1
|
Luan L, Li N, Zhang K, Wang X, Pan H. Diversin upregulates the proliferative ability of colorectal cancer by inducing cell cycle proteins. Exp Mol Pathol 2023; 129:104850. [PMID: 36623636 DOI: 10.1016/j.yexmp.2023.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal tumour with increasing incidence worldwide. However, the underlying molecular mechanism of CRC proliferation is not completely clear. Diversin,as an ankyrin repeat-containing protein, is upregulated in various solid tumours and accelerates cancer progression by promoting cell proliferation and increasing S phase fraction of cells. In this study, 71 CRC samples and corresponding adjacent tissue samples were included. The expression of diversin in tissues was verified via immunohistochemical analysis. The MTS assay and flow cytometry (FCM) was used to measure cell proliferation and cell cycle. Results of immunohistochemical analysis revealed that diversin was highly expressed in human CRC tissues and was significantly associated with tumour differentiation, clinical stage and lymph node metastasis. The analysis based on the CRC data from The Cancer Genome Atlas (TCGA) database showed that a high expression of diversin correlated with the poor prognosis of CRC. Results of the MTS assay indicated that the overexpression of diversin promoted the proliferation of CRC cells, while its downregulation had an inhibitory effect on CRC cell proliferation. FCM analysises presented that diversin increased the flux of the CRC cell cycle from G1 to S and regulated cycle-related proteins, namely, P21, P27, cyclin E, CDK2, cyclin D and CDK4. The results suggest that diversin contributes to CRC proliferation that involves the distribution of the cell cycle. In CRC tissues, the expression of diversin has closely related to the prognosis. The higher the expression levels of diversin, the worse the prognosis. In vitro, diversin could increase the proliferative ability of CRC cells through the G1-S checkpoint and JNK signalling pathway, confirming that diversin contributes to CRC development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Nanyang Li
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Keyuan Zhang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Xiaojie Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China
| | - Hai Pan
- Central Laboratory, Department of Neurosurgery and Dean's office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, PR China.
| |
Collapse
|
2
|
Ozmen Yaylaci A, Canbek M. The role of ubiquitin signaling pathway on liver regeneration in rats. Mol Cell Biochem 2023; 478:131-147. [PMID: 35750978 DOI: 10.1007/s11010-022-04482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
The ubiquitin signalling pathway is a large system associated with numerous intracellular mechanisms. However, its function in the liver regeneration process remains unknown. This particular study investigates the intracellular effect mechanisms of the ubiquitin signalling pathway. It also determines the differences in the expression of 88 genes belonging to the ubiquitin pathway using the RT-PCR array method. To conduct this research, three genes-that differed in the expression analysis were selected. Moreover, their proteins were analysed by western blot analysis while using Ki67 immunohistochemical analysis that determines proliferation rates by hour. It was determined that BRCA1 and BARD1, which are effective in DNA repair, play an active role at PH24. Similarly, Ube2t expression, which belongs to the Fanconi anaemia pathway associated with DNA repair, was also found to be high at PH12-72 h. In addition, it was revealed that the expressions of Anapc2, Anapc11, Cdc20 belonging to the APC/CCdc20 complex, which participate in cell cycle regulation, differed at different hours after PH. Expression of Mul1, which is involved in mitochondrial biogenesis and mitophagy mechanisms, peaked at PH12 under the observation. Considering the Mul1 gene expression difference, MUL1-mediated mitophagy and mitochondrial fission mechanism may be associated with liver regeneration. It was also determined that PARKIN-mediated mitophagy mechanisms are not active in 0-72 h of liver regeneration since PARKIN expression did not show a significant change in PH groups.
Collapse
Affiliation(s)
- Ayse Ozmen Yaylaci
- Department of Biology, Faculty of Arts and Science, Hitit University, 19030, Corum, Turkey.
| | - Mediha Canbek
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
3
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zhang S, Shen Y, Li H, Bi C, Sun Y, Xiong X, Wei W, Sun Y. The Negative Cross-Talk between SAG/RBX2/ROC2 and APC/C E3 Ligases in Regulation of Cell Cycle Progression and Drug Resistance. Cell Rep 2021; 32:108102. [PMID: 32905768 PMCID: PMC7505520 DOI: 10.1016/j.celrep.2020.108102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a well-characterized E3 ligase that couples with UBE2C and UBE2S E2s for substrate ubiquitylation by the K11 linkage. Our recent data show that SAG/RBX2/ROC2, a RING component of Cullin-RING E3 ligase, also complexes with these E2s for K11-linked substrate polyubiquitylation. Whether these two E3s cross-talk with each other was previously unknown. Here, we report that SAG competes with APC2 for UBE2C/UBE2S binding to act as a potential endogenous inhibitor of APC/C, thereby regulating the G2-to-M progression. As such, SAG knockdown triggers premature activation of APC/C, leading to mitotic slippage and resistance to anti-microtubule drugs. On the other hand, SAG itself is a substrate of APC/CCDH1 for targeted degradation at the G1 phase. The degradation-resistant mutant of SAG-R98A/L101A accelerates the G1-to-S progression. Our study reveals that the negative cross-talk between SAG and APC/C is likely a mechanism to ensure the fidelity of cell cycle progression. Zhang et al. provide a mechanistic insight of how negative cross-talk between E3 ligases SAG and APC/C ensures proper cell cycle progression. SAG knockdown prematurely activates APC/C to promote mitotic progression and trigger anti-microtubule drugs resistance, whereas SAG degradation by APC/CCDH1 mainly occurs in G1 phase for proper G1-to-S transition.
Collapse
Affiliation(s)
- Shizhen Zhang
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yanwen Shen
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Chao Bi
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yilun Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
5
|
Nakatsukasa K, Sone M, Alemayehu DH, Okumura F, Kamura T. The HECT-type ubiquitin ligase Tom1 contributes to the turnover of Spo12, a component of the FEAR network, in G2/M phase. FEBS Lett 2018; 592:1716-1724. [PMID: 29683484 DOI: 10.1002/1873-3468.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome system plays a crucial role in cell cycle progression. A previous study suggested that Spo12, a component of the Cdc14 early anaphase release (FEAR) network, is targeted for degradation by the APC/CCdh1 complex in G1 phase. In the present study, we demonstrate that the Hect-type ubiquitin ligase Tom1 contributes to the turnover of Spo12 in G2/M phase. Coimmunoprecipitation analysis confirmed that Tom1 and Spo12 interact. Overexpression of Spo12 is cytotoxic in the absence of Tom1. Notably, Spo12 is degraded in S phase even in the absence of Tom1 and Cdh1, suggesting that an additional E3 ligase(s) also mediates Spo12 degradation. Together, we propose that several distinct degradation pathways control the level of Spo12 during the cell cycle.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Megumi Sone
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Dawit Hailu Alemayehu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan
| |
Collapse
|
6
|
Clb6-Cdc28 Promotes Ribonucleotide Reductase Subcellular Redistribution during S Phase. Mol Cell Biol 2018; 38:MCB.00497-17. [PMID: 29263158 DOI: 10.1128/mcb.00497-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
A tightly controlled cellular deoxyribonucleotide (deoxynucleoside triphosphate [dNTP]) pool is critical for maintenance of genome integrity. One mode of dNTP pool regulation is through subcellular localization of ribonucleotide reductase (RNR), the enzyme that catalyzes the rate-limiting step of dNTP biosynthesis. In Saccharomyces cerevisiae, the RNR small subunit, Rnr2-Rnr4, is localized to the nucleus, whereas the large subunit, Rnr1, is cytoplasmic. As cells enter S phase or encounter DNA damage, Rnr2-Rnr4 relocalizes to the cytoplasm to form an active holoenzyme complex with Rnr1. Although the DNA damage-induced relocalization requires the checkpoint kinases Mec1-Rad53-Dun1, the S-phase-specific redistribution does not. Here, we report that the S-phase cyclin-cyclin-dependent kinase (CDK) complex Clb6-Cdc28 controls Rnr2-Rnr4 relocalization in S phase. Rnr2 contains a consensus CDK site and exhibits Clb6-dependent phosphorylation in S phase. Deletion of CLB6 or removal of the CDK site results in an increased association of Rnr2 with its nuclear anchor Wtm1, nuclear retention of Rnr2-Rnr4, and an enhanced sensitivity to the RNR inhibitor hydroxyurea. Thus, we propose that Rnr2-Rnr4 redistribution in S phase is triggered by Clb6-Cdc28-mediated phosphorylation of Rnr2, which disrupts the Rnr2-Wtm1 interaction and promotes the release of Rnr2-Rnr4 from the nucleus.
Collapse
|