1
|
Shah SAR, Mumtaz M, Sharif S, Mustafa I, Nayila I. Helicobacter pylori and gastric cancer: current insights and nanoparticle-based interventions. RSC Adv 2025; 15:5558-5570. [PMID: 39967885 PMCID: PMC11834156 DOI: 10.1039/d4ra07886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Background: H. pylori is recognized as one of the main causes of gastric cancer, and this type of cancer is considered as one of the leading diseases causing cancer deaths all over the world. Knowledge on the interactions between H. pylori and gastric carcinogenesis is important for designing preventive measures. Objective: the objective of this review is to summarize the available literature on H. pylori and gastric cancer, specifically regarding the molecular mechanisms, nanoparticle-based therapy and clinical developments. Methods: the databases including PubMed, Google Scholar and web of science were searched as well as papers from 2010 to 2024 were considered for review. Research literature on H. pylori, gastric cancer, nanoparticles, nanomedicine, and therapeutic interventions was summarized for current findings and possible treatments. Results: the presence of H. pylori in gastric mucosa causes chronic inflammation and several molecular alterations such as DNA alteration, epigenetic changes and activation of oncogenic signaling pathways which causes gastric carcinogenesis. Conventional antibiotic treatments have some issues because of the constantly rising levels of antibiotic resistance. Lipid based nanoformulations, polymeric and metallic nanoparticles have been delivered in treatment of H. pylori to improve drug delivery and alter immunological responses. Conclusion: nanoparticle based interventions have been widely explored as drug delivery systems by improving the treatment strategies against H. pylori induced gastric cancer. Further studies and clinical trials are required to bring these findings into a clinical setting in order to possibly alter the management of H. pylori related gastric malignancies.
Collapse
Affiliation(s)
- Syed Ali Raza Shah
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Maria Mumtaz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Imtiaz Mustafa
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Iffat Nayila
- Department of Pharmacy, The University of Lahore Sargodha Campus Sargodha Pakistan
| |
Collapse
|
2
|
Tan A, Scortecci KC, Cabral De Medeiros NM, Kukula-Koch W, Butler TJ, Smith SM, Boylan F. Plukenetia volubilis leaves as source of anti- Helicobacter pylori agents. Front Pharmacol 2024; 15:1461447. [PMID: 39508036 PMCID: PMC11537943 DOI: 10.3389/fphar.2024.1461447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Helicobacter pylori infection is a major issue worldwide, with widespread prevalence, combined with its link to gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Meanwhile, effectiveness of current treatment protocols is limited by increasing antibiotic resistance and patient compliance issues due to long regimens and side effects. Plukenetia volubilis, or sacha inchi, is a valuable source of bioactive molecules. However, studies on its antimicrobial activity, especially against H. pylori, are lacking. METHODS In this study, the anti-H. pylori activity of P. volubilis leaves water extract was explored using in vitro and in silico approaches. High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESI- QTOF-MS-MS) analysis of the water extract from the leaves was used to characterise the chemical composition of the plant and allowed identification of some flavonoids, such as astragalin, and some phenolic compounds. Then, high-speed counter current chromatography (HSCCC) was used to fractionate the ethyl acetate partition obtained from the water extract from the leaves. RESULTS AND DISCUSSION The presence of flavonoids derived from kaempferol was confirmed and astragalin was isolated for the first time in P. volubilis. The P. volubilis water infusion, ethyl acetate extract and the isolated astragalin exhibited anti-bacterial activity against H. pylori J99 and two clinical isolates (e.g., minimum inhibitory concentrations of 0.53, 0.51 and 0.49 μg/mL, respectively, for clarithromycin-resistant clinical isolate SSR366). Then, using molecular docking for potential protein targets for H. pylori, it was verified that astragalin could interact with these proteins by in silico analysis. CONCLUSION These findings highlight that P. volubilis and astragalin produce a bacteriostatic activity against H. pylori and may have potential to be used in treatment against H. pylori, after further research.
Collapse
Affiliation(s)
- Aditya Tan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Katia Castanho Scortecci
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, UFRN, Natal, Brazil
| | - Nathalia Maira Cabral De Medeiros
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB) Campina Grande, Paraiba, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy With Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Thomas J. Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity Natural Products Research Centre, NatPro Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Thanh DT, Tan MT, Thu NTM, Trinh PNP, Thuong PTH, Tuyet PTG, Ngan LTM, Hieu TT. Phytochemical Composition, Antioxidant, Anti- Helicobacter pylori, and Enzyme Inhibitory Evaluations of Cleistocalyx operculatus Flower Bud and Leaf Fractions. BIOTECH 2024; 13:42. [PMID: 39449372 PMCID: PMC11503338 DOI: 10.3390/biotech13040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Six solvent fractions isolated from flower bud and leaf ethanolic extracts of Cleistocalyx operculatus were analyzed for their phytochemical contents, including phenolics, flavonoids, saponins, tannins, and alkaloids. Antioxidant activities were measured using the ABTS, DPPH, and FRAP assays. The results showed that the flower bud aqueous fraction (BAF) and the leaf aqueous fraction (LAF) rich in phenolic content (768.18 and 490.74 mg GAE/g dry extract, respectively) exhibited significantly higher antioxidant activities than the other fractions. The flower bud hexane fraction (BHF) had remarkably high flavonoid and saponin contents (134.77 mg QE/g and 153.33 mg OA/g dry extract, respectively), followed by that of the leaf hexane fraction (LHF) (76.54 mg QE/g and 88.25 mg OA/g dry extract, respectively). The BHF and LHF were found to have extremely high antibacterial activity against two H. pylori strains, ATCC 51932 and 43504 (MICs of 125 µg/mL). Interestingly, DMC (2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone) isolated from the BHF displayed greater antibacterial activity against the bacterial strains (MICs of 25-50 µg/mL) than those of the fractions. In addition, DMC presented potent inhibitory effects on H. pylori urease (IC50 of 3.2 µg/mL) and α-amylase (IC50 of 83.80 µg/mL), but no inhibition against α-glucosidase. It was also demonstrated that DMC showed pronounced inhibitory effects on the urease activity and biofilm formation of H. pylori, and could increase the membrane permeability of the bacterial cells. Scanning electron micrographs depicted that the BHF and DMC had strong effects on the cell shape and significantly induced the distortion and damage of the cell membrane. The fractions and DMC showed no significant toxicity to four tested human cell lines. Efforts to reduce antibiotic use indicate the need for further studies of the flower buds and DMC as potential products to prevent or treat gastric H. pylori infections.
Collapse
Affiliation(s)
- Doan Thien Thanh
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Mai Thanh Tan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Nguyen Thi My Thu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Pham Nhat Phuong Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Pham Thi Hoai Thuong
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Pham Thi Giang Tuyet
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Luong Thi My Ngan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Tran Trung Hieu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| |
Collapse
|
4
|
Liu M, Gao H, Miao J, Zhang Z, Zheng L, Li F, Zhou S, Zhang Z, Li S, Liu H, Sun J. Helicobacter pylori infection in humans and phytotherapy, probiotics, and emerging therapeutic interventions: a review. Front Microbiol 2024; 14:1330029. [PMID: 38268702 PMCID: PMC10806011 DOI: 10.3389/fmicb.2023.1330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) infection remains high, indicating a persistent presence of this pathogenic bacterium capable of infecting humans. This review summarizes the population demographics, transmission routes, as well as conventional and novel therapeutic approaches for H. pylori infection. The prevalence of H. pylori infection exceeds 30% in numerous countries worldwide and can be transmitted through interpersonal and zoonotic routes. Cytotoxin-related gene A (CagA) and vacuolar cytotoxin A (VacA) are the main virulence factors of H. pylori, contributing to its steep global infection rate. Preventative measures should be taken from people's living habits and dietary factors to reduce H. pylori infection. Phytotherapy, probiotics therapies and some emerging therapies have emerged as alternative treatments for H. pylori infection, addressing the issue of elevated antibiotic resistance rates. Plant extracts primarily target urease activity and adhesion activity to treat H. pylori, while probiotics prevent H. pylori infection through both immune and non-immune pathways. In the future, the primary research focus will be on combining multiple treatment methods to effectively eradicate H. pylori infection.
Collapse
Affiliation(s)
- Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography Ministry of Natural Resources, Qingdao, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electronic Engineering, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Pacheco-Hernández Y, Lozoya-Gloria E, Cruz-Durán R, Villa-Ruano N. Anthocyanins of Hierbamora (Solanum nigrescens): Revealing their Nutraceutical Potential for Controlling Hypertriglyceridemia and Helicobacter pylori Viability. Chem Biodivers 2023; 20:e202301423. [PMID: 37874748 DOI: 10.1002/cbdv.202301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We present the inhibitory properties of the Solanum nigrescens anthocyanin fraction (SNAF) and its major constituents on alpha-glucosidase (AG), pancreatic lipase (PL), HMG-CoA reductase, and ornithine decarboxylase (ODC). The effect of SNAF was simultaneously evaluated in ICR male mice exposed to triglyceride charge test (TCT). HPLC-MS profiling revealed the presence cyanidin-3-O-rutinoside-5-glucoside (CRG), delphinidin-3-(p-coumaroyl)-rutinoside-5-glucoside (DCRG), and petunidin-3-(cis-p-coumaroyl)-rutinoside-5-glucoside (PCRG) as major constituents of the fraction. SNAF, CRG, and specially PCRG, induced strong non-competitive inhibition on PL (IC50 , 33-86 μg mL-1 ). The results of TCT confirmed their capacity to ameliorate (p <0.001) hypertriglyceridemia during postprandial and interdigestive stages. SNAF, CRG, DCRG, and PCRG caused negligible growth inhibition (MIC>600 μg mL-1 ) on beneficial bacteria whereas SNAF and DCRG exerted inhibitory activity on Helicobacter pylori ATCC 53504 (MIC,187-64 μg mL-1 ). Additional exploration revealed that SNAF and DCRG produced non-competitive activity on H. pylori urease, which facilitates bacterial growth under acidic conditions.
Collapse
Affiliation(s)
- Yesenia Pacheco-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, Guanajuato CP, 36824, Mexico
| | - Edmundo Lozoya-Gloria
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, Guanajuato CP, 36824, Mexico
| | - Ramiro Cruz-Durán
- Facultad de Ciencias UNAM, Ciudad Universitaria, CP, 04510, Delegación Coyoacán, D.F., Mexico
| | - Nemesio Villa-Ruano
- CONAHCyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla CP, 72570, Mexico
| |
Collapse
|
6
|
Mendoza-Fuentes A, González-Burgos E, Aparicio Trejo OE, Delgado-Lamas G, Rodríguez-Chávez JL, Pedraza-Chaverri J, Gómez-Serranillos MP, Araiza-Olivera D. The cytotoxicity effect of 7-hydroxy-3,4-dihydrocadalene from Heterotheca inuloides and semisynthetic cadalenes derivates towards breast cancer cells: involvement of oxidative stress-mediated apoptosis. PeerJ 2023; 11:e15586. [PMID: 37361049 PMCID: PMC10289085 DOI: 10.7717/peerj.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Heterotheca inuloides, traditionally employed in Mexico, has demonstrated anticancer activities. Although it has been proven that the cytotoxic effect is attributed to cadinane-type sesquiterpenes such as 7-hydroxy-3,4-dihydrocadalene, the mechanism of action by which these agents act in tumor lines and their regulation remain unknown. This study was undertaken to investigate for first time the cytotoxic activity and mechanism of action of 7-hydroxy-3,4-dihydrocadalene and two semi-synthetic cadinanes derivatives towards breast cancer cells. Methods Cell viability and proliferation were assayed by thiazolyl blue tetrazolium bromide (MTT) assay and Trypan blue dye exclusion assay. Cell migration measure was tested by wound-healing assay. Moreover, the reactive oxygen species (ROS) and lipid peroxidation generation were measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay and thiobarbituric acid reactive substance (TBARS) assay, respectively. Furthermore, expression of caspase-3, Bcl-2 and GAPDH were analyzed by western blot. Results The results showed that 7-hydroxy-3,4-dihydrocadalene inhibited MCF7 cell viability in a concentration and time dependent manner. The cytotoxic potency of semisynthetic derivatives 7-(phenylcarbamate)-3,4-dihydrocadalene and 7-(phenylcarbamate)-cadalene was remarkably lower. Moreover, in silico studies showed that 7-hydroxy-3,4-dihydrocadalene, and not so the semi-synthetic derivatives, has optimal physical-chemical properties to lead a promising cytotoxic agent. Further examination on the action mechanism of 7-hydroxy-3,4-dihydrocadalene suggested that this natural product exerted cytotoxicity via oxidative stress as evidenced in a significantly increase of intracellular ROS levels and in an induction of lipid peroxidation. Furthermore, the compound increased caspase-3 and caspase-9 activities and slightly inhibited Bcl-2 levels. Interestingly, it also reduced mitochondrial ATP synthesis and induced mitochondrial uncoupling. Conclusion Taken together, 7-hydroxy-3,4-dihydrocadalene is a promising cytotoxic compound against breast cancer via oxidative stress-induction.
Collapse
Affiliation(s)
- Alan Mendoza-Fuentes
- Institute of Chemistry, Universidad Nacional Autónoma de México, México City, México
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | | | | | | | - José Pedraza-Chaverri
- Departament of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, México City, México
| | - M. Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Daniela Araiza-Olivera
- Institute of Chemistry, Universidad Nacional Autónoma de México, México City, México
- Fox Chase Cancer Center, Philadelphia, United States
| |
Collapse
|
7
|
Ivyna de Araújo Rêgo R, Guedes Silvestre GF, Ferreira de Melo D, Albino SL, Pimentel MM, Silva Costa Cruz SB, Silva Wurzba SD, Rodrigues WF, Goulart de Lima Damasceno BP, Cançado Castellano LR. Flavonoids-Rich Plant Extracts Against Helicobacter pylori Infection as Prevention to Gastric Cancer. Front Pharmacol 2022; 13:951125. [PMID: 36120379 PMCID: PMC9470917 DOI: 10.3389/fphar.2022.951125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer is the fifth most common and fourth type to cause the highest mortality rates worldwide. The leading cause is related to Helicobacter pylori (H. pylori) infection. Unfortunately, current treatments have low success rates, highlighting the need for alternative treatments against carcinogenic agents, specifically H. pylori. Noteworthy, natural origin products contain pharmacologically active metabolites such as flavonoids, with potential antimicrobial applications. Objective: This article overviews flavonoid-rich extracts’ biological and pharmacological activities. It focuses on using these substances against Helicobacter pylori infection to prevent gastric cancer. For this, PubMed and Science Direct databases were searched for studies that reported the activity of flavonoids against H. pylori, published within a 10-year time frame (2010 to August 2020). It resulted in 1,773 publications, of which 44 were selected according to the search criteria. The plant family primarily found in publications was Fabaceae (9.61%). Among the flavonoids identified after extraction, the most prevalent were quercetin (19.61%), catechin (13.72), epicatechin (11.76), and rutin (11.76). The potential mechanisms associated with anti-H. pylori activity to the extracts were: inhibition of urease, damage to genetic material, inhibition of protein synthesis, and adhesion of the microorganism to host cells. Conclusion: Plant extracts rich in flavonoids with anti-H. pylori potential proved to be a promising alternative therapy source, reinforcing the relevance of studies with natural products.
Collapse
Affiliation(s)
- Renaly Ivyna de Araújo Rêgo
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | | | - Demis Ferreira de Melo
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
| | - Sonaly Lima Albino
- Postgraduate Program of Therapeutic Innovation, Federal University of Pernambuco, Recife, Brazil
| | - Marcela Monteiro Pimentel
- Postgraduate Program of Science and Technology in Health, State University of Paraíba, Campina Grande, Brazil
| | - Sara Brito Silva Costa Cruz
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sabrina Daniela Silva Wurzba
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Federal University of Paraiba, João Pessoa, Brazil
- Postgraduate Program of Pharmaceutical Sciences, State University of Paraíba, Campina Grande, Brazil
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Brazil
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Lúcio Roberto Cançado Castellano,
| |
Collapse
|
8
|
Alfaro-Almaguer JA, Mejía-Manzano LA, González-Valdez J. State-of-the-Art and Opportunities for Bioactive Pentacyclic Triterpenes from Native Mexican Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:2184. [PMID: 36079566 PMCID: PMC9459852 DOI: 10.3390/plants11172184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Native Mexican plants are a wide source of bioactive compounds such as pentacyclic triterpenes. Pentacyclic triterpenes biosynthesized through the mevalonate (MVA) and the 2-C-methyl-D-erythritol-phosphate (MEP) metabolic pathways are highlighted by their diverse biological activity. Compounds belonging to the oleanane, ursane, and lupane groups have been identified in about 33 Mexican plants, located geographically in the southwest of Mexico. The works addressing these findings have reported 45 compounds that mainly show antimicrobial activity, followed by anti-inflammatory, cytotoxic, anxiolytic, hypoglycemic, and growth-stimulating or allelopathic activities. Extraction by maceration and Soxhlet with organic solvents and consecutive chromatography of silica gel have been used for their whole or partial purification. Nanoparticles and nanoemulsions are the vehicles used in Mexican formulations for drug delivery of the pentacyclic triterpenes until now. Sustainable extraction, formulation, regulation, isolation, characterization, and bioassay facilities are areas of opportunity in pentacyclic triterpenes research in Mexico while the presence of plant and human resources and traditional knowledge are strengths. The present review discusses the generalities of the pentacyclic triterpene (definition, biogenic classification, and biosynthesis), a summary of the last two decades of research on the compounds identified and their evaluated bioactivity, the generalities about the extraction and purification methods used, drug delivery aspects, and a critical analysis of the advantages and limitations of research carried out in this way.
Collapse
Affiliation(s)
| | | | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
9
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|