1
|
Ahmoda RA, Pirković A, Milutinović V, Milošević M, Marinković A, Jovanović AA. Fumaria officinalis Dust as a Source of Bioactives for Potential Dermal Application: Optimization of Extraction Procedures, Phytochemical Profiling, and Effects Related to Skin Health Benefits. PLANTS (BASEL, SWITZERLAND) 2025; 14:352. [PMID: 39942914 PMCID: PMC11819947 DOI: 10.3390/plants14030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Fumaria officinalis (fumitory), in the form of dust, was employed as a source of bioactive extracts whose chemical profile and biological potential were investigated. According to the results of the optimization of the extraction protocol, the extract with the highest polyphenol yield was prepared using fumitory dust under the optimal conditions determined using the statistical tool, 23 full factorial design: 50% ethanol and a 30:1 mL/g ratio during 120 s of microwave extraction (22.56 mg gallic acid equivalent/g of plant material). LC-MS and spectrophotometric/gravimetric analyses quantified the polyphenol, flavonoid, tannin, alkaloid, and protein contents. Caffeoylmalic acid, quercetin dihexoside, quercetin pentoside hexoside, rutin, and methylquercetin dihexoside were the most dominant compounds. The highest total flavonoid, condensed tannin, alkaloid, and protein yields were determined in the extract prepared using microwaves. In addition to the proven antioxidant potential, in the present study, the anti-inflammatory activity of fumitory extracts is also proven in the keratinocyte model, as well as a significant reduction of H2O2-induced reactive oxygen species production in cells and the absence of keratinocyte cytotoxicity. Thus, detailed chemical profiles and investigated biological effects related to skin health benefits encourage the potential application of fumitory dust extracts in dermo-cosmetic and pharmaceutical preparations for dermatological circumstances.
Collapse
Affiliation(s)
- Rabiea Ashowen Ahmoda
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (R.A.A.); (A.M.)
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (R.A.A.); (A.M.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
2
|
Javid H, Rahimian R, Salimi M, Haghani-Samani E, Farhadi M, Torkaman-Boutorabi A. Fumaria vaillantii extract protects PC12 cells against neurotoxicity induced by 6-OHDA. Mol Biol Rep 2024; 51:768. [PMID: 38884894 DOI: 10.1007/s11033-024-09673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Parkinson's disease is a neurological disorder caused by the loss of dopaminergic neurons in the midbrain. Various mechanisms are involved in the incidence of the disease including oxidative stress. Several herbs and natural products may interfere with the oxidative-stress pathway due to their antioxidant effects. OBJECTIVE Herein, we aimed to investigate the neuroprotective role of F. vaillantii extract on Parkinson's in vitro and in vivo model owing to the presence of the bioactive agents with antioxidant properties. METHODS In vitro experments showed that 6-hydroxydopamine could induce toxicity in PC12 cells. The impact of F. vaillantii extract on cell viability was measured by using MTT assay. Nuclear morphological changes were qualitatively evaluated employing Hoechst staining. The antioxidant activity of the extract was determined by ROS and lipid peroxidation assays. Tyrosine hydroxylase protein expression was measured by western blotting in PC12 cells. For in vivo study, movement parameters were evaluated. RESULTS The results indicated that 75 µΜ of 6-OHDA induced 50% toxicity in PC12 cells for 24 h. Following post-treatment with F. vaillantii extract (0.1 mg/ml) for 72 h, we observed that the extract effectively prevented cell toxicity induced by 6-OHDA and reduced the apoptotic cell population. Furthermore, the extract attenuated the ROS level, lipid peroxidation and increased protein expression of TH after 72 h of treatment. In addition, oral administration of 300 mg/kg of F. vaillantii extract for 14 days improved locomotor activity, catalepsy, bradykinesia, motor coordination and reduced the apomorphine-caused rotation in 6-OHDA- induced Parkinson's disease-like symptoms in male rats. CONCLUSION The present study suggests a protective role for the extract of F. vaillantii against oxidative stress-induced cell damage in the PC12 cells exposed to neurotoxin 6-OHDA which was verified in in vivo model by reducing the motor defects induced by 6-OHDA. This extract could be a promising therapeutic agent for the prevention of PD progression.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Rana Rahimian
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Misha Salimi
- Department of Biology, Faculty of Converging Sciences and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Haghani-Samani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran.
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang X, Mo W, Shi Y, Fang X, Xu Y, He X, Xu Y. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: A preclinical investigation. Heliyon 2023; 9:e17704. [PMID: 37519642 PMCID: PMC10372204 DOI: 10.1016/j.heliyon.2023.e17704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic wounds may become chronic if left untreated. In the current study, a potential wound dressing was developed by incorporating fumaria officinalis extract-loaded chitosan nanoparticles (FOE-CHNPs) into calcium alginate hydrogel. The produced hydrogel was evaluated regarding its microarchitecture, cytotoxicity, cell migration activity, cytoprotective potential, porosity, in vitro anti-inflammatory activity, and drug release profile. Then, the healing function of FOE-CHNPs/calcium alginate hydrogel was compared with a marketed wound care product in a rat model of diabetic wound. In vitro study showed that the hydrogel system promoted skin cells viability and migration. In vivo wound healing assay showed that the animals treated with the FOE-CHNPs/calcium alginate hydrogel had comparable wound healing potential with the GranuGEL® as the marketed wound care hydrogel. Gene expression studies showed that FOE-CHNPs/calcium alginate hydrogel upregulated the tissue expression levels of collagen type 1, collagen type 2, VEGF, b-FGF and TGF-B genes. This preclinical research, suggests potential use of FOE-loaded calcium alginate hydrogel system in treating diabetic wounds in the clinic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Wenqian Mo
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Yan Shi
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiang Fang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yujian Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiaoqing He
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| |
Collapse
|
4
|
Hao DC, Xu LJ, Zheng YW, Lyu HY, Xiao PG. Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants. Chin J Integr Med 2022; 28:1111-1126. [PMID: 35809180 PMCID: PMC9282152 DOI: 10.1007/s11655-022-3576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yu-Wei Zheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Dong Z, Tang SS, Ma XL, Li CH, Tang ZS, Yang ZH, Zeng JG. Preclinical safety evaluation of Macleaya Cordata extract: A re-assessment of general toxicity and genotoxicity properties in rodents. Front Pharmacol 2022; 13:980918. [PMID: 36034805 PMCID: PMC9412730 DOI: 10.3389/fphar.2022.980918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Macleaya cordata extract (MCE) is widely used for its diverse pharmacological actions and beneficial effects on farm animals. Modern pharmacological studies have shown that it has anti-inflammatory, anti-cancer, and anti-bacterial activities, and is gradually becoming a long-term additive veterinary drug used to improve animal intestinal health and growth performance. Although some evidence points to the DNA mutagenic potential of sanguinarine (SAN), a major component of MCE, there is a lack of sufficient basic toxicological information on the oral route, posing a potential safety risk for human consumption of food of animal origin. In this study, we assessed the acute oral toxicity, repeated 90-day oral toxicity and 180-day chronic toxicity of MCE in rats and mice and re-evaluated the genotoxicity of MCE using a standard combined in vivo and ex vivo assay. In the oral acute toxicity test, the LD50 for MCE in rats and mice was 1,564.55 mg/kg (95% confidence interval 1,386.97–1,764.95 mg/kg) and 1,024.33 mg/kg (95% confidence interval 964.27–1,087.30 mg/kg), respectively. The dose range tested had no significant effect on hematology, clinical chemistry, and histopathological findings in rodents in the long-term toxicity assessment. The results of the bacterial reverse mutation, sperm abnormality and micronucleus test showed negative results and lack of mutagenicity and teratogenicity; the results of the rat teratogenicity test showed no significant reproductive or embryotoxicity. The results indicate that MCE was safe in the dose range tested in this preclinical safety assessment. This study provides data to support the further development of maximum residue limits (MRLs) for MCE.
Collapse
Affiliation(s)
- Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
| | - Shu-Sheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Lan Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Chang-Hong Li
- Hunan MICOLTA Biological Resources Co., Ltd., Changsha, China
| | - Zhao-Shan Tang
- Hunan MICOLTA Biological Resources Co., Ltd., Changsha, China
| | - Zi-Hui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
- *Correspondence: Zi-Hui Yang, ; Jian-Guo Zeng,
| | - Jian-Guo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
- *Correspondence: Zi-Hui Yang, ; Jian-Guo Zeng,
| |
Collapse
|
6
|
Mello ALDN, Zancan P. Isoquinolines alkaloids and cancer metabolism: Pathways and targets to novel chemotherapy. Chem Biol Drug Des 2022; 99:944-956. [PMID: 35322534 DOI: 10.1111/cbdd.14043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
Cancer is one of the main causes of death in the world. This is a complex disease where the development of resistance to chemotherapy is frequent driving the search for new anticancer compounds. In this sense, isoquinolines have gained attention in the past few years. This review aims to highlight the new advances related to the use of isoquinolines compounds against cancer cells, and we point out targets for their anti-tumor action. Isoquinolines are compounds found in plants that are important for their protection. In cancer, many representatives of this class of compounds have demonstrated their efficacy against cancer by acting on cancer metabolism, such as triggering cell death, reducing pro-survival protein expression, inducing ROS production, inhibiting pro-survival cell signaling pathways, among other effects. The mechanisms triggered by isoquinolines in cancer cells represent robust anticancer strategies, which support that this class of compounds are strong candidates for cancer treatment.
Collapse
Affiliation(s)
- Angélica Lauria do Nascimento Mello
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Batool S, Javed MR, Aslam S, Noor F, Javed HMF, Seemab R, Rehman A, Aslam MF, Paray BA, Gulnaz A. Network Pharmacology and Bioinformatics Approach Reveals the Multi-Target Pharmacological Mechanism of Fumaria indica in the Treatment of Liver Cancer. Pharmaceuticals (Basel) 2022; 15:ph15060654. [PMID: 35745580 PMCID: PMC9229061 DOI: 10.3390/ph15060654] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Liver cancer (LC), a frequently occurring cancer, has become the fourth leading cause of cancer mortality. The small number of reported data and diverse spectra of pathophysiological mechanisms of liver cancer make it a challenging task and a serious economic burden in health care management. Fumaria indica is a herbaceous annual plant used in various regions of Asia to treat a variety of ailments, including liver cancer. Several in vitro investigations have revealed the effectiveness of F. indica in the treatment of liver cancer; however, the exact molecular mechanism is still unrevealed. In this study, the network pharmacology technique was utilized to characterize the mechanism of F. indica on liver cancer. Furthermore, we analyzed the active ingredient-target-pathway network and uncovered that Fumaridine, Lastourvilline, N-feruloyl tyramine, and Cryptopine conclusively contributed to the development of liver cancer by affecting the MTOR, MAPK3, PIK3R1, and EGFR gene. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. The results of molecular docking predicted that several key targets of liver cancer (along with MTOR, EGFR, MAPK3, and PIK3R1) bind stably with the corresponding active ingredient of F. indica. We concluded through network pharmacology methods that multiple biological processes and signaling pathways involved in F. indica exerted a preventing effect in the treatment of liver cancer. The molecular docking results also provide us with sound direction for further experiments. In the framework of this study, network pharmacology integrated with docking analysis revealed that F. indica exerted a promising preventive effect on liver cancer by acting on liver cancer-associated signaling pathways. This enables us to understand the biological mechanism of the anti liver cancer activity of F. indica.
Collapse
Affiliation(s)
- Sara Batool
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
- Correspondence: (M.R.J.); (S.A.); Tel.: +92-(0)301-6012931 (M.R.J.); +92-(0)312-1759482 (S.A.)
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
- Correspondence: (M.R.J.); (S.A.); Tel.: +92-(0)301-6012931 (M.R.J.); +92-(0)312-1759482 (S.A.)
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | | | - Riffat Seemab
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan; (S.B.); (F.N.); (R.S.); (A.R.)
| | - Muhammad Farhan Aslam
- School of Biological Sciences, University of Edinburgh, Edinburgh P.O. Box EH9 3FF, UK;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| |
Collapse
|
8
|
Păltinean R, Ielciu I, Hanganu D, Niculae M, Pall E, Angenot L, Tits M, Mocan A, Babotă M, Frumuzachi O, Tămaş M, Crişan G, Frederich M. Biological Activities of Some Isoquinoline Alkaloids from Fumaria schleicheri Soy. Will. PLANTS (BASEL, SWITZERLAND) 2022; 11:1202. [PMID: 35567203 PMCID: PMC9105361 DOI: 10.3390/plants11091202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Fumaria schleicheri Soy. Will. is a species belonging to the Papaveraceae family, being widespread in East-Central and Southern Europe. As with numerous other species of the genus, it is used in traditional medicine for the treatment of hepatobiliary and digestive disorders. The aim of the present study consisted of the evaluation of its alkaloid content and the assessment of its in vitro antioxidant, anti-cholinesterase and cytotoxic potential. Total alkaloid content in the composition of the species was quantified by a spectrophotometrical method and they were individually identified and quantified by HPLC-DAD. The antioxidant capacity was investigated by the DPPH and FRAP methods, while the anti-cholinesterase activity was assessed by an adapted Ellman's method. The in vitro cytotoxic activity was evaluated on BJ human fibroblasts and DLD-1 human colon adenocarcinoma cell lines. Results showed the presence of bicuculline, protopine, chelidonine, stylopine and sanguinarine, among which bicuculline, protopine, stylopine and sanguinarine were quantified, while the antioxidant and anti-cholinesterase assays showed valuable potentials. No cytotoxic effect was observed on BJ cell lines and selective cytotoxicity was expressed towards tumoral cells. In this context, F. schleicheri appears as an important medicinal species with significant potential of substitution with the officinal species.
Collapse
Affiliation(s)
- Ramona Păltinean
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Irina Ielciu
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Daniela Hanganu
- Department of Pharmacognosy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.)
| | - Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.)
| | - Luc Angenot
- Center of Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, 4000 Liège, Belgium; (L.A.); (M.T.); (M.F.)
| | - Monique Tits
- Center of Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, 4000 Liège, Belgium; (L.A.); (M.T.); (M.F.)
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Mircea Tămaş
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Gianina Crişan
- Department of Pharmaceutical Botany, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (A.M.); (M.B.); (O.F.); (M.T.); (G.C.)
| | - Michel Frederich
- Center of Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, 4000 Liège, Belgium; (L.A.); (M.T.); (M.F.)
| |
Collapse
|
9
|
Jamaldeen FN, Sofi G, Fahim MFM, Aleem M, Begum EMGKN. Shahatra (F.parviflora Lam)- a comprehensive review of its ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114839. [PMID: 34896208 DOI: 10.1016/j.jep.2021.114839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE F.parviflora Lam. is a plant widely used in traditional medicine systems like Unani, Ayurveda, and folk medicines in Iraq and Turkey. It is known as Shahatraj in Arabic, which is derived from Shahatra and called Shajaratuddam. In the ancient Unani system, it is called Shajaratuddam. The term derived from Sajarat means tree, and Dam means blood since it has a potent blood purifier property. AIM OF THE STUDY This review focused on comprehensive, updated information on the F.parviflora Lam. about the traditional uses, phytochemical and pharmacology and provided insights into potential opportunities for future research. MATERIALS AND METHODS The classical literature of Shahatra for its temperament (Mizaj), medicinal properties and traditional therapeutic uses were gathered from nearly 15 classical Unani books, eight local and foreign books on ethnomedicines and ethnobotany in English. The information of pharmacognosy, phytochemical and pharmacological activities of F.parviflora Lam was collected by browsing the Internet (PubMed, ScienceDirect, Wiley online library, Google Scholar, ResearchGate). The relevant primary sources were probed, analysed, and included in this review. The keywords used to browse were F.parviflora Lam, shahatra, pitpapda, and fine fumitory. Relevant Sources were gathered up to April 2021, and the chemical structures were drawn using Chemsketch software. The species name was checked with http://www.theplantlist.org ("F.parviflora Lam. - The Plant List," n.d.). The materials published in both Urdu and English were included in the review. RESULTS F.parviflora Lam was found to possess an excess of bioactive compounds and broad pharmacological properties, including antimicrobial activity, antioxidant activity, antiprotozoal activity, anthelmintic activity, antidiarrheal, antispasmodic and bronchodilator activities, antidiabetic activity, hepatoprotective activity, anticancer activity (cytotoxicity)of nanoparticle, antipruritic activity, dermatological effect, reproductive effect, anti-inflammatory and anti-nociceptive activity. CONCLUSION In this review, the botany, traditional uses, phytochemistry and pharmacology of F.parviflora were reviewed. It showed a broad scope of application, and its benefits had been extended far beyond the initial conventional uses of its parts. It consists of numerous chemical constituents and reported various pharmacological activities such as antimicrobial activity, antioxidant activity, antidiabetic activity, hepatoprotective activity, anticancer activity etc. Though it is widely studied using several in-vitro and in-vivo models and tested clinically for skin diseases, several gaps and research priorities have been identified that need to be addressed in the future, such as active ingredients and their mechanism of action applications in immunomodulation and hepatic diseases.
Collapse
Affiliation(s)
- F N Jamaldeen
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 560091, India.
| | - Ghulamuddin Sofi
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 560091, India.
| | - M F M Fahim
- Department of Tahaffuzi wa Samaji Tibb (Preventive and Social Medicine), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 560091, India.
| | - Mohammed Aleem
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 560091, India.
| | - E M G K N Begum
- Department of Ilmul Advia (Pharmacology), National Institute of Unani Medicine, Kottigepalaya, Magadi Main Road, Bengaluru, 560091, India.
| |
Collapse
|
10
|
Nawaz A, Arif A, Jamal A, Shahid MN, Nomani I, Bahwerth FS. Medicinal plants show remarkable antiproliferative potential in human cancer cell lines. Biosci Biotechnol Biochem 2022; 86:362-367. [PMID: 34982821 DOI: 10.1093/bbb/zbab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Molecules isolated and identified from plant origin are used to manufacture most chemotherapeutic drugs for cancer treatment. We assumed that these plant extracts contain prolific bioactive compounds with potent antiproliferative activities and could be effective against different human cancer cells. Ethanolic extracts were prepared from Chelidonium majus, Myrica cerifera, Fumaria indica, Nigella sativa, and Silybum marianum, and the antiproliferative assay was performed in HepG2 and HeLa human cancer cell lines. All plants extract exhibited antiproliferative potential against studied cancer cell lines in the dose and time-dependent manner. Chelidonium majus and Silybum marianum have shown promising results against HepG2 and HeLa cells, respectively, followed by Myrica cerifera, Fumaria indica, and Nigella sativa. Results indicated that utilization of whole plant extract as anticancer compounds could be of great value in generating novel chemotherapeutic drugs.
Collapse
Affiliation(s)
- Aisha Nawaz
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Amina Arif
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
| | - Muhammad Naveed Shahid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ibtesam Nomani
- College of Nursing, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
| | - Fayez Saeed Bahwerth
- Central Laboratory and Blood Bank, King Faisal Hospital, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Huang W, Kong L, Cao Y, Yan L. Identification and Quantification, Metabolism and Pharmacokinetics, Pharmacological Activities, and Botanical Preparations of Protopine: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010215. [PMID: 35011447 PMCID: PMC8746401 DOI: 10.3390/molecules27010215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Through pharmacological activity research, an increasing number of natural products and their derivatives are being recognized for their therapeutic value. In recent years, studies have been conducted on Corydalis yanhusuo W.T. Wang, a valuable medicinal herb listed in the Chinese Pharmacopoeia. Protopine, one of its components, has also become a research hotspot. To illustrate the identification, metabolism, and broad pharmacological activity of protopine and the botanical preparations containing it for further scientific studies and clinical applications, an in-depth and detailed review of protopine is required. We collected data on the identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine from 1986 to 2021 from the PubMed database using “protopine” as a keyword. It has been shown that protopine as an active ingredient of many botanical preparations can be rapidly screened and quantified by a large number of methods (such as the LC-ESI-MS/MS and the TLC/GC-MS), and the possible metabolic pathways of protopine in vivo have been proposed. In addition, protopine possesses a wide range of pharmacological activities such as anti-inflammatory, anti-platelet aggregation, anti-cancer, analgesic, vasodilatory, anticholinesterase, anti-addictive, anticonvulsant, antipathogenic, antioxidant, hepatoprotective, neuroprotective, and cytotoxic and anti-proliferative activities. In this paper, the identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine are reviewed in detail to lay a foundation for further scientific research and clinical applications of protopine.
Collapse
Affiliation(s)
- Wangli Huang
- Department of Spine, Honghui-Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710054, China; (W.H.); (L.K.); (Y.C.)
- Department of Orthopedics, School of Medicine, Yan’an University, Yan’an 716000, China
| | - Lingbo Kong
- Department of Spine, Honghui-Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710054, China; (W.H.); (L.K.); (Y.C.)
| | - Yang Cao
- Department of Spine, Honghui-Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710054, China; (W.H.); (L.K.); (Y.C.)
| | - Liang Yan
- Department of Spine, Honghui-Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710054, China; (W.H.); (L.K.); (Y.C.)
- Correspondence:
| |
Collapse
|
12
|
Serna AV, Kürti L, Siitonen JH. Synthesis of (±)‐Setigerumine I: Biosynthetic Origins of the Elusive Racemic
Papaveraceae
Isoxazolidine Alkaloids**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana V. Serna
- Department of Chemistry Rice University 6500 Main Street Houston TX 77030 USA
| | - László Kürti
- Department of Chemistry Rice University 6500 Main Street Houston TX 77030 USA
| | - Juha H. Siitonen
- Department of Chemistry Rice University 6500 Main Street Houston TX 77030 USA
| |
Collapse
|
13
|
Serna AV, Kürti L, Siitonen JH. Synthesis of (±)-Setigerumine I: Biosynthetic Origins of the Elusive Racemic Papaveraceae Isoxazolidine Alkaloids*. Angew Chem Int Ed Engl 2021; 60:27236-27240. [PMID: 34706137 DOI: 10.1002/anie.202111049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The biosynthetic origins of the structurally related racemic isoxazolidine Papaveraceae alkaloids Setigerumine I, Dactylicapnosinine and Dactylicapnosine have remained elusive since their original isolation over two decades ago. Herein we report the first biosynthetic hypothesis for their formation and, inspired by it, the first synthesis of (±)-Setigerumine I with accompanying computational rationale. Based on the results, these isoxazolidine alkaloids arise from racemizing oxidative rearrangements of prominent isoquinoline alkaloids Noscapine and Hydrastine. The key steps featured in this synthesis are a room temperature Cope elimination and a domino oxidation/inverse-electron demand 1,3-dipolar cycloaddition of an axially chiral, yet configurationally unstable, intermediate. The work opens this previously inaccessible family of natural products for biological studies.
Collapse
Affiliation(s)
- Ana V Serna
- Department of Chemistry, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - László Kürti
- Department of Chemistry, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Juha H Siitonen
- Department of Chemistry, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Antibiofilm and Antimicrobial-Enhancing Activity of Chelidonium majus and Corydalis cheilanthifolia Extracts against Multidrug-Resistant Helicobacter pylori. Pathogens 2021; 10:pathogens10081033. [PMID: 34451497 PMCID: PMC8400265 DOI: 10.3390/pathogens10081033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 01/15/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about 60% of people worldwide. The search for new drugs with activity against H. pylori is now a hotspot in the effective and safe control of this bacterium. Therefore, the aim of this research was to determine the antibacterial activity of extracts from selected plants of the Papaveraceae family against planktonic and biofilm forms of the multidrug-resistant clinical strain of H. pylori using a broad spectrum of analytical in vitro methods. It was revealed that among the tested extracts, those obtained from Corydalis cheilanthifolia and Chelidonium majus were the most active, with minimal inhibitory concentrations (MICs) of 64 µg/mL and 128 µg/mL, respectively. High concentrations of both extracts showed cytotoxicity against cell lines of human hepatic origin. Therefore, we attempted to lower their MICs through the use of a synergistic combination with synthetic antimicrobials as well as by applying cellulose as a drug carrier. Using checkerboard assays, we determined that both extracts presented synergistic interactions with amoxicillin (AMX) and 3-bromopyruvate (3-BP) (FICI = 0.5) and additive relationships with sertraline (SER) (FICI = 0.75). The antibiofilm activity of extracts and their combinations with AMX, 3-BP, or SER, was analyzed by two methods, i.e., the microcapillary overgrowth under flow conditions (the Bioflux system) and assessment of the viability of lawn biofilms after exposure to drugs released from bacterial cellulose (BC) carriers. Using both methods, we observed a several-fold decrease in the level of H. pylori biofilm, indicating the ability of the tested compounds to eradicate the microbial biofilm. The obtained results indicate that application of plant-derived extracts from the Papaveraceae family combined with synthetic antimicrobials, absorbed into organic BC carrier, may be considered a promising way of fighting biofilm-forming H. pylori.
Collapse
|
15
|
Zielińska S, Dziągwa-Becker M, Junka A, Piątczak E, Jezierska-Domaradzka A, Brożyna M, Paleczny J, Sobiecka A, Słupski W, Mess E, Kucharski M, Çiçek SS, Zidorn C, Matkowski A. Screening Papaveraceae as Novel Antibiofilm Natural-Based Agents. Molecules 2021; 26:4778. [PMID: 34443363 PMCID: PMC8399268 DOI: 10.3390/molecules26164778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Ewelina Piątczak
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Anna Jezierska-Domaradzka
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Aleksandra Sobiecka
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Eleonora Mess
- Department of Oncology and Palliative Care, Wroclaw Medical University, K. Bartla 5, 51-618 Wrocław, Poland;
| | - Mariusz Kucharski
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Adam Matkowski
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| |
Collapse
|