1
|
Xia YP, Xie Y, Rao L, Yin GP. Bioactive sorbicillinoid derivatives from an endophytic fungus Trichoderma citrinoviride. Front Microbiol 2025; 16:1485032. [PMID: 39935641 PMCID: PMC11811624 DOI: 10.3389/fmicb.2025.1485032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Three new sorbicillinoid derivatives, citrinsorbicillinol A-C (1-3), along with three known compounds, such as trichosorbicillin G (4), dibutyl phthalate (5), and 3-(4-methoxyphenyl) propanoic acid (6), were isolated from the endophyte Trichoderma citrinoviride of Coptis chinensis. Their structures were elucidated through extensive analyses of spectroscopic data, computer-assisted structure elucidation (ACD/Structure Elucidator), density functional theory (DFT) calculations of the nuclear magnetic resonance (NMR) spectra, and electronic circular dichroism (ECD). Biologically, compounds 1-4 exhibited potential antioxidant activity, as assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, with IC50 values ranging from 27.8 to 89.6 μM. In particular, compounds 2 and 3 demonstrated radical scavenging activity comparable to that of the positive control, ascorbic acid, with IC50 values of 27.8 and 31.2 μM, respectively. Moreover, compound 1 exhibited potential anti-inflammatory activity by inhibiting nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, with an IC50 value of 52.7 μM. These findings underscore the therapeutic potential of the new sorbicillinoid derivatives for antioxidant and anti-inflammatory applications.
Collapse
Affiliation(s)
- Yan-Ping Xia
- Department of Pharmacy, Nanan People’s Hospital of Chongqing, Chongqing, China
| | - Yan Xie
- Department of Pharmacy, Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Guo-Ping Yin
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Wang YJ, Chen X, Yin Y, Zhou W, Zhou PF, Zeng LG, Hu CH, Yin GP. Hedscandines A-C, three undescribed indole alkaloids from Hedyotis scandens with their anti-MRSA activity. PHYTOCHEMISTRY 2024; 219:113988. [PMID: 38224846 DOI: 10.1016/j.phytochem.2024.113988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Hedscandines A-C (1-3), three undescribed indole alkaloids were isolated from Hedyotis scandens Roxb, a traditional Chinese medicine widely used in the treatment of respiratory ailments. Their structures were elucidated by extensive spectroscopic data and electronic circular dichroism calculation. Hedscandine A (1), possessed a unique carbon skeleton with a 1,4-oxazonin-2(3H)-one core system and displayed a rapid bactericidal activity against MRSA with a MIC value of 16 μg/mL. Mechanistic studies showed that compound 1 could disrupt the integrity of bacterial cell membranes and thus lead to bacterial death.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xue Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Yong Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Zhou
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Pei-Fu Zhou
- Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization, State Ethnic Affairs Commission, School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, China
| | - Ling-Gao Zeng
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Chang-Hua Hu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Guo-Ping Yin
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Sang Z, Zhang Y, Qiu K, Zheng Y, Chen C, Xu L, Lai J, Zou Z, Tan H. Chemical Constituents and Bioactivities of the Plant-Derived Fungus Aspergillus fumigatus. Molecules 2024; 29:649. [PMID: 38338395 PMCID: PMC10856792 DOI: 10.3390/molecules29030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
A new bergamotane sesquiterpenoid, named xylariterpenoid H (1), along with fourteen known compounds (2-15), were isolated from the crude extract of Aspergillus fumigatus, an endophytic fungus isolated from Delphinium grandiflorum L. Their structures were elucidated mainly by extensive analyses of NMR and MS spectroscopic data. In addition, the screening results of antibacterial and cytotoxic activities of compounds 1-15 showed that compound 4 displayed antibacterial activities against Staphylococcus aureus and MRSA (methicillin-resistant S. aureus) with an MIC value of 3.12 µg/mL.
Collapse
Affiliation(s)
- Zihuan Sang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yuting Zheng
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Chen Chen
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Li Xu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Zhenxing Zou
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Haibo Tan
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| |
Collapse
|
4
|
Yin GP, Gong M, Xue GM, Gong T, Cao X, Wang W, Hu CH. Penispidins A-C, Aromatic Sesquiterpenoids from Penicillium virgatum and Their Inhibitory Effects on Hepatic Lipid Accumulation. JOURNAL OF NATURAL PRODUCTS 2021; 84:2623-2629. [PMID: 34610746 DOI: 10.1021/acs.jnatprod.1c00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Penispidins A-C (1-3), new aromatic sesquiterpenoids with two classes of rare carbon skeletons, were isolated from the endophytic fungus Penicillium virgatum HL-110. 1 represents the first example of a dunniane-type aromatic sesquiterpenoid, possessing a novel 4/6/6 tricyclic system, while (±)-2 and 3 have a 7,12-cyclized bisabolene skeleton, featuring a 3,4-benzo-fused 2-oxabicyclo[3.3.1]nonane central framework. Their structures were elucidated on the basis of spectroscopic methods, single-crystal X-ray diffraction, and ECD calculations. 1 inhibited hepatic lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Guo-Ping Yin
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Medical Research Institute, Southwest University, Chongqing 400715, People's Republic of China
| | - Man Gong
- College of Pharmacy, Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Gui-Min Xue
- College of Pharmacy, Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Tian Gong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Medical Research Institute, Southwest University, Chongqing 400715, People's Republic of China
| | - Xue Cao
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Medical Research Institute, Southwest University, Chongqing 400715, People's Republic of China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Chang-Hua Hu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences and Chinese Medicine, Medical Research Institute, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|