1
|
Chu S, Shi Z, Xiao J, Wu Y. Bioactive constituents of amphibious Rotala rotundifolia at different growth stages and response surface optimization for flavonoid extraction. Sci Rep 2024; 14:29055. [PMID: 39580527 PMCID: PMC11585568 DOI: 10.1038/s41598-024-80300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal and has been used as a traditional medicine in China for over a hundred years. In this study, the bioactive constituents from different tissues of submerged and emergent R. rotundifolia at different growth periods were investigated. The response surface method was used to optimize the flavonoids extraction condition. The amount of flavonoids and triterpenoids from different tissues of R. rotundifolia were much higher than tannins and alkaloids. The highest total flavonoids amount from the leaves of submerged R. rotundifolia was 270.92 ± 13.34 mg/g at day 30 (phyllomorphosis finished), 1.8 times that of the emergent form (150.45 ± 15.11 mg/g). The highest triterpenoids content from the submerged and emergent forms was 242.20 ± 11.51 and 163.09 ± 14.87 mg/g at days 90 and 150 (flowering stage), respectively. The optimal flavonoid extraction conditions were: extraction time 50 min, ultrasonic power 333 W, ethanol concentration 79.3%, and a solid-liquid ratio of 1:60. The LC-MS/MS analysis showed that the extracts from submerged and emergent R. rotundifolia contained 26 and 22 flavonoids, respectively. This study provides phytochemical evidence for the further utilization of R. rotundifolia.
Collapse
Affiliation(s)
- Shuyi Chu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Shi
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Jibo Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Yuxin Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
2
|
Liu TW, Hsiao SW, Lin CT, Hsiao G, Lee CK. Anti-Aging Constituents from Pinus morrisonicola Leaves. Molecules 2023; 28:5063. [PMID: 37446726 DOI: 10.3390/molecules28135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pinus morrisonicola Hayata is a unique plant species found in Taiwan. Previous studies have identified its anti-hypertensive, anti-oxidative, and anti-inflammatory effects. In this study, a bioactivity-guided approach was employed to extract 20 compounds from the ethyl acetate fraction of the ethanol extract of Pinus morrisonicola Hayata's pine needles. The anti-aging effects of these compounds were investigated using HT-1080 cells. The structures of the purified compounds were confirmed through NMR and LC-MS analysis, revealing the presence of nine flavonoids, two lignans, one coumarin, one benzofuran, one phenylic acid, and six diterpenoids. Among them, PML18, PML19, and PML20 were identified as novel diterpene. Compounds 3, 4, and 5 exhibited remarkable inhibitory effects against MMP-2 and showed no significant cell toxicity at 25 μM. Although the purified compounds showed lower activity against Pro MMP-2 and Pro MMP-9 compared to the ethyl acetate fraction, we speculate that this is the result of synergistic effects.
Collapse
Affiliation(s)
- Ta-Wei Liu
- School of Pharmacy, Taipei Medical University, 250 Wu Xin Street, Taipei 11031, Taiwan
| | - Sui-Wen Hsiao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu Xin Street, Taipei 110301, Taiwan
| | - Chi-Ting Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu Xin Street, Taipei 11031, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, Taipei Medical University, 250 Wu Xin Street, Taipei 11031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu Xin Street, Taipei 110301, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu Xin Street, Taipei 11031, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan 32023, Taiwan
| |
Collapse
|
3
|
Shahanaj I, Ramakrishnan J, Poomani K, Devarajan N. Lawsonia inermis flower aqueous extract expressed better anti-alpha-glucosidase and anti-acetylcholinesterase activity and their molecular dynamics. J Biomol Struct Dyn 2023; 41:13752-13765. [PMID: 36905654 DOI: 10.1080/07391102.2023.2179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/13/2023]
Abstract
Lawsonia inermis (henna) has been used in traditional medicine throughout the world and biological property of its flower has been least explored. In the present study, the phytochemical characterization and biological activity (in vitro radical scavenging activity, anti-alpha glucosidase and anti-acetylcholinesterase) of aqueous extract prepared from henna flower (HFAE) was carried out by both Qualitative and quantitative phytochemical analysis and Fourier-transform infrared spectroscopy revealed the functional group of the phytoconstituents such as phenolics, flavonoids, saponin, tannins and glycosides. The phytochemicals present in HFAE was preliminary identified by liquid chromatography/electrospray ionization tandem mass spectrometry. The HFAE showed potent in vitro antioxidant activity and the HFAE inhibited mammalian α-glucosidase (IC50 = 129.1 ± 5.3 µg/ml; Ki = 38.92 µg/ml) and acetylcholinesterase (AChE; IC50 = 137.77 ± 3.5 µg/ml; Ki = 35.71 µg/ml) activity by competitive manner. In silico molecular docking analysis revealed the interaction of active constituents identified in HFAE with human α-glucosidase and AChE. Molecular dynamics simulation for 100 ns showed the stable binding of top two ligand/enzyme complexes with lowest binding energy such as 1,2,3,6-Tetrakis-O-galloyl-beta-D-glucose (TGBG)/human α-glucosidase, Kaempferol 3-glucoside-7-rhamnoside (KGR)/α-glucosidase, agrimonolide 6-O-β-D-glucopyranoside (AMLG)/human AChE and KGR/AChE. Through MM/GBSA analysis, the binding energy for TGBG/human α-glucosidase, KGR/α-glucosidase, AMLG/human AChE and KGR/AChE was found to be -46.3216, -28.5772, -45.0077 and -47.0956 kcal/mol, respectively. Altogether, HFAE showed an excellent antioxidant, anti-alpha glucosidase and anti-AChE activity under in vitro. This study suggest HFAE with remarkable biological activities could be further explored for therapeutics against type 2 diabetes and diabetes-associated cognitive decline.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ismail Shahanaj
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | - Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
4
|
He X, Yang F, Huang X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021; 26:molecules26196088. [PMID: 34641631 PMCID: PMC8512048 DOI: 10.3390/molecules26196088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Biflavonoids, composed of two monoflavonoid residues, occur naturally in angiosperms, bryophytes, ferns, and gymnosperms. More than 592 biflavonoids have been structurally elucidated, and they can be classified into two groups of C-C and C-linear fragments-C, based on whether the linker between the two residues contains an atom. As the linker can be established on two arbitrary rings from different residues, the C-C type contains various subtypes, as does the C-linear fragment-C type. Biflavonoids have a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, antidiabetic, antitumor, and cytotoxic properties, and they can be applied in Alzheimer's disease and Parkinson's disease. This review mainly summarizes the distribution and chemistry of biflavonoids; additionally, their bioactivities, pharmacokinetics, and synthesis are discussed.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
| | - Xin’an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (X.H.); (F.Y.)
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-020-36585450
| |
Collapse
|
5
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
6
|
Xiong Y, Yi P, Du C, Zhang J, Yuan C, Huang L, Hao X, Gu W. A new adduct of iriflophene and flavonoid from Sedum aizoon L. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Vu NK, Kim CS, Ha MT, Ngo QMT, Park SE, Kwon H, Lee D, Choi JS, Kim JA, Min BS. Antioxidant and Antidiabetic Activities of Flavonoid Derivatives from the Outer Skins of Allium cepa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8797-8811. [PMID: 32603104 DOI: 10.1021/acs.jafc.0c02122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The onion, known as the bulb onion or common onion, is not only a key ingredient in many tasty and healthy vegetarian meals but also many traditional medicines. Nine new flavonoids [cepaflavas A, B (5, 6), cepadials A-D (7-9 and 14), and cepabiflas A-C (10-12)] and six known compounds (1-4, 13, 15) were obtained from the outer skins of Allium cepa L. Among them, compounds 5, 6, and 9 might be artificial products formed during extraction and isolation. New compounds were structurally elucidated using various spectroscopy/spectrometry techniques, including NMR and HRMS, and computational methods. Their absolute configurations were determined using time-dependent density functional theory calculations, combined with ECD spectroscopy, optical rotation calculation, and statistical procedures (CP3 and DP4 analysis). The free radical scavenging assays revealed that the new compounds 10-12 possessed considerable antioxidant activities with IC50 values of 4.25-8.88 and 7.12-8.14 μM against DPPH and ABTS•+, respectively. Compounds 13-15 showed substantial inhibitory activities against both α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), with IC50 values of 0.89-6.80 and 1.13-6.82 μM, respectively. On the basis of molecular docking studies, 13 and 15 were predicted to have high binding capacity and strong affinity toward the active site of PTP1B.
Collapse
Affiliation(s)
- Ngoc Khanh Vu
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Quynh-Mai Thi Ngo
- College of Pharmacy, Hai Phong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Hai Phong 180000, Viet Nam
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Haeun Kwon
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| |
Collapse
|
8
|
Zhang B, Shu M, Xu C, An C, Wang R, Lin Z. Virtual Screening, Docking, Synthesis and Bioactivity Evaluation of Thiazolidinediones as Potential PPARγ Partial Agonists for Preparation of Antidiabetic Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180827123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background:Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the key targets of insulin resistance research, in addition to being ligand-activated transcription factors of the nuclear hormone receptor superfamily with a leading role in adiposeness activation and insulin sensitivity. They regulate cholesterol and carbohydrate metabolism through direct actions on gene expression. Despite their therapeutic importance, there are dose limiting side effects associated with PPARγ drug treatments, thus a new generation of safer PPARγ drugs are being actively sought after treatment.Methods:In this study, we used computer aided drug design to screen new series of PPARγ ligands, and synthesized a series of potential thiazolidinedione derivatives such as 5,7- dibenzyloxybenzyl-3-hydroxymethyl-4H-coumarin-4-ketone, using 4-steps to synthesize the target compounds and built streptozotocin (STZ) induced insulin resistance rat model to measure their antidiabetic activity.Results:We found that 10 mg/kg concentration of compound 0701C could significantly decrease blood glucose and serum PPARγ, serum insulin levels in insulin resistance model rat.Conclusion:We would conclude that compound 0701C might serve as a potential PPARγ partial agonist.
Collapse
Affiliation(s)
- Beina Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chunmei Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chunhong An
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rui Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhihua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
9
|
Zolfaghari B, Jafarian A, Rezaei M. Evaluation of Cytotoxic Effect of Different Extracts of Seidlitzia rosmarinus on HeLa and HepG2 Cell Lines. Adv Biomed Res 2018; 7:132. [PMID: 30464932 PMCID: PMC6206741 DOI: 10.4103/abr.abr_165_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Seidlitzia rosmarinus which is commonly called “Oshnan” or “Eshnan” in Persian belongs to Chenopodiaceae family. Conventionally, it is believed that this plant is toxic. This study was aimed to evaluate the cytotoxic effect of S. rosmarinus against HeLa and HepG2 cell lines. Materials and Methods: S. rosmarinus was collected from the desert near Yazd, Iran. Hexane, chloroform, chloroform/methanol (9:1), and butanol extracts of aerial parts of S. rosmarinus were prepared. Doxorubicin and dimethyl sulfoxide 10% were used as positive and negative control, respectively. The cytotoxic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: All extracts significantly and concentration dependently reduced viability of HeLa and HepG2 cells. Hexane, chloroform, and butanol extracts at doses of 200, 500, 750, and 1000 μg/ml significantly reduced HeLa cell viability (P < 0.05). Chloroform/methanol extract at doses of 100–500 μg/ml significantly reduced HeLa cell viability (P < 0.05). Hexane, chloroform, and butanol extracts at doses of 500, 750, and 1000 μg/ml significantly reduced HepG2 cell viability (P < 0.05). Chloroform/methanol extract at doses of 200, 300, 400, and 500 μg/ml significantly reduced HepG cell viability (P < 0.05). The most cytotoxic extract was chloroform/methanol extract in both cell lines. Furthermore, in the both cell lines, the second potent extract was chloroform extract. Conclusions: It can be concluded from the findings of this study that S. rosmarinus is a good candidate for further study to find new cytotoxic agents. Phytochemical investigation on chloroform/methanol extract and their structures is recommended.
Collapse
Affiliation(s)
- Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Jafarian
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
New Adducts of Iriflophene and Flavonoids Isolated from Sedum aizoon L. with Potential Antitumor Activity. Molecules 2017; 22:molecules22111859. [PMID: 29099046 PMCID: PMC6150161 DOI: 10.3390/molecules22111859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022] Open
Abstract
Four new special compounds with character of an iriflophene unit and a flavonoid unit connecting via a furan ring were isolated from the roots of Sedum aizoon L. Their corresponding structures were elucidated on the basis of spectroscopic analysis. The in vitro anti-proliferative activities against BXPC-3, A549, and MCF-7 tumor cell lines were evaluated. Compounds 3 and 4 exhibited moderate cytotoxic activities with IC50 ranging from 24.84 to 37.22 μmol L−1, which was capable for further drug exploration.
Collapse
|
11
|
Özdemir A, Yildiz M, Senol FS, Şimay YD, Ibişoglu B, Gokbulut A, Orhan IE, Ark M. Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem Toxicol 2017; 109:898-909. [DOI: 10.1016/j.fct.2017.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
|
12
|
de Oliveira Silva E, Batista R. Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Compr Rev Food Sci Food Saf 2017; 16:580-616. [PMID: 33371567 DOI: 10.1111/1541-4337.12266] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The ubiquitous compound 4-hydroxy-3-methoxycinnamic acid, also known as ferulic acid (FA), constitutes a bioactive ingredient of many foods that may offer beneficial effects against disorders related to oxidative stress, including cancer, diabetes, and neurodegenerative diseases. This review discusses the antioxidant properties of FA, establishing relationships to several biological activities already described for this natural product. Next, 387 naturally occurring compounds, all isolated from plants and published between 1990 and 2015, the structures of which bear 1 or more feruloyl moieties, are covered in this review along with their structural formulas, botanical sources, and bioactivities. The compounds' distribution, structural patterns, bioactivities, and perspectives on food research are also succinctly discussed.
Collapse
Affiliation(s)
- Eliane de Oliveira Silva
- Dept. of Organic Chemistry, Inst. of Chemistry, Federal Univ. of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Ronan Batista
- Dept. of Organic Chemistry, Inst. of Chemistry, Federal Univ. of Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Ondina, 40170-115, Salvador, Bahia, Brazil
| |
Collapse
|
13
|
Hamama WS, Hassanien AEDE, Zoorob HH. Advanced Routes in Synthesis and Reactions of Lawsone Molecules (2-Hydroxynaphthalene-1,4-dione). J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wafaa S. Hamama
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Alaa El-Din E. Hassanien
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Hanafi H. Zoorob
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| |
Collapse
|
14
|
Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of Impatiens balsamina L. on Caenorhabditis elegans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4245830. [PMID: 28326124 PMCID: PMC5343276 DOI: 10.1155/2017/4245830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022]
Abstract
Impatiens balsamina L. (Balsaminaceae), an annual herb found throughout China, has been extensively used in traditional Chinese medicine (TCM). However, our knowledge regarding the adverse effects of I. balsamina in vivo is very limited. In this present study, the nematode Caenorhabditis elegans model was employed to fully assess the adverse effects of hydroalcoholic (EtOH 55%) extracts of I. balsamina stems (HAEIBS) in vivo. After exposure to 10 mg/mL HAEIBS, the major organism-level endpoints of C. elegans of percent survival, frequency of head thrash and body bends, and reproduction had decreased by 24%, 30%, and 25%, respectively. The lifespan of C. elegans was also greatly reduced after HAEIBS exposure compared to the controls. The active compounds in HAEIBS were separated using high speed countercurrent chromatograph (HSCCC) and characterized by high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Two compounds, lawsone and 2-methoxy-1,4-naphthoquinone (MNQ), and their adverse effects were then more thoroughly detailed in this study. It was found that lawsone is the major toxin in HAEIBS with a higher toxicity than MNQ in terms of negative impact on C. elegans mortality, locomotion, reproduction, and lifespan. Our data also suggests that the C. elegans model may be useful for assessing the possible toxicity of other Chinese medicines, plant extracts, and/or compounds.
Collapse
|
15
|
Sarker SD, Nahar L. Progress in the Chemistry of Naturally Occurring Coumarins. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:241-304. [PMID: 28762091 DOI: 10.1007/978-3-319-59542-9_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coumarins are the largest group of 1-benzopyran derivatives found in plants. The initial member of this group of compounds, coumarin (2H-1-benzopyran-2-one), a fragrant colorless compound, was first isolated from the Tonka bean (Dipteryx odorata, family Fabaceae) in 1820. The name coumarin comes from a French term for the tonka bean, coumarou. Since the discovery of coumarin, several of its derivatives, with umbelliferone (7-hydroxycoumarin) being the most common one, have been reported from various natural sources. The families Apiaceae, Asteraceae, and Rutaceae are the three major plant sources of coumarins.Generally, these plant secondary metabolites may be classified into simple, simple prenylated, simple geranylated, furano, pyrano, sesquiterpenyl and oligomeric coumarins. Using this standard classification, this chapter aims to present an account on the advances of the chemistry of naturally occurring coumarins, as reported in the literature during the period 2013-2015.In Sect. 1, the coumarins are introduced and their generic biosynthetic route discussed briefly. In Sect. 2, the largest of the three sections, various classes of natural coumarins are detailed, with their relevant structures and the citation of appropriate references. In a concluding section, it is highlighted that during the last 3 years, more than 400 coumarins have been reported in the literature. Many of these coumarins have been re-isolations of known compounds from known or new sources, most often associated with various biological activities. However, a substantial number of coumarins bearing new skeletons, especially dimers, prenylated furanocoumarins, sesquiterpenyl, and some unusual coumarins were also reported during the period of 2013-2015.Coumarin chemistry remains one of the major interest areas of phytochemists, especially because of their structural diversity and medicinal properties, along with the wide-ranging bioactivities of these compounds, inclusive of analgesic, anticoagulant anti-HIV, anti-inflammatory, antimicrobial, antineoplastic, antioxidant, and immunomodulatory effects. Despite significant advancements in the extraction, isolation, structure elucidation and bioactivity testing of naturally occurring coumarins, only a marginal advancement has been observed recently in relation to the study of their biosynthesis.
Collapse
Affiliation(s)
- Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
16
|
Kang J, Zhang P, Gao Z, Zhang J, Yan Z, Wang H, Chen R. Naphthohydroquinones, naphthoquinones, anthraquinones, and a naphthohydroquinone dimer isolated from the aerial parts of Morinda parvifolia and their cytotoxic effects through up-regulation of p53. PHYTOCHEMISTRY 2016; 130:144-151. [PMID: 27298278 DOI: 10.1016/j.phytochem.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 06/06/2023]
Abstract
Five unknown compounds, morindaparvins C-G, consisting of naphthohydroquinones, a naphthoquinone, an anthraquinone, and a naphthohydroquinone dimer, together with three known quinones and seven other known compounds, were isolated from the aerial parts of Morinda parvifolia. The structures of morindaparvins C, D, E, F, and G were elucidated on the basis of spectroscopic or X-ray diffraction analysis as methyl 4-hydroxy-1,6-dimethoxy-naphthalene-2-carboxylate, methyl 4,8-dihydroxy-1-methoxy-naphthalene-2-carboxylate, 3-amino-6-methoxy-2-methoxycarbonyl-1,4-naphthoquinone, 1,4-dihydroxy-7-hydroxymethyl-anthraquinone, and dimethyl 1,1'-dihydroxy-4,4',7,7'-tetramethoxy-2,2'-binaphthalene-3,3'-dicarboxylate, respectively. Naphthoquinones and naphthohydroquinone dimers were previously unknown in the genus Morinda. In addition, the compounds were tested for cytotoxicity against four human cancer cell lines HeLa, A2780, Ketr3 and MCF-7 and their effects on p53-activated transcription. Three naphthoquinones had moderate cytotoxic effects with IC50 values ranging from 1.51 to 9.56 μM, through up-regulation of p53 transcriptional activity.
Collapse
Affiliation(s)
- Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, PR China.
| | - Peng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, PR China.
| | - Zengping Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, PR China.
| | - Jian Zhang
- Department of Cell and Molecular Biology, Research Institute of Orthopedics & Traumatology, Foshan Hospital of TCM, Foshan 528000, PR China.
| | - Zheng Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, PR China.
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, PR China.
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, PR China.
| |
Collapse
|
17
|
Love BE. Isolation and synthesis of polyoxygenated dibenzofurans possessing biological activity. Eur J Med Chem 2015; 97:377-87. [DOI: 10.1016/j.ejmech.2015.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/05/2015] [Indexed: 11/26/2022]
|