1
|
Lu H, Feng Y, Lin M, Yu X, Liu Y, Tan Y, Luo X. Discovery of Polyketides and Alkaloids From the Mangrove Endophytic Fungus Diaporthe sp. and Their Anti-Osteoclastogenic Bioactivities. Chem Biodivers 2025:e202500858. [PMID: 40228317 DOI: 10.1002/cbdv.202500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Two new compounds, 5-methoxymethylmellein (1) and 6-benzyl-2-hydroxy-5-methoxy-3-methylpyradine (2), along with nine known compounds (3-11), were obtained from the mangrove endophytic fungus Diaporthe sp. SCSIO 41011. Their structures were determined based on extensive spectroscopic analysis and by comparison with literature. The absolute configuration of 1 was assigned by electronic circular dichroism calculations. The structure of naturally rare compound 2 was unambiguously confirmed by single-crystal X-ray diffraction analysis. Notably, compound 4 displayed inhibition of lipopolysaccharide-induced nuclear factor kappa B in RAW264.7 macrophages at 20 µM. It further dose-dependently suppressed receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in bone marrow macrophage cells with an EC50 value of 19.0 µM, without observed cytotoxicity. Our findings provided 4 as a promising lead compound for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Humu Lu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyao Feng
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Yu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaowei Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
2
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Chen C, Xiao L, Luo X, Cai J, Huang L, Tao H, Zhou X, Tan Y, Liu Y. Identifying Marine-Derived Tanzawaic Acid Derivatives as Novel Inhibitors against Osteoclastogenesis and Osteoporosis via Downregulation of NF-κB and NFATc1 Activation. J Med Chem 2024; 67:2602-2618. [PMID: 38301128 DOI: 10.1021/acs.jmedchem.3c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
To discover novel osteoclast-targeting antiosteoporosis leads from natural products, we identified 40 tanzawaic acid derivatives, including 22 new ones (1-8, 14-19, 27-32, 37, and 38), from the South China Sea mangrove-derived fungus Penicillium steckii SCSIO 41025. Penicisteck acid F (2), one of the new derivatives showing the most potent NF-κB inhibitory activity, remarkably inhibited osteoclast generation in vitro. Mechanistically, 2 reduced RANKL-induced IκBα degradation, NF-κB p65 nuclear translocation, the activation and nuclear translocation of NFATc1, and the relevant mRNA expression. NF-κB p65 could be a potential molecular target for 2, which has been further determined by the cellular thermal shift assay, surface plasmon resonance, and the gene knock-down assay. Moreover, 2 could also alleviate osteoporosis in ovariectomized mice by reducing the quantities of osteoclasts. Our finding offered a novel potential inhibitor of osteoclastogenesis and osteoporosis for further development of potent antiosteoporosis agents.
Collapse
Affiliation(s)
- Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lingxiang Xiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lishan Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
4
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Cai J, Gao L, Wang Y, Zheng Y, Lin X, Zhou P, Chen C, Liu K, Tang L, Liu Y, Tan Y, Jin M, Zhou X. Discovery of a novel anti-osteoporotic agent from marine fungus-derived structurally diverse sirenins. Eur J Med Chem 2024; 265:116068. [PMID: 38141284 DOI: 10.1016/j.ejmech.2023.116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Thirteen new sirenin derivatives named eupenicisirenins C-O (1-13), along with a biosynthetically related known one (14), were isolated from the mangrove sediment-derived fungus Penicillium sp. SCSIO 41410. The structures, which possessed a rare cyclopropane moiety, were confirmed by extensive analyses of the spectroscopic data, quantum chemical calculations, and X-ray diffraction. Among them, eupenicisirenin C (1) exhibited the strongest NF-κB inhibitory activities, as well as suppressing effects on cGAS-STING pathway. Moreover, 1 showed the significant inhibitory effect on RANKL-induced osteoclast differentiation in bone marrow macrophages cells, and also displayed the therapeutic potential on prednisolone-induced zebrafish osteoporosis. Transcriptome analysis and the following verification tests suggested that its anti-osteoporotic mechanism is related to the extracellular matrix receptor interaction-related pathways. This study provided a promising marine-derived anti-osteoporotic agent for the treatment of skeletal disease.
Collapse
Affiliation(s)
- Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, 250103, China
| | - Yue Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541001, China
| | - Yuanteng Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, 250103, China
| | - Xiuling Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Pingzheng Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, 250103, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541001, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, 250103, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Qin Y, Lu H, Qi X, Lin M, Gao C, Liu Y, Luo X. Recent Advances in Chemistry and Bioactivities of Secondary Metabolites from the Genus Acremonium. J Fungi (Basel) 2024; 10:37. [PMID: 38248947 PMCID: PMC10820033 DOI: 10.3390/jof10010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Acremonium fungi is one of the greatest and most complex genera in Hyphomycetes, comprising 130 species of marine and terrestrial sources. The past decades have witnessed substantial chemical and biological investigations on the diverse secondary metabolites from the Acremonium species. To date, over 600 compounds with abundant chemical types as well as a wide range of bioactivities have been obtained from this genus, attracting considerable attention from chemists and pharmacologists. This review mainly summarizes the sources, chemical structures, and biological activities of 115 recently reported new compounds from the genus Acremonium from December 2016 to September 2023. They are structurally classified into terpenoids (42%), peptides (29%), polyketides (20%), and others (9%), among which marine sources are predominant (68%). Notably, these compounds were primarily screened with cytotoxic, antibacterial, and anti-inflammatory activities. This paper provides insights into the exploration and utilization of bioactive compounds in this genus, both within the scientific field and pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
8
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
9
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
10
|
Zhang H, Kang Y, Qi X, Wu J, Liu D, Fan A, Huang J, Lin W. Versicotide G suppresses osteoclastogenesis and prevents osteolysis. Bioorg Chem 2022; 129:106114. [PMID: 36087552 DOI: 10.1016/j.bioorg.2022.106114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Excessive formation and function of osteoclasts cause various osteolytic bone diseases. Natural products are a potential source for the discovery of new therapeutic candidates to treat bone destruction diseases. In this study, chemical informatics and bioassay guided examination of the marine-derived Aspergillus versicolor F77 fungus chemically resulted in the isolation of seven cyclopeptides, of which versicotides G-J (1-4) are new cyclohexapeptides. Their structures were identified by spectroscopic data in association with Marfey method and single crystal X-ray diffraction data for configurational assignments. Bioassay revealed that versicotide G (1, VG) is the most active among the analogs to suppress the receptor activator of nuclear factor-KB ligand (RANKL)-induced osteoclastogenesis in bone marrow derived monocytes (BMMs) without affecting BMMs viability. VG also suppressed RANKL-induced actin-ring formation and resorbing function of osteoclast dose-dependently. Mechanistically, VG attenuated RANKL-induced intracellular calcium elevation by inhibiting PLCγ1 phosphorylation and blocking the activation of downstream phosphatase calcineurin. In addition, VG abrogated the expression and translocation of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), leading to the downregulation of the expression of osteoclast-specific genes and the abolishment of the osteoclast formation. In the in vivo test, VG suppressed osteoclast formation and bone loss in Ti-induced calvarial osteolytic mouse model.These findings imply that VG is a promising candidate for the remedy of bone destruction-related diseases.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Ying Kang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
11
|
Chen Y, Xu LC, Liu S, Zhang ZX, Cao GY. Halometabolites isolated from the marine-derived fungi with potent pharmacological activities. Front Microbiol 2022; 13:1038487. [PMID: 36267169 PMCID: PMC9576957 DOI: 10.3389/fmicb.2022.1038487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Halometabolites, usually produced in marine environment, are an important group of natural halogenated compounds with rich biological functionality and drugability and thus play a crucial role in pharmaceutical and/or agricultural applications. In the exploration of novel halometabolites from marine microorganisms, the growing number of halogenated compounds makes it necessary to fully present these metabolites with diverse structures and considerable bioactivities. This review particularly focuses on the chemodiversity and bioactivities of halometabolites from marine-derived fungi. As a result, a total of 145 naturally halogenated compounds, including 118 chlorinated, 23 brominated, and four iodinated compounds, were isolated from 17 genera of marine-derived fungi. Interestingly, many of halometabolites, especially for the brominated and iodinated compounds, are generated by the substitution of bromide and iodide ions for the chloride ion in cultivation process. In addition, these compounds possess diverse structural types, which are classified into polyketides (62.7%), phenols (16.6%), alkaloids (14.5%), and terpenoids (6.2%). Their cytotoxic, antibacterial, and anti-inflammatory activities indicate the high potential of these halogenated compounds as lead compounds for drug discovery.
Collapse
Affiliation(s)
- Yu Chen
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Lian-Cheng Xu
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Shan Liu
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Guan-Yi Cao, ; Zi-Xiang Zhang,
| | - Guan-Yi Cao
- Department of General Surgery, Suqian First Hospital, Suqian, China
- *Correspondence: Guan-Yi Cao, ; Zi-Xiang Zhang,
| |
Collapse
|
12
|
Huang B, Peng S, Liu S, Zhang Y, Wei Y, Xu X, Gao C, Liu Y, Luo X. Isolation, Screening, and Active Metabolites Identification of Anti- Vibrio Fungal Strains Derived From the Beibu Gulf Coral. Front Microbiol 2022; 13:930981. [PMID: 35722281 PMCID: PMC9201449 DOI: 10.3389/fmicb.2022.930981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The Beibu Gulf harbors abundant underexplored marine microbial resources, which are rich in diversified secondary metabolites. The genera Vibrio is a well-known pathogenic bacterium of aquatic animals. In this study, 22 fungal strains were isolated and identified from the Beibu Gulf coral via the serial dilution method and internal transcribed spacer (ITS) sequence analysis, which were further divided into three branches by phylogenetic tree analysis. The crude extracts of them via small-scale fermentation were selected for the screening of inhibitory activity against Vibrio alginalyticus, Vibrio coralliilyticus, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio owensii, and Vibrio shilonii. The results showed that eight fungal extracts displayed anti-Vibrio activity via the filter paper disk assay. Several of them showed strong inhibitory effects. Then, two tetramic acid alkaloids, equisetin (1) and 5'-epiequisetin (2), were identified from Fusarium equiseti BBG10 by bioassay-guided isolation, both of which inhibited the growth of Vibrio spp. with the MIC values of 86-132 μg/ml. The scanning electron microscope results showed that cell membranes of Vibrio became corrugated, distorted or ruptured after treatment with 1 and 2. Taken together, this study provided eight fungal isolates with anti-Vibrio potentials, and two alkaloid-type antibiotics were found with anti-Vibrio effects from the bioactive strain F. equiseti BBG10. Our findings highlight the importance of exploring promising microbes from the Beibu Gulf for the identification of anti-Vibrio for future antibiotic development.
Collapse
Affiliation(s)
- Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuai Peng
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Shifang Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanting Zhang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuxiao Wei
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Xu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|