved global regulator of secondary metabolism and development in filamentous fungi. Examination of Aspergillus fumigatus transcriptome data of laeA deletion mutants have been fruitful in identifying genes and molecules contributing to the laeA mutant phenotype. One of the genes significantly down regulated in A. fumigatus ΔlaeA is metR, encoding a bZIP DNA binding protein required for sulfur and methionine metabolism in fungi. LaeA and MetR deletion mutants exhibit several similarities including down regulation of sulfur assimilation and methionine metabolism genes and ability to grow on the toxic sulfur analog, sodium selenate. However, unlike ΔmetR, ΔlaeA strains are able to grow on sulfur, sulfite, and cysteine. To examine if any parameter of the ΔlaeA phenotype is due to decreased metR expression, an over-expression allele (OE::metR) was placed in a ΔlaeA background. The OE::metR allele could not significantly restore expression of MetR regulated genes in ΔlaeA but did restore sensitivity to sodium selenate. In A. nidulans a second bZIP protein, MetZ, also regulates sulfur and methionine metabolism genes. However, addition of an OE::metZ construct to the A. fumigatus ΔlaeA OE::metR strain still was unable to rescue the ΔlaeA phenotype to wildtype with regards gliotoxin synthesis and virulence in a zebrafish aspergillosis model.
Collapse
Affiliation(s)
- Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Relebohile Sekonyela
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jonathan M Palmer
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Jöhnk B, Bayram Ö, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathog 2016; 12:e1005899. [PMID: 27649508 PMCID: PMC5029927 DOI: 10.1371/journal.ppat.1005899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/26/2016] [Indexed: 01/27/2023] Open
Abstract
F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. The opportunistic human fungal pathogen Aspergillus fumigatus is the most prevalent cause for severe fungal infections in immunocompromised hosts. A major virulence factor of A. fumigatus is its ability to rapidly adapt to host conditions during infection. The rapid response to environmental changes underlies a well-balanced system of production and degradation of proteins. The degradation of specific target proteins is mediated by ubiquitin-protein ligases (E3), which mark their target proteins with ubiquitin for proteasomal degradation. Multisubunit SCF Cullin1 Ring ligases (CRL) are E3 ligases where the F-box subunit functions as a substrate-specificity determining adaptor. A comprehensive control of protein production includes global co-repressors as the conserved Ssn6(SsnF)-Tup1(RcoA) complex, which reduces transcription on multiple levels. We have identified a novel connection between protein degradation and synthesis through an F-box protein. Fbx15 can be incorporated into SCF E3 ubiquitin ligases and controls upon stress the nuclear localization of the SsnF. Fbx15 plays a critical role for A. fumigatus adaptation and is essential for virulence in a murine infection model. Fbx15 is a fungal-specific protein and therefore a potential target for future drug development.
Collapse
Affiliation(s)
- Bastian Jöhnk
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
4
|
El-Sayed ASA, Yassin MA, Ali GS. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015; 10:e0144304. [PMID: 26633307 PMCID: PMC4669086 DOI: 10.1371/journal.pone.0144304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| | - Marwa A. Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| |
Collapse
|
5
|
Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:941-57. [PMID: 26150413 DOI: 10.1128/ec.00055-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.
Collapse
|
6
|
Fu J, Zhang X, Chen X, Yin Y, Ma Z. Serine O-acetyltransferase is important, but not essential for cysteine-methionine synthesis in Fusarium graminearum. World J Microbiol Biotechnol 2013; 30:1219-28. [PMID: 24197784 DOI: 10.1007/s11274-013-1544-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
O-acetyltransferase (SAT) is a key enzyme converting serine into O-acetylserine in the synthesis of sulphur-containing amino acids. To characterize the function of FgSAT in Fusarium graminearum, three deletion mutants of FgSAT (ΔFgSAT-1, -2 and -18) were obtained using a gene replacement strategy. The three mutants did not show recognizable phenotypic changes on potato dextrose agar medium, but exhibited a very weak growth on fructose gelatin agar (FGA) medium containing SO₄²⁻ as sole sulfur source. Supplementation of O-acetylserine, cysteine, or methionine, but not serine, rescued the defect of mycelial growth in FgSAT deletion mutants, indicating that FgSAT is involved in conversion of serine into O-acetylserine. The three mutants had a decrease in conidiation in mung bean liquid, but not in carboxymethyl cellulose. Virulence, deoxynivalenol production and fungicide sensitivity assays found that the three mutants showed no significant difference from wild-type progenitor PH-1. Real-time PCR assays detected an increase in expression levels of FgOAHS, FgCBS and FgCGL genes involved in the alternative pathway in FgSAT deletion mutants, suggesting that the alternative pathway in F. graminearum is present and can operate. Addition of homoserine, the upstream substrate of the alternative pathway, also restored the normal mycelial growth of FgSAT deletion mutants on FGA, indicating that the alternative pathway in F. graminearum might be positively regulated by homoserine.
Collapse
Affiliation(s)
- Jing Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China,
| | | | | | | | | |
Collapse
|