1
|
Yu NN, Veerana M, Ketya W, Sun HN, Park G. RNA-Seq-Based Transcriptome Analysis of Nitric Oxide Scavenging Response in Neurospora crassa. J Fungi (Basel) 2023; 9:985. [PMID: 37888241 PMCID: PMC10607626 DOI: 10.3390/jof9100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Mayura Veerana
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
2
|
Baruah D, Tamuli R. The cell functions of phospholipase C-1, Ca 2+/H + exchanger-1, and secretory phospholipase A 2 in tolerance to stress conditions and cellulose degradation in Neurospora crassa. Arch Microbiol 2023; 205:327. [PMID: 37676310 DOI: 10.1007/s00203-023-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
We investigated the cell functions of the Ca2+ signaling genes phospholipase C-1 (plc-1), Ca2+/H+ exchanger (cpe-1), and secretory phospholipase A2 (splA2) for stress responses and cellulose utilization in Neurospora crassa. The Δplc-1, Δcpe-1, and ΔsplA2 mutants displayed increased sensitivity to the alkaline pH and reduced survival during induced thermotolerance. The ΔsplA2 mutant also exhibited hypersensitivity to the DTT-induced endoplasmic reticulum (ER) stress, increased microcrystalline cellulose utilization, increased protein secretion, and glucose accumulation in the culture supernatants. Moreover, the ΔsplA2 mutant could not grow on microcrystalline cellulose during ER stress. Furthermore, plc-1, cpe-1, and splA2 synthetically regulate the acquisition of thermotolerance induced by heat shock, responses to alkaline pH and ER stress, and utilization of cellulose and other alternate carbon sources in N. crassa. In addition, expression of the alkaline pH regulator, pac-3, and heat shock proteins, hsp60, and hsp80 was reduced in the Δplc-1, Δcpe-1, and ΔsplA2 single and double mutants. The expression of the unfolded protein response (UPR) markers grp-78 and pdi-1 was also significantly reduced in the mutants showing growth defect during ER stress. The increased cellulolytic activities of the ΔsplA2 and Δcpe-1; ΔsplA2 mutants were due to increased cbh-1, cbh-2, and endo-2 expression in N. crassa. Therefore, plc-1, cpe-1, and splA2 are involved in stress responses and cellulose utilization in N. crassa.
Collapse
Affiliation(s)
- Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
3
|
Huang Y, Li YC, Li DM, Bi Y, Liu YX, Mao RY, Zhang M, Jiang QQ, Wang XJ, Prusky D. Molecular Characterization of Phospholipase C in Infection Structure Differentiation Induced by Pear Fruit Surface Signals, Stress Responses, Secondary Metabolism, and Virulence of Alternaria alternata. PHYTOPATHOLOGY 2022; 112:2207-2217. [PMID: 35612304 DOI: 10.1094/phyto-11-21-0475-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal pathogens use plant surface physiochemical signals to trigger specific developmental processes. To assess the role of phospholipase C (PLC) in mediating plant stimuli sensing of Alternaria alternata, the function of three PLC genes was characterized by constructing ΔAaPLC mutants. Here we showed that fruit wax-coated surfaces significantly induced appressorium formation in A. alternata and mutants. Germination of ΔAaPLC mutants did not differ from the wild type. Deletion of AaPLC1 led to the decrease of appressorium formation and infected hyphae, but the degree of reduction varies between the different types of waxes, with the strongest response to pear wax. Appressorium formation and infected hyphae of the ΔAaPLC1 mutant on dewaxed onion epidermis mounted with pear wax (θ4) were reduced by 14.5 and 65.7% after 8 h incubation, while ΔAaPLC2 and ΔAaPLC3 formed the same infection hyphae as wild type. In addition, AaPLC1 mutation caused pleiotropic effects on fungal biological function, including growth deficiency, changes in stress tolerance, weakening of pathogenicity to the host, as well as destruction of mycotoxin synthesis. Both AaPLC2 and AaPLC3 genes were found to have some effects on stress response and mycotoxin production. Taken together, AaPLC genes differentially regulate the growth, stress response, pathogenicity, and secondary metabolism of A. alternata.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dong-Mei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Xiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ren-Yan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian-Qian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao-Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
4
|
Jiang Q, Mao R, Li Y, Bi Y, Liu Y, Zhang M, Li R, Yang Y, Dov B P.
AaCaM
is required for infection structure differentiation and secondary metabolites in pear fungal pathogen
Alternaria alternata. J Appl Microbiol 2022; 133:2631-2641. [DOI: 10.1111/jam.15732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/12/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Renyan Mao
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yongcai Li
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yang Bi
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yongxiang Liu
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Miao Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Rong Li
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yangyang Yang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Prusky Dov B
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
- Institute of Postharvest and Food Sciences The Volcani Center, Agricultural Research Organization Rishon LeZion Israel
| |
Collapse
|
5
|
Huang Y, Li Y, Li D, Bi Y, Prusky DB, Dong Y, Wang T, Zhang M, Zhang X, Liu Y. Phospholipase C From Alternaria alternata Is Induced by Physiochemical Cues on the Pear Fruit Surface That Dictate Infection Structure Differentiation and Pathogenicity. Front Microbiol 2020; 11:1279. [PMID: 32695073 PMCID: PMC7339947 DOI: 10.3389/fmicb.2020.01279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
To investigate the mechanisms of phospholipase C (PLC)-mediated calcium (Ca2+) signaling in Alternaria alternata, the regulatory roles of PLC were elucidated using neomycin, a specific inhibitor of PLC activity. Three isotypes of PLC designated AaPLC1, AaPLC2, and AaPLC3 were identified in A. alternata through genome sequencing. qRT-PCR analysis showed that fruit wax extracts significantly upregulated the expression of all three PLC genes in vitro. Pharmacological experiments showed that neomycin treatment led to a dose-dependent reduction in spore germination and appressorium formation in A. alternata. Appressorium formation was stimulated on hydrophobic and pear wax-coated surfaces but was significantly inhibited by neomycin treatment. The appressorium formation rates of neomycin treated A. alternata on hydrophobic and wax-coated surfaces decreased by 86.6 and 47.4%, respectively. After 4 h of treatment, exogenous CaCl2 could partially reverse the effects of neomycin treatment. Neomycin also affected mycotoxin production in alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tentoxin (TEN), with exogenous Ca2+ partially reversing these effects. These results suggest that PLC is required for the growth, infection structure differentiation, and secondary metabolism of A. alternata in response to physiochemical signals on the pear fruit surface.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dongmei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.,Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yupeng Dong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
7
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
8
|
VdPLP, A Patatin-Like Phospholipase in Verticillium dahliae, Is Involved in Cell Wall Integrity and Required for Pathogenicity. Genes (Basel) 2018. [PMID: 29534051 PMCID: PMC5867883 DOI: 10.3390/genes9030162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The soil-borne ascomycete fungus Verticillium dahliae causes vascular wilt disease and can seriously diminish the yield and quality of important crops. Functional analysis of growth- and pathogenicity-related genes is essential for revealing the pathogenic molecular mechanism of V. dahliae. Phospholipase is an important virulence factor in fungi that hydrolyzes phospholipids into fatty acid and other lipophilic substances and is involved in hyphal development. Thus far, only a few V. dahliae phospholipases have been identified, and their involvement in V. dahliae development and pathogenicity remains unknown. In this study, the function of the patatin-like phospholipase gene in V. dahliae (VdPLP, VDAG_00942) is characterized by generating gene knockout and complementary mutants. Vegetative growth and conidiation of VdPLP deletion mutants (ΔVdPLP) were significantly reduced compared with wild type and complementary strains, but more microsclerotia formed. The ΔVdPLP mutants were very sensitive to the cell-wall-perturbing agents: calcofluor white (CFW) and Congo red (CR). The transcriptional level of genes related to the cell wall integrity (CWI) pathway and chitin synthesis were downregulated, suggesting that VdPLP has a pivotal role in the CWI pathway and chitin synthesis in V. dahliae. ΔVdPLP strains were distinctly impaired in in their virulence and ability to colonize Nicotiana benthamiana roots. Our results demonstrate that VdPLP regulates hyphal growth and conidial production and is involved in stabilizing the cell wall, thus mediating the pathogenicity of V. dahliae.
Collapse
|
9
|
Barman A, Tamuli R. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 2017; 63:861-875. [PMID: 28265741 DOI: 10.1007/s00294-017-0682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
We investigated phenotypes of the double mutants of the calcium (Ca2+) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca2+/H+ exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
10
|
Zhu Q, Sun L, Lian J, Gao X, Zhao L, Ding M, Li J, Liang Y. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet Biol 2016; 97:1-9. [PMID: 27777035 DOI: 10.1016/j.fgb.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
Phospholipase C (PLC) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. To elucidate the functions of PLC in morphogenesis and pathogenesis in Fusarium graminearum, deletion mutants were constructed of all six FgPLC genes identified in this study. Deletion of FgPLC1, but not the other five FgPLC genes, affected hyphal growth and conidiation. The FgPLC1 deletion mutant (Δplc1) also was defective in conidium germination and germ tube growth. It was sterile in selfing crosses and had increased sensitivities to hyperosmotic and cell wall stresses. The Δplc1 mutant showed reduced DON production and virulence during infection in flowering wheat heads. Deletion of FgPLC1 decreased the phosphorylation levels of both Gpmk1 and Mgv1 MAP kinases. qRT-PCR analysis showed that several genes related to defective phenotypes were down-regulated in the Δplc1 mutant. Taken together, these results indicated that FgPLC1 is important for hyphal growth, plant infection, and sexual or asexual reproduction, and it may be functionally related to MAP kinases in F. graminearum.
Collapse
Affiliation(s)
- Qili Zhu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Ling Sun
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Lian
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xuli Gao
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Lei Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China
| | - Mingyu Ding
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jing Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|