1
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
2
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Rybak JM, Fortwendel JR, Rogers PD. Emerging threat of triazole-resistant Aspergillus fumigatus. J Antimicrob Chemother 2020; 74:835-842. [PMID: 30561652 DOI: 10.1093/jac/dky517] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive aspergillosis is a leading cause of morbidity and mortality among immunocompromised populations and is predicted to cause more than 200 000 life-threatening infections each year. Aspergillus fumigatus is the most prevalent pathogen isolated from patients with invasive aspergillosis, accounting for more than 60% of all cases. Currently, the only antifungal agents available with consistent activity against A. fumigatus are the mould-active triazoles and amphotericin B, of which the triazoles commonly represent both front-line and salvage therapeutic options. Unfortunately, the treatment of infections caused by A. fumigatus has recently been further complicated by the global emergence of triazole resistance among both clinical and environmental isolates. Mutations in the A. fumigatus sterol-demethylase gene cyp51A, overexpression of cyp51A and overexpression of efflux pump genes are all known to contribute to resistance, yet much of the triazole resistance among A. fumigatus still remains unexplained. Also lacking is clinical experience with therapeutic options for the treatment of triazole-resistant A. fumigatus infections and mortality associated with these infections remains unacceptably high. Thus, further research is greatly needed to both better understand the emerging threat of triazole-resistant A. fumigatus and to develop novel therapeutic strategies to combat these resistant infections.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
4
|
Esquivel BD, Rybak JM, Barker KS, Fortwendel JR, Rogers PD, White TC. Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. mBio 2020; 11:e00338-20. [PMID: 32209680 PMCID: PMC7157516 DOI: 10.1128/mbio.00338-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.
Collapse
Affiliation(s)
- Brooke D Esquivel
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine S Barker
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Theodore C White
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
5
|
Trichophyton rubrum Azole Resistance Mediated by a New ABC Transporter, TruMDR3. Antimicrob Agents Chemother 2019; 63:AAC.00863-19. [PMID: 31501141 PMCID: PMC6811443 DOI: 10.1128/aac.00863-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of terbinafine resistance in a set of clinical isolates of Trichophyton rubrum have been studied recently. Of these isolates, TIMM20092 also showed reduced sensitivity to azoles. The azole resistance of TIMM20092 could be inhibited by milbemycin oxime, prompting us to examine the potential of T. rubrum to develop resistance through multidrug efflux transporters. The mechanisms of terbinafine resistance in a set of clinical isolates of Trichophyton rubrum have been studied recently. Of these isolates, TIMM20092 also showed reduced sensitivity to azoles. The azole resistance of TIMM20092 could be inhibited by milbemycin oxime, prompting us to examine the potential of T. rubrum to develop resistance through multidrug efflux transporters. The introduction of a T. rubrum cDNA library into Saccharomyces cerevisiae allowed the isolation of one transporter of the major facilitator superfamily (MFS) conferring resistance to azoles (TruMFS1). To identify more azole efflux pumps among 39 ABC and 170 MFS transporters present within the T. rubrum genome, we performed a BLASTp analysis of Aspergillus fumigatus, Candida albicans, and Candida glabrata on transporters that were previously shown to confer azole resistance. The identified candidates were further tested by heterologous gene expression in S. cerevisiae. Four ABC transporters (TruMDR1, TruMDR2, TruMDR3, and TruMDR5) and a second MFS transporter (TruMFS2) proved to be able to operate as azole efflux pumps. Milbemycin oxime inhibited only TruMDR3. Expression analysis showed that both TruMDR3 and TruMDR2 were significantly upregulated in TIMM20092. TruMDR3 transports voriconazole (VRC) and itraconazole (ITC), while TruMDR2 transports only ITC. Disruption of TruMDR3 in TIMM20092 abolished its resistance to VRC and reduced its resistance to ITC. Our study highlights TruMDR3, a newly identified transporter of the ABC family in T. rubrum, which can confer azole resistance if overexpressed. Finally, inhibition of TruMDR3 by milbemycin suggests that milbemycin analogs could be interesting compounds to treat dermatophyte infections in cases of azole resistance.
Collapse
|
6
|
Hokken MWJ, Zoll J, Coolen JPM, Zwaan BJ, Verweij PE, Melchers WJG. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics 2019; 20:28. [PMID: 30626317 PMCID: PMC6327609 DOI: 10.1186/s12864-018-5255-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background The prevalence of azole resistance in clinical and environmental Aspergillus fumigatus isolates is rising over the past decades, but the molecular basis of the development of antifungal drug resistance is not well understood. This study focuses on the role of phenotypic plasticity in the evolution of azole resistance in A. fumigatus. When A. fumigatus is challenged with a new stressful environment, phenotypic plasticity may allow A. fumigatus to adjust their physiology to still enable growth and reproduction, therefore allowing the establishment of genetic adaptations through natural selection on the available variation in the mutational and recombinational gene pool. To investigate these short-term physiological adaptations, we conducted time series transcriptome analyses on three clinical A. fumigatus isolates, during incubation with itraconazole. Results After analysis of expression patterns, we identified 3955, 3430, 1207, and 1101 differentially expressed genes (DEGs), after 30, 60, 120 and 240 min of incubation with itraconazole, respectively. We explored the general functions in these gene groups and we identified 186 genes that were differentially expressed during the whole time series. Additionally, we investigated expression patterns of potential novel drug-efflux transporters, genes involved in ergosterol and phospholipid biosynthesis, and the known MAPK proteins of A. fumigatus. Conclusions Our data suggests that A. fumigatus adjusts its transcriptome quickly within 60 min of exposure to itraconazole. Further investigation of these short-term adaptive phenotypic plasticity mechanisms might enable us to understand how the direct response of A. fumigatus to itraconazole promotes survival of the fungus in the patient, before any “hard-wired” genetic mutations arise. Electronic supplementary material The online version of this article (10.1186/s12864-018-5255-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands. .,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands.
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Jordy P M Coolen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Bas J Zwaan
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Miura D, Sugiyama K, Ito A, Ohba-Tanaka A, Tanaka M, Shintani T, Gomi K. The PDR-type ABC transporters AtrA and AtrG are involved in azole drug resistance in Aspergillus oryzae. Biosci Biotechnol Biochem 2018; 82:1840-1848. [PMID: 30011258 DOI: 10.1080/09168451.2018.1497941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
For strain improvement of Aspergillus oryzae, development of the transformation system is essential, wherein dominant selectable markers, including drug-resistant genes, are available. However, A. oryzae generally has a relatively high resistance to many antifungal drugs effective against yeasts and other filamentous fungi. In the course of the study, while investigating azole drug resistance in A. oryzae, we isolated a spontaneous mutant that exhibited high resistance to azole fungicides and found that pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter genes were upregulated in the mutant; their overexpression in the wild-type strain increased azole drug resistance. While deletion of the gene designated atrG resulted in increased azole susceptibility, double deletion of atrG and another gene (atrA) resulted in further azole hypersensitivity. Overall, these results indicate that the ABC transporters AtrA and AtrG are involved in azole drug resistance in A. oryzae.
Collapse
Affiliation(s)
- Daisuke Miura
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Kohei Sugiyama
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Atsushi Ito
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Ayumi Ohba-Tanaka
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Mizuki Tanaka
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Takahiro Shintani
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- a Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Biomolecular Engineering Laboratory, School of Food and Nutritional Science , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
8
|
Meneau I, Coste AT, Sanglard D. Identification ofAspergillus fumigatusmultidrug transporter genes and their potential involvement in antifungal resistance. Med Mycol 2016; 54:616-27. [DOI: 10.1093/mmy/myw005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023] Open
|
9
|
Panapruksachat S, Iwatani S, Oura T, Vanittanakom N, Chindamporn A, Niimi K, Niimi M, Lamping E, Cannon RD, Kajiwara S. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2. Med Mycol 2016; 54:478-91. [PMID: 26782644 DOI: 10.1093/mmy/myv117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.
Collapse
Affiliation(s)
| | - Shun Iwatani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | - Takahiro Oura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | | - Kyoko Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Masakazu Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Susumu Kajiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| |
Collapse
|
10
|
Assato PA, da Silva JDF, de Oliveira HC, Marcos CM, Rossi D, Valentini SR, Mendes-Giannini MJS, Zanelli CF, Fusco-Almeida AM. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae. BMC Microbiol 2015; 15:256. [PMID: 26537993 PMCID: PMC4634143 DOI: 10.1186/s12866-015-0586-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/23/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND 14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. RESULTS The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. CONCLUSIONS Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.
Collapse
Affiliation(s)
- Patricia Akemi Assato
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Caroline Maria Marcos
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Danuza Rossi
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Sandro Roberto Valentini
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Cleslei Fernando Zanelli
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Zhang C, Kong Q, Cai Z, Liu F, Chen P, Song J, Lu L, Sang H. The newly nonsporulated characterization of an Aspergillus fumigatus isolate from an immunocompetent patient and its clinic indication. Fungal Genet Biol 2015; 81:250-60. [DOI: 10.1016/j.fgb.2015.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022]
|
12
|
Contributions of Aspergillus fumigatus ATP-binding cassette transporter proteins to drug resistance and virulence. EUKARYOTIC CELL 2013; 12:1619-28. [PMID: 24123268 DOI: 10.1128/ec.00171-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In yeast cells such as those of Saccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of two Aspergillus fumigatus proteins that share high sequence similarity with S. cerevisiae Pdr5, an ABC transporter protein that is commonly overproduced in azole-resistant isolates in this yeast. The two A. fumigatus genes encoding the ABC transporters sharing the highest sequence similarity to S. cerevisiae Pdr5 are called abcA and abcB here. We constructed deletion alleles of these two different ABC transporter-encoding genes in three different strains of A. fumigatus. Loss of abcB invariably elicited increased azole susceptibility, while abcA disruption alleles had variable phenotypes. Specific antibodies were raised to both AbcA and AbcB proteins. These antisera allowed detection of AbcB in wild-type cells, while AbcA could be visualized only when overproduced from the hspA promoter in A. fumigatus. Overproduction of AbcA also yielded increased azole resistance. Green fluorescent protein fusions were used to provide evidence that both AbcA and AbcB are localized to the plasma membrane in A. fumigatus. Promoter fusions to firefly luciferase suggested that expression of both ABC transporter-encoding genes is inducible by azole challenge. Virulence assays implicated AbcB as a possible factor required for normal pathogenesis. This work provides important new insights into the physiological roles of ABC transporters in this major fungal pathogen.
Collapse
|