1
|
Tan JB, Peng WW, Li MF, Kang FH, Zheng YT, Xu L, Qin SY, Huang YT, Zou ZX. Three new metabolites from the endophyte Fusarium proliferatum T2-10. Nat Prod Res 2025; 39:1793-1803. [PMID: 37933750 DOI: 10.1080/14786419.2023.2278158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
One new cyclopeptide, cyclo-(L-Trp-L-Phe-L-Phe) (1), one new 2-pyridone derivative, fusarone A (3), and one new natural indole derivative, ethyl 3-indoleacetate (4), along with six known compounds were isolated from the endophytic fungus Fusarium proliferatum T2-10. The planar structures of three new compounds were identified by spectral methods including 1D and 2D NMR techniques, and the absolute configuration of compound 1 was elucidated by Marfey-MS method. In addition, all compounds were evaluated for their cytotoxic and antibacterial activities in vitro. Compound 2 showed remarkable cytotoxic activities against two human hepatoma cell lines SMMC7721 and HepG2 with IC50 values of 5.89 ± 0.74 and 6.16 ± 0.52 μM, and showed moderate antibacterial activities against Staphylococcus aureus and Enterococcus faecalis with MIC values of 7.81 and 15.62 μg/mL, respectively.
Collapse
Affiliation(s)
- Jian-Bing Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Wei-Wei Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Mei-Fang Li
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P. R. China
| | - Feng-Hua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Yu-Ting Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Li Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Si-Yu Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Yuan-Tao Huang
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P. R. China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| |
Collapse
|
2
|
Kataržytė M, Rapolienė L, Espinosa RP, Kalvaitienė G. Fungal diversity in peat and sapropel peloids used in pelotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:897-907. [PMID: 39971790 DOI: 10.1007/s00484-025-02869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Currently, there is limited understanding of microbial diversity and safety considerations associated with the use of natural substances in pelotherapy, especially concerning fungal diversity and presence. ITS sequencing was used to assess the fungal diversity in natural peloids (peat and sapropel) used in pelotherapy in Lithuania. Fungal diversity and dominance varied across different types of peloids, primarily determined by the environment from which they were sourced. Fungi from the genera Aspergillus, Fusarium, and Mucorales were identified in peloids sourced from peatland but were absent in sapropel peloids obtained from lakes. These fungi are ubiquitous in peatland, where they play a role in decomposing organic matter, however, they can also act as potential pathogens. The presence of potentially pathogenic fungi should be carefully considered when using peatland-derived peloids in pelotherapy. However, further research is needed to evaluate the role of fungi in the beneficial properties of peloids with different compositions at various stages of preparation and use, as well as to assess potential risks.
Collapse
Affiliation(s)
- Marija Kataržytė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania.
| | - Lolita Rapolienė
- Nursing Department, Faculty of Health Sciences, Klaipėda University, Klaipėda, Lithuania
| | | | | |
Collapse
|
3
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Noh H, Kim SH. Gliocladiopsis koreensis sp. nov., Ilyonectria koreensis sp. nov., and Mariannaea koreensis sp. nov. (Nectriaceae), Novel Fungi Isolated from Soil in Jeju Island and Upo Wetland in the Republic of Korea. MYCOBIOLOGY 2025; 53:183-199. [PMID: 40070799 PMCID: PMC11892050 DOI: 10.1080/12298093.2025.2450905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025]
Abstract
In this study, three novel fungal species belonging to the Nectriaceae family, Gliocladiopsis koreensis sp. nov., Ilyonectria koreensis sp. nov., and Mariannaea koreensis sp. nov., were discovered from soil samples collected at Iseung-ak Oreum on Jeju Island and the Upo Wetland in Changnyeong, Republic of Korea. They were confirmed as distinct species through molecular phylogenetic analyses using the ITS, TUB, Tef1, HIS3, and LSU sequences. Maximum-likelihood and Bayesian inference trees show that G. koreensis forms a sister clade with G. curvata, G. singaporiensis, and G. peggii, I. koreensis clusters closely with I. qitaiheensis and I. changbaiensis, and M. koreensis is phylogenetically related to M. atlantica, M. fusiformis, M. elegans var. punicea, and M. terricola. While all three new species exhibit unique morphological characteristics such as colony growth patterns, pigmentation, and microstructures that differentiate them from their closest relatives. The findings of these novel species contribute to the understanding of fungal diversity in these ecologically significant regions and highlight their potential applications in agriculture, nutrient cycling, and environmental restoration.
Collapse
Affiliation(s)
- HyeongJin Noh
- Department of Microbiology, Division of Biological Sciences, Dankook University, Cheonan, Republic of Korea
| | - Seong Hwan Kim
- Department of Microbiology, Division of Biological Sciences, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Hou XL, Song YP, Zou JX, Ji NY. A Cedrane and a Fusarin From the Algicolous Fungus Fusarium graminearum 12II2N and Response to Mycoparasitism. Chem Biodivers 2025:e202500088. [PMID: 39865506 DOI: 10.1002/cbdv.202500088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
The fungal genus Fusarium is a treasure-trove of structurally diverse secondary metabolites, contributed greatly by marine-derived strains. A new cedrane sesquiterpene, fusacedrol (1), and a new fusarin member, fusarin M (2), were isolated from Fusarium graminearum 12II2N that was isolated as an endophyte from the marine brown alga Sargassum sp. The planar structures of compounds 1 and 2 were incisively identified by analysis of spectroscopic data, inclusive of NMR and MS, and the relative configurations were ensured by NOESY correlations and a coupling constant. Quantum chemical calculations of specific optical rotations of compound 1 and cedrol solved the absolute configuration of compound 1. Compound 1 represents the first new cedrane derivative with a 5/5/6 tricyclic nucleus from marine-derived fungi, and this skeleton has also been reported rarely from other marine organisms. Compound 2 is an isomer of fusarin Y, and its production could be greatly reduced by coculture with Trichoderma flagellatum 12A1N of the same origin. The two isolates were assayed for inhibiting the bacterium Pseudoalteromonas citrea (bio-02684, a green-spot pathogen of Porphyra), but none of them were active unfortunately.
Collapse
Affiliation(s)
- Xu-Liang Hou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Ji-Xue Zou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
| |
Collapse
|
6
|
Garrido-Palazuelos LI, Aguirre-Sánchez JR, Sandoval-González MF, Mukhtar M, Guerra-Meza O, Ahmed-Khan H. Computational Evaluation of Fusarium nygamai Compounds as AcrD Efflux Pump Protein Inhibitors of Salmonella Typhimurium. Mol Biotechnol 2024:10.1007/s12033-024-01329-w. [PMID: 39709333 DOI: 10.1007/s12033-024-01329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
In Salmonella Typhimurium, efflux pump proteins, such as AcrD actively expel drugs and hazardous chemicals from bacterial cells, resulting in treatment failure and the emergence of antibiotic-resistant variants. Focusing on AcrD may lead to the development of novel antimicrobials against multidrug-resistant bacteria. However, challenges persist in achieving high selectivity, low toxicity, and effective bacterial penetration. Natural products, particularly microbial secondary metabolites, possess distinct chemical structures that may target the efflux pump systems. The efflux pump inhibitor capabilities of Fusarium nygamai compounds in Salmonella have not been previously investigated. This study employed molecular docking and molecular dynamics simulations to evaluate 25 F. nygamai compounds as potential inhibitors of AcrD. Additionally, the pharmacological characteristics of these substances were examined. Molecular docking results revealed that 3,6-Dimethoxy-2,5-dinitrobenzonitrile, methyl (2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate, and 7-Methyl-5-nitro-1,4-dihydro-quinoxaline-2,3-dione exhibited the highest binding energies with AcrD. Furthermore, molecular dynamics simulations indicated stable ligand-receptor complex variations over time. This study contributes to the efforts against antibiotic resistance and the improvement of Salmonella infection treatment outcomes globally by facilitating the development of novel therapeutic approaches and enhancing antibiotic efficacy.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Unidad Regional Los Mochis, Departamento Académico de Ciencias de La Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico.
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional Para La Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Maria Fernanda Sandoval-González
- Unidad Regional Los Mochis, Departamento Académico de Ciencias de La Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Mamuna Mukhtar
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Omar Guerra-Meza
- Unidad Regional Los Mochis, Departamento Académico de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico
| | - Haris Ahmed-Khan
- Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| |
Collapse
|
7
|
Amuzu P, Pan X, Hou X, Sun J, Jakada MA, Odigie E, Xu D, Lai D, Zhou L. Recent Updates on the Secondary Metabolites from Fusarium Fungi and Their Biological Activities (Covering 2019 to 2024). J Fungi (Basel) 2024; 10:778. [PMID: 39590697 PMCID: PMC11596042 DOI: 10.3390/jof10110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium species are commonly found in soil, water, plants, and animals. A variety of secondary metabolites with multiple biological activities have been recently isolated from Fusarium species, making Fusarium fungi a treasure trove of bioactive compounds. This mini-review comprehensively highlights the newly isolated secondary metabolites produced by Fusarium species and their various biological activities reported from 2019 to October 2024. About 276 novel metabolites were revealed from at least 21 Fusarium species in this period. The main metabolites were nitrogen-containing compounds, polyketides, terpenoids, steroids, and phenolics. The Fusarium species mostly belonged to plant endophytic, plant pathogenic, soil-derived, and marine-derived fungi. The metabolites mainly displayed antibacterial, antifungal, phytotoxic, antimalarial, anti-inflammatory, and cytotoxic activities, suggesting their medicinal and agricultural applications. This mini-review aims to increase the diversity of Fusarium metabolites and their biological activities in order to accelerate their development and applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.A.); (X.P.); (X.H.); (J.S.); (M.A.J.); (E.O.); (D.X.); (D.L.)
| |
Collapse
|
8
|
Zhang XL, Lu BG, Bai J, Li N. Alkaloids isolated from the endophytic fungus Fusarium concentricum. Nat Prod Res 2024; 38:1517-1523. [PMID: 36484574 DOI: 10.1080/14786419.2022.2154346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Endophytic fungi are an important resource for bioactive natural products. In this study, a new tryptophan derivative fusaconate A (1) and three pyridone alkaloids, including one new pyridone derivative 1'-methoxy-6'-epi-oxysporidinone (2) and two known ones (3-4), were identified from the endophytic fungus Fusarium concentricum which was isolated from the medicinal plant Anoectochilus roxburghii. Their structures were elucidated through extensive spectroscopic analysis, including HR-ESI-MS, 1 D and 2 D NMR. Compound 4 exhibited moderate cytotoxicities against HT29 and PC3 cells with IC50 values of 7.60 and 4.99 μM, respectively.
Collapse
Affiliation(s)
- Xi-Lin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bing-Guo Lu
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Wang T, Tian J, Huang J, Yuan Y, Naman CB, Wu S, Wang H, Lin W, Tong Z, Ding L, Wang W, He S. Irpetones A and B, Anti-Osteoclastic Heptaketides from a Marine Mesophotic Zone Ircinia Sponge-Associated Fungus Irpex sp. NBUF088. JOURNAL OF NATURAL PRODUCTS 2024; 87:1203-1208. [PMID: 38359398 DOI: 10.1021/acs.jnatprod.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Chemical investigation of Irpex sp. NBUF088, associated with an Ircinia sp. sponge located at an 84 m deep mesophotic zone, led to the discovery of two new heptaketides, named irpetones A (1) and B (2). Their structures were identified by analysis of spectroscopic data and quantum-chemical calculations. Compound 1 exhibited inhibition against the receptor activator of NF-κB ligand-induced osteoclastogenesis in bone marrow monocytes with an IC50 of 6.3 ± 0.2 μM, causing no notable cytotoxicity. It was also determined that 1 inhibited the phosphorylation of ERK1/2-JNK1/2-p38 MAPKs and the nuclear translocation of NF-κB, consequently suppressing the activation of MAPK and NF-κB signaling pathways induced by the NF-κB ligand.
Collapse
Affiliation(s)
- Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jiaxin Tian
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jian Huang
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - Ye Yuan
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - C Benjamin Naman
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, California 92024, United States
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenhan Lin
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - Zhiwu Tong
- Key Laboratory of Protection and Utilization of Subtropical Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Weiyi Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| |
Collapse
|
10
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
11
|
Sun J, Yang XQ, Wan JL, Han HL, Zhao YD, Cai L, Yang YB, Ding ZT. The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia 2023; 171:105710. [PMID: 37866423 DOI: 10.1016/j.fitote.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Six new sesquiterpenes, fusarchlamols A-F (1, 2, 4-7); one new natural product of sesquiterpenoid, methyltricinonoate (3); and ten known compounds were found from Fusarium sp. cultured in two different media by the one strain many compounds strategy. The compounds (1, 2, and 4-11) were isolated from Fusarium sp. in PDB medium, and compounds (3-5, 8, and 10-17) were discovered from Fusarium sp. in coffee medium. Additionally, the configuration of 8 was first reported in the research by Mosher's method. The structures were established by 1D, 2D NMR, mass spectrometry, calculated ECD spectra, and Mosher's method. Compounds 1, 2, 6/7, 12, and 16 indicated significant antifungal activities against the phytopathogen Alternaria alternata isolated from Coffea arabica with MICs of 1 μg/mL. The investigation on the anti-phytopathogen activity of metabolites can provide lead compounds for agrochemicals.
Collapse
Affiliation(s)
- Jing Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jie-Liang Wan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Hai-Li Han
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ying-Die Zhao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
12
|
Lin C, Huang R, Liu J, Li H, Zhu L, Huang X, Ding B, Liu L, Huang H, Tao Y. Antibacterial Polyketides Isolated from the Marine-Derived Fungus Fusarium solani 8388. J Fungi (Basel) 2023; 9:875. [PMID: 37754983 PMCID: PMC10532693 DOI: 10.3390/jof9090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Seven new polyketides named fusarisolins F-K (1-6) and fusarin I (7) were isolated from the marine-derived fungus Fusarium solani 8388, together with the known anhydrojavanicin (8), 5-deoxybostry coidin (9), and scytalol A (10). Their structures were established by comprehensive spectroscopic data analyses, and by comparison of the 1H and 13C NMR data with those reported in literature. Fusarisolin F (1) contained both a dichlorobenzene group and an ethylene oxide unit, which was rare in nature. In the bioassays, fusarisolin I (4), fusarisolin J (5), and 5-deoxybostry coidin (9) exhibited obvious antibacterial activities against methicillin-resistant Staphylococcus aureus n315 with MIC values of 3, 3, and 6 μg/mL, respectively. Fusarisolin H (3) and fusarisolin J (5) showed inhibitory effects against methicillin-resistant Staphylococcus aureus NCTC 10442 with the same MIC value of 6 μg/mL. With the exception of 5, all other compounds did not show or showed weak cytotoxicities against HeLa, A549, and KB cells; while fusarisolin J (5) demonstrated moderate cytotoxicities against the three human cancer cell lines with CC50 values between 9.21 and 14.02 μM.
Collapse
Affiliation(s)
- Cankai Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongchun Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Juntao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Zhu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Bo Ding
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hongbo Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiwen Tao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
13
|
Yang JM, Liao YJ, Chen N, Huang L, Zhang LZ, Du G, Zhou M. Cyclic hexadepsipeptides from the fermentation of Fusarium sp. DCJ-A and their cytotoxic activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:503-509. [PMID: 35912898 DOI: 10.1080/10286020.2022.2098471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Beauvercin H (1), a new cyclic hexadepsipeptide, and two known ones (2 and 3) were isolated from the EtOH extract of the solid culture of Fusarium sp. Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were tested for their cytotoxic activities. The results showed that all isolated compounds exhibited cytotoxic activities against five human cancer cell lines with IC50 values ranging from 1.379 to 13.12 μM.
Collapse
Affiliation(s)
- Jia-Mei Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Yong-Jian Liao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Ning Chen
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Lei Huang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Li-Zhi Zhang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, China
| |
Collapse
|
14
|
β-Carboline Alkaloids from Peganum harmala Inhibit Fusarium oxysporum from Codonopsis radix through Damaging the Cell Membrane and Inducing ROS Accumulation. Pathogens 2022; 11:pathogens11111341. [PMID: 36422593 PMCID: PMC9693454 DOI: 10.3390/pathogens11111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is a widely distributed soil-borne pathogenic fungus that can cause medicinal herbs and crops to wither or die, resulting in great losses and threat to public health. Due to the emergence of drug-resistance and the decline of the efficacy of antifungal pesticides, there is an urgent need for safe, environmentally friendly, and effective fungicides to control this fungus. Plant-derived natural products are such potential pesticides. Extracts from seeds of Peganum harmala have shown antifungal effects on F. oxysporum but their antifungal mechanism is unclear. In vitro antifungal experiments showed that the total alkaloids extract and all five β-carboline alkaloids (βCs), harmine, harmaline, harmane, harmalol, and harmol, from P. harmala seeds inhibited the growth of F. oxysporum. Among these βCs, harmane had the best antifungal activity with IC50 of 0.050 mg/mL and MIC of 40 μg/mL. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results revealed that the mycelia and spores of F. oxysporum were morphologically deformed and the integrity of cell membranes was disrupted after exposure to harmane. In addition, fluorescence microscopy results suggested that harmane induced the accumulation of ROS and increased the cell death rate. Transcriptomic analysis showed that the most differentially expressed genes (DEGs) of F. oxysporum treated with harmane were enriched in catalytic activity, integral component of membrane, intrinsic component of membrane, and peroxisome, indicating that harmane inhibits F. oxysporum growth possibly through damaging cell membrane and ROS accumulation via regulating steroid biosynthesis and the peroxisome pathway. The findings provide useful insights into the molecular mechanisms of βCs of P. harmala seeds against F. oxysporum and a reference for understanding the application of βCs against F. oxysporum in medicinal herbs and crops.
Collapse
|
15
|
Uz Zaman KA, Sarotti AM, Wu X, DeVine L, Cao S. Polyketides, diketopiperazines and an isochromanone from the marine-derived fungal strain Fusarium graminearum FM1010 from Hawaii. PHYTOCHEMISTRY 2022; 198:113138. [PMID: 35219734 DOI: 10.1016/j.phytochem.2022.113138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The fungal strain Fusarium graminearum FM1010 was isolated from a shallow-water volcanic rock known as "live rock" at the Richardson's Beach, Hilo, Hawaii. Eleven specialised metabolites, including two undescribed diketopiperazines, three undescribed polyketides, and one undescribed isochromanone, along with five known fusarielin derivatives were obtained from F. graminearum FM1010. The structures of the six undescribed compounds were elucidated by extensive analysis of NMR spectroscopy, HRESIMS, chemical reactions, and electronic circular dichroism (ECD) data. Kaneoheoic acids G-I showed mild inhibitory activity against S. aureus with the MIC values in the range of 20-40 μg/mL when assayed in combination with chloramphenicol (half of the MIC, 1 μg/mL), an FDA approved antibiotic. Kaneoheoic acid I exhibited both anti-proliferative activity against ovarian cancer cell line A2780 and TNF-α induced NF-κB inhibitory activity with the IC50 values of 18.52 and 15.86 μM, respectively.
Collapse
Affiliation(s)
- Kh Ahammad Uz Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina.
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Lela DeVine
- Department of Cellular and Molecular Biology, Barnard College of Columbia University, USA.
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States.
| |
Collapse
|
16
|
Zhao DL, Liu J, Han XB, Wang M, Peng YL, Ma SQ, Cao F, Li YQ, Zhang CS. Decalintetracids A and B, two pairs of unusual 3-decalinoyltetramic acid derivatives with phytotoxicity from Fusarium equiseti D39. PHYTOCHEMISTRY 2022; 197:113125. [PMID: 35157922 DOI: 10.1016/j.phytochem.2022.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The filamentous fungi Fusarium sp. are well-known for their ability to produce abundant specialised metabolites with attractive chemical structures and bioactivities. In this study, chemical analyses of the endophyte F. equiseti D39 led to the isolation and identification of two pairs of undescribed 3-decalinoyltetramic acids (3DTAs) E/Z diastereomers, decalintetracids A and B. Their structures were elucidated by comprehensive spectroscopic analysis and quantum-chemical calculations. Although 3DTAs were commonly reported from fungi, decalintetracid A possessed an unprecedented tricyclo [7.2.1.02,7] dodecane skeleton, which added the diversity of these fungal metabolites. In addition, decalintetracid B was featured by a unique 6/6/5 ring system core. A plausible biosynthetic pathway for decalintetracids A and B was proposed. Both compounds exhibited phytotoxicity toward Amaranthus retroflexus L. and Amaranthus hybrid, indicating their potential as natural herbicides.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jing Liu
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Xiao-Bin Han
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yu-Long Peng
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
17
|
Ge GB, Dai DC, Zhou XM, Wu WJ, Zheng CJ, Song XM, Luo YP. Rare isotachin-derived from the Dasymaschalon rostratum fungus Penicillium tanzanicum ZY-5. Fitoterapia 2021; 157:105119. [PMID: 34979257 DOI: 10.1016/j.fitote.2021.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Four rare isotachin-derived, isotachins E-H (1-4), together with two known biogenetically related isotachin derivatives (5 and 6) were isolated from the solid rice fermentation of a fungus Penicillium tanzanicum ZY-5 obtained from a medicinal plant Dasymaschalon rostratum collected from the Changjiang County, Hainan Province, China. Their structures were elucidated using comprehensive spectroscopic methods. The single-crystal X-ray diffraction of compound 5 was determined. Compounds 1-4 have a trans-3-(methylthio)-acrylic acid fragment, which are rare in nature. The inhibitory activities of all compounds against the nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro were evaluated.
Collapse
Affiliation(s)
- Gang-Bo Ge
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - De-Cai Dai
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, People's Republic of China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei-Jie Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xin-Ming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| | - You-Ping Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
18
|
Chen X, Wei J, Tang J, Wu B. Two new prenylated glycine derivatives from the marine-derived fungus Fusarium sp. TW56-10. Chem Biodivers 2021; 19:e202100899. [PMID: 34957670 DOI: 10.1002/cbdv.202100899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Two new prenylated glycine derivatives (2-(4-((3-methylbut-2-en-1-yl)oxy)phenyl)acetyl)glycine (1) and methyl (2-(4-((3-methylbut-2-en-1yl)oxy)phenyl)acetyl)glycinate (2), along with nine known compounds (3-11) were purified from the marine-derived fungus Fusarium sp. TW56-10. Their chemical structures were determined by spectroscopic evidence, including extensive nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, infrared radiation (IR) and Ultraviolet spectra (UV). Compound 4 (8-O-methyl-fusarubin) exhibited cytotoxic activity with IC50 value of 11.45 μM for A549 cells.
Collapse
Affiliation(s)
- Xuexia Chen
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jihua Wei
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jinshan Tang
- Jinan University, College of Pharmacy, Shougouling Road, 337, 510632, Guangzhou, CHINA
| | - Bin Wu
- Zhejiang University, Ocean College, Yuhangtang Road, No.866, 310058, Hangzhou, CHINA
| |
Collapse
|
19
|
Alfattani A, Marcourt L, Hofstetter V, Queiroz EF, Leoni S, Allard PM, Gindro K, Stien D, Perron K, Wolfender JL. Combination of Pseudo-LC-NMR and HRMS/MS-Based Molecular Networking for the Rapid Identification of Antimicrobial Metabolites From Fusarium petroliphilum. Front Mol Biosci 2021; 8:725691. [PMID: 34746230 PMCID: PMC8569130 DOI: 10.3389/fmolb.2021.725691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023] Open
Abstract
An endophytic fungal strain isolated from a seagrass endemic to the Mediterranean Sea (Posidonia oceanica) was studied in order to identify its antimicrobial constituents and further characterize the composition of its metabolome. It was identified as Fusarium petroliphilum by in-depth phylogenetic analyses. The ethyl acetate extract of that strain exhibited antimicrobial activities and an ability to inhibit quorum sensing of Staphylococcus aureus. To perform this study with a few tens of mg of extract, an innovative one-step generic strategy was devised. On one side, the extract was analyzed by UHPLC-HRMS/MS molecular networking for dereplication. On the other side, semi-preparative HPLC using a similar gradient profile was used for a single-step high-resolution fractionation. All fractions were systematically profiled by 1H-NMR. The data were assembled into a 2D contour map, which we call “pseudo-LC-NMR,” and combined with those of UHPLC-HRMS/MS. This further highlighted the connection within structurally related compounds, facilitated data interpretation, and provided an unbiased quantitative profiling of the main extract constituents. This innovative strategy led to an unambiguous characterization of all major specialized metabolites of that extract and to the localization of its bioactive compounds. Altogether, this approach identified 22 compounds, 13 of them being new natural products and six being inhibitors of the quorum sensing mechanism of S. aureus and Pseudomonas aeruginosa. Minor analogues were also identified by annotation propagation through the corresponding HRMS/MS molecular network, which enabled a consistent annotation of 27 additional metabolites. This approach was designed to be generic and applicable to natural extracts of the same polarity range.
Collapse
Affiliation(s)
- Abdulelah Alfattani
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Valérie Hofstetter
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Katia Gindro
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologie Microbienne, USR3579, CNRS, Sorbonne Université, Banyuls-sur-mer, France
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Antifungal Activity and Biocontrol Mechanism of Fusicolla violacea J-1 against Soft Rot in Kiwifruit Caused by Alternaria alternata. J Fungi (Basel) 2021; 7:jof7110937. [PMID: 34829224 PMCID: PMC8620048 DOI: 10.3390/jof7110937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Alternaria alternata is the main pathogenic species of various crops, including kiwifruit (Actinidia cinensis). In this study, an antagonistic fungus, J-1, with high antifungal activity against A. alternata was isolated from A. cinensis “Hongyang.” The strain J-1 was identified as Fusicolla violacea via morphological identification and DNA sequencing. This study aimed to evaluate the antifungal activity and potential mechanism of the strain J-1 against A. alternata. The strain J-1 exhibited antifungal activity against A. alternata, with an inhibition rate of 66.1% in vitro. Aseptic filtrate (AF) produced by the strain J-1 could suppress the mycelial growth and conidia germination of A. alternata at the inhibition rates of 66.8% and 80%, respectively, as well as suppress the spread of Alternaria rot in fresh kiwifruit. We observed that many clusters of spherical protrusions appeared at the mycelial tips of A. alternata after treatment with 200 mL L−1 AF of J-1. Scanning electron microscopy analysis results showed that the mycelial structures were bent and/or malformed and the surfaces were rough and protuberant. Variations in temperature, pH, and storage time had little effect on the antifungal activity of the AF. Moreover, the AF could damage the integrity of cell membranes and cause intracellular content leakage. Meanwhile, the chitinase and β-1,3-glucanase enzyme activities increased significantly, indicating that the function of A. alternata cell wall was seriously injured. Eleven antimicrobial metabolites were identified by gas chromatography–mass spectrometry (GC–MS). The strain J-I and its AF exhibited well broad-spectrum antifungal activity against Diaporthe eres, Epicoccum sorghinum, Fusarium graminearum, Phomopsis sp., and Botryosphaeria dothidea, with inhibition rates ranging from 34.4% to 75.1% and 42.7% to 75.2%, respectively. Fusicolla violacea J-1 is a potential biocontrol agent against A. alternata and other fungal phytopathogens.
Collapse
|
21
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
22
|
A New Arugosin from Talaromyces flavus. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Agahi F, Juan-García A, Font G, Juan C. Study of enzymatic activity in human neuroblastoma cells SH-SY5Y exposed to zearalenone's derivates and beauvericin. Food Chem Toxicol 2021; 152:112227. [PMID: 33878370 DOI: 10.1016/j.fct.2021.112227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Beauvericin (BEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), are produced by several Fusarium species that contaminate cereal grains. These mycotoxins can cause cytotoxicity and neurotoxicity in various cell lines and they are also capable of produce oxidative stress at molecular level. However, mammalian cells are equipped with a protective endogenous antioxidant system formed by no-enzymatic antioxidant and enzymatic protective systems such as glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). The aim of this study was evaluating the effects of α-ZEL, β-ZEL and BEA, on enzymatic GPx, GST, CAT and SOD activity in human neuroblastoma cells using the SH-SY5Y cell line, over 24 h and 48 h with different treatments at the following concentration range: from 1.56 to 12.5 μM for α-ZEL and β-ZEL, from 0.39 to 2.5 μM for BEA, from 1.87 to 25 μM for binary combinations and from 3.43 to 27.5 μM for tertiary combination. SH-SY5Y cells exposed to α-ZEL, β-ZEL and BEA revealed an overall increase in the activity of i) GPx, after 24 h of exposure up to 24-fold in individual treatments and 15-fold in binary combination; ii) GST after 24 h of exposure up to 10-fold (only in combination forms), and iii) SOD up to 3.5- and 5-fold in individual and combined treatment, respectively after 48 h of exposure. On the other hand, CAT activity decreased significantly in all treatments up to 92% after 24 h except for β-ZEL + BEA, which revealed the opposite.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|