1
|
Mao N, Yu Y, Cui J, He J, Yang Y, Wang D. Effect of Matrine on growth performance, gut health, and gut microbiota in chickens infected with avian pathogenic Escherichia coli. Poult Sci 2025; 104:104520. [PMID: 39546922 PMCID: PMC11609370 DOI: 10.1016/j.psj.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major cause of avian colibacillosis. Matrine, a natural component derived from Sophora flavescens, exhibits various pharmacological effects, including anti-inflammatory and antioxidant activities. However, its role in mitigating APEC-induced intestinal damage in chickens remains insufficiently understood. This study aimed to explore the protective effects and potential mechanisms of matrine against APEC-induced intestinal damage. Chickens were administered matrine (10 or 20 mg/kg) from 6 days old for 5 days, followed by an APEC intraperitoneal injection on day 10. After 72 h of APEC infection, tissues were collected for analysis. Results indicated that pretreatment with matrine alleviated the symptoms of APEC infection in chickens, improving survival rates and promoting weight gain. Additionally, pretreatment with matrine reduced the secretion and gene expression of IL-1β, IL-6, and TNF-α in intestinal tissues, while enhancing serum SOD, GSH, and CAT activity, as well as gene expression levels in the intestine. Pretreatment with matrine reduced the levels of TLR4, MyD88, and NF-κB in intestinal tissues. Moreover, pretreatment with matrine ameliorated intestinal inflammation and pathological damage, restoring the expression of ZO-1, Occludin, and MUC2 in the intestine during APEC infection. Furthermore, pretreatment with matrine alleviated gut microbiota dysbiosis by lowering the abundance of harmful bacteria. In summary, matrine alleviated APEC-induced intestinal inflammation and damage, potentially by inhibiting NF-κB signaling pathway and reshaping the gut microbiota. These findings provide promising insights into the prevention and treatment of avian colibacillosis.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiqin Cui
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Wang F, Liu J, Liao W, Zheng L, Qian S, Mao L. Matrine alkaloids modulating DNA damage repair in chemoresistant non-small cell lung cancer cells. BMC Cancer 2024; 24:1283. [PMID: 39415176 PMCID: PMC11481340 DOI: 10.1186/s12885-024-12991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) presents a significant challenge in the medical field due to its high incidence and resistance to chemotherapy. Chemoresistance in NSCLC diminishes treatment efficacy and contributes to poor patient outcomes. Matrine alkaloids have shown promise in reversing chemotherapy resistance in NSCLC by targeting DNA repair mechanisms. METHODS Utilizing molecular dynamics simulations, we explored the interactions between Matrine alkaloids and DNA repair-related proteins to elucidate their impact on NSCLC cells. In vitro experiments involved treating A549/DDP cells with Matrine alkaloids to evaluate their sensitizing effects on lung cancer cells. Additionally, animal model experiments were conducted to validate the therapeutic potential of Matrine alkaloids in NSCLC treatment. RESULTS Our findings demonstrate that Matrine alkaloids disrupt DNA damage repair processes in NSCLC cells, leading to increased sensitivity to chemotherapy. Molecular docking studies revealed the intricate mechanisms by which Matrine alkaloids interact with DNA repair proteins, impacting cell survival and proliferation. Both cell experiments and animal models confirmed the chemosensitizing effects of Matrine alkaloids in NSCLC treatment. CONCLUSION Matrine alkaloids offer a promising avenue for overcoming chemotherapy resistance in NSCLC by interfering with DNA repair pathways. This study lays a solid foundation for future clinical investigations into the potential of Matrine alkaloids as effective therapeutic agents for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lixiang Zheng
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China
| | - Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lisi Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
3
|
Ndebia EJ, Kamsu GT. Natural alkaloids as potential treatments for esophageal squamous-cell carcinoma: A comprehensive review. GASTROENTEROLOGY & ENDOSCOPY 2024; 2:131-136. [DOI: 10.1016/j.gande.2024.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
|