1
|
Cismasiu RS, Birlutiu RM, Preoțescu LL. Uncommon Septic Arthritis of the Hip Joint in an Immunocompetent Adult Patient Due to Bacillus pumilus and Paenibacillus barengoltzii Managed with Long-Term Treatment with Linezolid: A Case Report and Short Literature Review. Pharmaceuticals (Basel) 2023; 16:1743. [PMID: 38139869 PMCID: PMC10747381 DOI: 10.3390/ph16121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
The Bacillus and Paenibacillus genera are diverse soil-related bacterial pathogens. In this case report, we describe, to our knowledge, the first report of septic arthritis in a native hip joint in an immunocompetent adult patient caused by Bacillus pumilus and Paenibacillus barengoltzii. We describe the case of a 39-year-old Caucasian male patient who sought medical advice for chronic pain on the mobilization of the right hip, decreased range of motion, and physical asthenia. The patient underwent a surgical intervention (core decompression) for a right osteonecrosis of the femoral head, with a slightly favorable postoperative evolution after surgery for one month. Surgical treatment was planned on the basis of clinical and paraclinical investigations and the joint damage. The hip was explored using an anterior approach under spinal anesthesia and standard antibiotic prophylaxis. After resection of the femoral head, meticulous debridement of all inflammatory tissues was performed, and a preformed temporary spacer was inserted into the femoral canal. Bacteriological laboratory studies identified Bacillus pumilus and Paenibacillus barengoltzii via matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analysis. The patient initially received nine days of empirical therapy with intravenous antibiotics (linezolid and meropenem). After the bacterial strains were identified, the patient received organism-specific antibiotic therapy with the same antibiotics and dose for eight days until discharge. After discharge, the patient was referred to another hospital, where he continued treatment with linezolid for seven weeks and, after that, four weeks of oral therapy with cotrimoxazole and rifampicin. During this period, no severe or potentially life-threatening adverse events were recorded during long-term treatment with linezolid or with the two oral antibiotics. In conclusion, our findings suggest that long-term treatment with linezolid may be a viable option for the management of bone and joint infections caused by Bacillus pumilus and Paenibacillus barengoltzii.
Collapse
Affiliation(s)
- Razvan Silviu Cismasiu
- Clinical Hospital of Orthopedics, Traumatology, and Osteoarticular TB Bucharest, B-dul Ferdinand 35-37, Sector 2, 021382 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Rares-Mircea Birlutiu
- Clinical Hospital of Orthopedics, Traumatology, and Osteoarticular TB Bucharest, B-dul Ferdinand 35-37, Sector 2, 021382 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| | - Liliana Lucia Preoțescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
2
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
3
|
Cerar Kišek T, Pogačnik N, Godič Torkar K. Genetic diversity and the presence of circular plasmids in Bacillus cereus isolates of clinical and environmental origin. Arch Microbiol 2021; 203:3209-3217. [PMID: 33830284 DOI: 10.1007/s00203-021-02302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The diversity of 61 Bacillus cereus strains isolated from different clinical specimens, food including raw milk and milk products, and water was evaluated. PFGE analysis could discriminate 61 distinct pulsotypes with similarity levels from 25 to 82%, which were divided into 13 clonal complexes. The similarity between clonal complexes was at least 40%. Clinical strains were divided into 10 clonal complexes, while the strains, isolated from milk, food and water were included in 9, 6 and 6 clonal complexes, respectively. Three clonal complexes were dominated by clinical isolates, while they were absent in two complexes. Bacterial isolates from food, being a probable source of alimentary toxoinfection, showed low similarity to isolates from stool specimens. The isolates from both sources were classified together in only 4 out of 13 clonal complexes. The large circular and linear plasmids with the sizes between 50 and 200 kb were detected in 24 (39.3%) and 14 (23%) B. cereus strains, respectively. Thirteen (21.3%) strains contained only one plasmid, two plasmids were found in 6 (9.8%) of strains, and three or more plasmids were obtained in 5 (8.2%) of tested strains. The plasmids were confirmed in 30.8% and 40% of isolates from clinical specimens and food and milk samples, respectively. No clear correlation between the PFGE profiles, the source as well as plasmid content among all tested strains was observed.
Collapse
Affiliation(s)
- Tjaša Cerar Kišek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nežka Pogačnik
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Karmen Godič Torkar
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Genotypic Profiling of Bacillus cereus Recovered from Some Retail Foods in Ogun State, Nigeria, and Their Phylogenetic Relationship. Int J Microbiol 2020; 2020:3750948. [PMID: 33005193 PMCID: PMC7509558 DOI: 10.1155/2020/3750948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Identifying Bacillus cereus with conventional methods is neither specific nor rapid because of the close relatedness of the B. cereus group, hence the need for molecular methods. Genotypic profiling of B. cereus isolates from food was obtained by Random Amplified Polymorphic DNA-polymerase chain reaction (RAPD-PCR) using OPR13 primer. A dendrogram was drawn with the Numerical Taxonomy System of Statistic (NTSYS) software. Thirty of the isolates were subjected to molecular identification by 16S rDNA sequencing. The thirty sequences were deposited in GenBank for accession number. Phylogenetic relationship of the 16S rDNA sequence obtained was carried out with the Multiple Alignment using Fast Fourier Transform (MAFFT) software version 7.0. The evolutionary tree was drawn using the Molecular Evolutionary Genetics Analysis (MEGA 6) software. The dendrogram generated for the RAPD profile showed that all the strains are closely related, with a similarity coefficient of 70%. The isolates were confirmed with 16S rDNA sequencing as B. cereus. The thirty sequences deposited in GenBank were given accession numbers: KX574760–KX574769, KX610811–KX610820, MT757957-MT757963, and MT772282-MT772284. By comparing the phylogenetic relationship, eleven of the strains did not cluster with the reference strains from the GenBank but form distinct clades, which means they are likely to be of different ancestors. Conventional methods rarely differentiate bacteria of the same species into clade, neither can it describe their ancestral lineage. Therefore, it is important to employ molecular methods in identifying bacteria to give detailed information about them.
Collapse
|
5
|
Cardoso PDF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367-1381. [PMID: 31104082 DOI: 10.1007/s00294-019-00993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiquitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-sensing systems from the RNPP family. Among them, the Rap-Phr systems, which are well-described in Bacillus subtilis, regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The rap-phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite a high variability in their sequences, there is a remarkable association between closely related strains and their Rap-Phr profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and diversity of Rap-Phr systems could strictly control the commitment to sporulation and then improve the adaptation capacities of the bacteria to environmental changes.
Collapse
Affiliation(s)
- Priscilla de F Cardoso
- Depto. Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
6
|
Malek F. Bactéries sporulées et biofilms : un problème récurrent dans les lignes de production de lait reconstitué ou recombiné pasteurisé. Can J Microbiol 2019; 65:405-420. [PMID: 30935210 DOI: 10.1139/cjm-2018-0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the dairy industry, bacterial contaminants persist on equipment surfaces due to spore and biofilm formation. These are involved in cross-contamination problems that affect the quality of processed products and limit their life. The pasteurization process, in which milk is submitted to moderate heat treatment, is inefficient against bacterial spores. The most prevalent sporulated bacteria belong to Bacillus and related genera. The situation is more complicated in countries where pasteurized milk is derived from imported milk powder originally contaminated by bacterial spores. Studies have shown biofilm formation on dairy equipment by mesophilic strains from the group Bacillus cereus and thermophilic strains from the genus Geobacillus. These biofilms are resistant to cleaning procedures and are sources of chronic contamination of pasteurized milk. This review analyzes the dairy situation in Algeria exposed to sporulated flora and derived biofilm problems, with the aim of proposing efficient solutions in the light of current knowledge. [Journal translation].
Collapse
Affiliation(s)
- Fadila Malek
- Département de Biologie, Faculté SNV-STU, Université de Tlemcen, Tlemcen, 13000, Algérie.,Département de Biologie, Faculté SNV-STU, Université de Tlemcen, Tlemcen, 13000, Algérie
| |
Collapse
|
7
|
Ikram S, Heikal A, Finke S, Hofgaard A, Rehman Y, Sabri AN, Økstad OA. Bacillus cereus biofilm formation on central venous catheters of hospitalised cardiac patients. BIOFOULING 2019; 35:204-216. [PMID: 30950292 DOI: 10.1080/08927014.2019.1586889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Formation of bacterial biofilms is a risk with many in situ medical devices. Biofilm-forming Bacillus species are associated with potentially life-threatening catheter-related blood stream infections in immunocompromised patients. Here, bacteria were isolated from biofilm-like structures within the lumen of central venous catheters (CVCs) from two patients admitted to cardiac hospital wards. Isolates belonged to the Bacillus cereus group, exhibited strong biofilm formation propensity, and mapped phylogenetically close to the B. cereus emetic cluster. Together, whole genome sequencing and quantitative PCR confirmed that the isolates constituted the same strain and possessed a range of genes important for and up-regulated during biofilm formation. Antimicrobial susceptibility testing demonstrated resistance to trimethoprim-sulphamethoxazole, clindamycin, penicillin and ampicillin. Inspection of the genome revealed several chromosomal β-lactamase genes and a sulphonamide resistant variant of folP. This study clearly shows that B. cereus persisting in hospital ward environments may constitute a risk factor from repeated contamination of CVCs.
Collapse
Affiliation(s)
- Samman Ikram
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Adam Heikal
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Sarah Finke
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| | - Antje Hofgaard
- c Department of Biosciences , University of Oslo , Oslo , Norway
| | - Yasir Rehman
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
| | - Anjum Nasim Sabri
- a Department of Microbiology & Molecular Genetics , University of the Punjab , Lahore , Pakistan
| | - Ole Andreas Økstad
- b Centre for Integrative Microbial Evolution and Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy , University of Oslo , Oslo , Norway
| |
Collapse
|
8
|
Méric G, Mageiros L, Pascoe B, Woodcock DJ, Mourkas E, Lamble S, Bowden R, Jolley KA, Raymond B, Sheppard SK. Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol 2018; 27:1524-1540. [PMID: 29509989 PMCID: PMC5947300 DOI: 10.1111/mec.14546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Bacterial plasmids can vary from small selfish genetic elements to large autonomous replicons that constitute a significant proportion of total cellular DNA. By conferring novel function to the cell, plasmids may facilitate evolution but their mobility may be opposed by co-evolutionary relationships with chromosomes or encouraged via the infectious sharing of genes encoding public goods. Here, we explore these hypotheses through large-scale examination of the association between plasmids and chromosomal DNA in the phenotypically diverse Bacillus cereus group. This complex group is rich in plasmids, many of which encode essential virulence factors (Cry toxins) that are known public goods. We characterized population genomic structure, gene content and plasmid distribution to investigate the role of mobile elements in diversification. We analysed coding sequence within the core and accessory genome of 190 B. cereus group isolates, including 23 novel sequences and genes from 410 reference plasmid genomes. While cry genes were widely distributed, those with invertebrate toxicity were predominantly associated with one sequence cluster (clade 2) and phenotypically defined Bacillus thuringiensis. Cry toxin plasmids in clade 2 showed evidence of recent horizontal transfer and variable gene content, a pattern of plasmid segregation consistent with transfer during infectious cooperation. Nevertheless, comparison between clades suggests that co-evolutionary interactions may drive association between plasmids and chromosomes and limit wider transfer of key virulence traits. Proliferation of successful plasmid and chromosome combinations is a feature of specialized pathogens with characteristic niches (Bacillus anthracis, B. thuringiensis) and has occurred multiple times in the B. cereus group.
Collapse
Affiliation(s)
- Guillaume Méric
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | | | - Ben Pascoe
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Dan J. Woodcock
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Epidemiology ResearchUniversity of WarwickCoventryUK
| | - Evangelos Mourkas
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | - Sarah Lamble
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rory Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | | - Ben Raymond
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonAscotUK
- Department of BiosciencesUniversity of ExeterExeterUK
| | - Samuel K. Sheppard
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
10
|
Frentzel H, Kraushaar B, Krause G, Bodi D, Wichmann-Schauer H, Appel B, Mader A. Phylogenetic and toxinogenic characteristics of Bacillus cereus group members isolated from spices and herbs. Food Control 2018. [DOI: 10.1016/j.foodcont.2016.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Retief L, Bennett NC, Jarvis JUM, Bastos ADS. Subterranean Mammals: Reservoirs of Infection or Overlooked Sentinels of Anthropogenic Environmental Soiling? ECOHEALTH 2017; 14:662-674. [PMID: 29094221 DOI: 10.1007/s10393-017-1281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/16/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Global reports of emergent pathogens in humans have intensified efforts to identify wildlife reservoirs. Subterranean mammals, such as bathyergid mole rats, are largely overlooked, despite their high-level exposure to soil-dwelling microbes. Initial assessment of bathyergid reservoir potential was determined using a broad-range 16S rRNA PCR approach, which revealed an 83% PCR-positivity for the 234 bathyergid lung samples evaluated. The presence of the Bacillus cereus complex, a ubiquitous bacterial assemblage, containing pathogenic and zoonotic species, was confirmed through nucleotide sequencing, prior to group- and species-specific PCR sequencing. The latter allowed for enhanced placement and prevalence estimations of Bacillus in four bathyergid species sampled across a range of transformed landscapes in the Western Cape Province, South Africa. Two novel Bacillus strains (1 and 2) identified on the basis of the concatenated 16S rRNA-groEL-yeaC data set (2066 nucleotides in length), clustered with B. mycoides (ATCC 6462) and B. weihenstephanensis (WSBC 10204), within a well-supported monophyletic lineage. The levels of co-infection, evaluated with a groEL strain-specific assay, developed specifically for this purpose, were high (71%). The overall Bacillus presence of 17.95% (ranging from 0% for Georychus capensis to 45.35% for Bathyergus suillus) differed significantly between host species (χ2 = 69.643; df = 3; P < 0.05), being significantly higher in bathyergids sampled near an urban informal settlement (χ2 = 70.245; df = 3; P < 0.05). The results highlight the sentinel potential of soil-dwelling mammals for monitoring anthropogenically introduced, opportunistic pathogens and the threats they pose to vulnerable communities, particularly in the developing world.
Collapse
Affiliation(s)
- Liezl Retief
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, South Africa
| | - Nigel C Bennett
- South African Research Chair of Mammal Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, South Africa
| | - Jennifer U M Jarvis
- Department of Zoology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Armanda D S Bastos
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, South Africa.
| |
Collapse
|
12
|
Rapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data. Appl Environ Microbiol 2017. [PMID: 28625989 PMCID: PMC5561296 DOI: 10.1128/aem.01096-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-d-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner. IMPORTANCEBacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their pathogenic counterparts, including the human pathogen Bacillus anthracis, which is responsible for anthrax, as well as the insect pathogen B. thuringiensis. By using the variety of typing schemes employed by BTyper, users can rapidly classify, characterize, and assess the virulence potential of any isolate using its nucleotide sequencing data.
Collapse
|
13
|
Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res Microbiol 2017; 168:309-318. [DOI: 10.1016/j.resmic.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
14
|
Yang Y, Yu X, Zhan L, Chen J, Zhang Y, Zhang J, Chen H, Zhang Z, Zhang Y, Lu Y, Mei L. Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China. Food Microbiol 2017; 62:46-50. [DOI: 10.1016/j.fm.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 12/19/2022]
|
15
|
Draft Genome Sequences of 18 Psychrotolerant and 2 Thermotolerant Strains Representative of Particular Ecotypes in the Bacillus cereus Group. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01568-16. [PMID: 28153905 PMCID: PMC5289691 DOI: 10.1128/genomea.01568-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria from the Bacillus cereus group exhibit genetic and physiological diversity through different ecotypes. Here, we present the draft genome sequences of 20 bacterial strains belonging to the contrasted psychrotolerant and thermotolerant ecotypes.
Collapse
|
16
|
Kanyó I, Molnár LV. Procaryotic species and subspecies delineation using average nucleotide identity and gene order conservation. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Fagerlund A, Smith V, Røhr ÅK, Lindbäck T, Parmer MP, Andersson KK, Reubsaet L, Økstad OA. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Mol Microbiol 2016; 101:471-94. [PMID: 27116468 DOI: 10.1111/mmi.13405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria.
Collapse
Affiliation(s)
- Annette Fagerlund
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB1068, Oslo, 0316, Norway
| | - Veronika Smith
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB1068, Oslo, 0316, Norway.,Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Åsmund K Røhr
- Department of Biosciences, University of Oslo, PB1066, Oslo, 0316, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PB8146 Dep, Oslo, 0033, Norway
| | - Marthe P Parmer
- Bioanalytics, Section for Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PB1068, Oslo, 0316, Norway
| | | | - Leon Reubsaet
- Bioanalytics, Section for Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PB1068, Oslo, 0316, Norway
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB1068, Oslo, 0316, Norway.,Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| |
Collapse
|
19
|
Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates. PLoS One 2016; 11:e0152831. [PMID: 27031639 PMCID: PMC4816569 DOI: 10.1371/journal.pone.0152831] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/02/2016] [Indexed: 11/21/2022] Open
Abstract
The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.
Collapse
|
20
|
Abstract
ABSTRACT
The three main species of the
Bacillus cereus sensu lato
,
B. cereus
,
B. thuringiensis
, and
B. anthracis
, were recognized and established by the early 1900s because they each exhibited distinct phenotypic traits.
B. thuringiensis
isolates and their parasporal crystal proteins have long been established as a natural pesticide and insect pathogen.
B. anthracis
, the etiological agent for anthrax, was used by Robert Koch in the 19th century as a model to develop the germ theory of disease, and
B. cereus
, a common soil organism, is also an occasional opportunistic pathogen of humans. In addition to these three historical species designations, are three less-recognized and -understood species:
B. mycoides
,
B. weihenstephanensis
, and
B. pseudomycoides
. All of these “species” combined comprise the
Bacillus cereus sensu lato
group. Despite these apparently clear phenotypic definitions, early molecular approaches to separate the first three by various DNA hybridization and 16S/23S ribosomal sequence analyses led to some “confusion” because there were limited differences to differentiate between these species. These and other results have led to frequent suggestions that a taxonomic change was warranted to reclassify this group to a single species. But the pathogenic properties of
B. anthracis
and the biopesticide applications of
B. thuringiensis
appear to “have outweighed pure taxonomic considerations” and the separate species categories are still being maintained.
B. cereus sensu lato
represents a classic example of a now common bacterial species taxonomic quandary.
Collapse
|
21
|
Lee WJ, Kim HB, Kim KS. Isolation and Characterization of Spore-Forming Bacilli (SFB) from Shepherd's Purse (Capsella bursa-pastoris). J Food Sci 2016; 81:M684-91. [PMID: 26822957 DOI: 10.1111/1750-3841.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shepherd's purse (Capsella bursa-pastoris), native to Europe, is commonly consumed fresh and sometimes inadequately washed before consumption in Korea. The objective of this study was to characterize isolates of spore-forming bacilli (SFB) in samples of fresh Shepherd's purse. Three genera were identified: Bacillus (9 species), Paenibacillus (3 species), and Brevibacillus (1 species). None of the genes of the hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE) complexes, or of the emetic toxin, was detected in the 25 SFB isolates, except for 2 Bacillus pseudomycoides isolates, where all 3 genes of the HBL enterotoxin complex were detected. There were significant sequence variations between the 2 species (Bacillus cereus and B. pseudomycoides) in the 3 genes of the HBL enterotoxin complex. These findings may provide insights into the diverse characteristics of the B. pseudomycoides HBL enterotoxin complex. Antibiotic resistance was assessed using 8 antibiotics. Among the 25 SFB isolates, 11 showed resistance to antibiotics, of which 5 were multiresistant. Assessment of the spoilage potential showed that all 25 SFB isolates could produce enzymes that can cause spoilage of foods. In conclusion, our findings may serve as integrative information for food research and industrial sectors.
Collapse
Affiliation(s)
- Won-Jun Lee
- Dept. of Food Science and Technology, Chung-Ang Univ, Ansung, Kyungki-do, 456-756, South Korea
| | - Hye-Bin Kim
- Dept. of Food Science and Technology, Chung-Ang Univ, Ansung, Kyungki-do, 456-756, South Korea
| | - Keun-Sung Kim
- Dept. of Food Science and Technology, Chung-Ang Univ, Ansung, Kyungki-do, 456-756, South Korea
| |
Collapse
|
22
|
Diomandé SE, Guinebretière MH, De Sarrau B, Nguyen-the C, Broussolle V, Brillard J. Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Res Notes 2015; 8:329. [PMID: 26227277 PMCID: PMC4521489 DOI: 10.1186/s13104-015-1288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacillus cereus Group consists of closely-related bacteria, including pathogenic or harmless strains, and whose species can be positioned along the seven phylogenetic groups of Guinebretière et al. (I-VII). They exhibit different growth-temperature ranges, through thermotolerant to psychrotolerant thermotypes. Among these, B. cytotoxicus is an atypical thermotolerant and food-poisoning agent affiliated to group VII whose thermotolerance contrasts with the mesophilic and psychrotolerant thermotypes associated to the remaining groups I-VI. To understand the role of fatty acid (FA) composition in these variable thermotypes (i.e. growth behavior vs temperatures), we report specific features differentiating the FA pattern of B. cytotoxicus (group VII) from its counterparts (groups I-VI). FINDINGS The FA pattern of thermotolerant group VII (B. cytotoxicus) displayed several specific features. Most notably, we identified a high ratio of the branched-chain FAs iso-C15/iso-C13 (i15/i13) and the absence of the unsaturated FA (UFA) C16:1(5) consistent with the absence of ∆5 desaturase DesA. Conversely, phylogenetic groups II-VI were characterized by lower i15/i13 ratios and variable proportions of C16:1(5) depending on thermotype, and presence of the DesA desaturase. In mesophilic group I, thermotype seemed to be related to an atypically high amount of C16:1(10) that may involve ∆10 desaturase DesB. CONCLUSION The levels of i15/i13 ratio, C16:1(5) and C16:1(10) UFAs were related to growth temperature variations recorded between thermotypes and/or phylogenetic groups. These FA are likely to play a role in membrane fluidity and may account for the differences in temperature tolerance observed in B. cereus Group strains.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,INRA, UMR408 SQPOV, Site Agroparcs, 228 route de l'Aérodrome, CS40509, 84914, Avignon Cedex 9, France.
| | - Benoit De Sarrau
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Xurian Environnement, ZAE Béziers Ouest, rue du Jéroboam, 34500, Béziers, France.
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France.
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000, Avignon, France. .,INRA, UMR 1333 DGIMI, Université Montpellier, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
23
|
Yim JH, Kim KY, Chon JW, Kim DH, Kim HS, Choi DS, Choi IS, Seo KH. Incidence, Antibiotic Susceptibility, and Toxin Profiles of Bacillus cereus sensu lato Isolated from Korean Fermented Soybean Products. J Food Sci 2015; 80:M1266-70. [PMID: 25950845 DOI: 10.1111/1750-3841.12872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/12/2015] [Indexed: 01/20/2023]
Abstract
Korean fermented soybean products, such as doenjang, kochujang, ssamjang, and cho-kochujang, can harbor foodborne pathogens such as Bacillus cereus sensu lato (B. cereus sensu lato). The aim of this study was to characterize the toxin gene profiles, biochemical characteristics, and antibiotic resistance patterns of B. cereus sensu lato strains isolated from Korean fermented soybean products. Eighty-eight samples of Korean fermented soybean products purchased from retails in Seoul were tested. Thirteen of 26 doenjang samples, 13 of 23 kochujang samples, 16 of 30 ssamjang samples, and 5 of 9 cho-kochujang samples were positive for B. cereus sensu lato strains. The contamination level of all positive samples did not exceed 4 log CFU/g of food (maximum levels of Korea Food Code). Eighty-seven B. cereus sensu lato strains were isolated from 47 positive samples, and all isolates carried at least one enterotoxin gene. The detection rates of hblCDA, nheABC, cytK, and entFM enterotoxin genes among all isolates were 34.5%, 98.9%, 57.5%, and 100%, respectively. Fifteen strains (17.2%) harbored the emetic toxin gene. Most strains tested positive for salicin fermentation (62.1%), starch hydrolysis (66.7%), hemolysis (98.9%), motility test (100%), and lecithinase production (96.6%). The B. cereus sensu lato strains were highly resistant to β-lactam antibiotics such as ampicillin, penicillin, cefepime, imipenem, and oxacillin. Although B. cereus sensu lato levels in Korean fermented soybean products did not exceed the maximum levels permitted in South Korea (<10(4) CFU/g), these results indicate that the bacterial isolates have the potential to cause diarrheal or emetic gastrointestinal diseases.
Collapse
Affiliation(s)
- Jin-Hyeok Yim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Kwang-Yeop Kim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Jung-Whan Chon
- Dept. of Animal Science and Technology, Konkuk Univ., Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Dong-Hyeon Kim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Hong-Seok Kim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Da-Som Choi
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - In-Soo Choi
- Dept. of Infectious Diseases, College of Veterinary Medicine, Konkuk Univ., Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| | - Kun-Ho Seo
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk Univ, Hwayang-dong, Gwangjin-gu, Seoul, the Republic of Korea
| |
Collapse
|
24
|
Chromosome-Directed PCR-Based Detection and Quantification of Bacillus cereus Group Members with Focus on B. thuringiensis Serovar israelensis Active against Nematoceran Larvae. Appl Environ Microbiol 2015; 81:4894-903. [PMID: 25979887 DOI: 10.1128/aem.00671-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is a wide-spread soil bacterium affiliated with the B. cereus group (Bcg) and is widely used in biocontrol products applied against mosquito and black fly larvae. For monitoring and quantification of applied B. thuringiensis serovar israelensis and its effect on indigenous B. thuringiensis serovar israelensis and Bcg assemblages, efficient and reliable tools are essential. The abundance and properties of B. thuringiensis serovar israelensis strains in the environment traditionally have been investigated with cultivation-dependent techniques, which are hampered by low sensitivity and the morphological similarity between B. cereus and B. thuringiensis. Currently available PCR-based detection and quantification tools target markers located on plasmids. In this study, a new cultivation-independent PCR-based method for efficient and specific quantification of B. thuringiensis serovar israelensis and Bcg is presented, utilizing two sets of PCR primers targeting the bacterial chromosome. Sequence database searches and empirical tests performed on target and nontarget species, as well as on bulk soil DNA samples, demonstrated that this diagnostic tool is specific for B. thuringiensis serovar israelensis and Bcg. The method will be useful for comparisons of Bcg and B. thuringiensis serovar israelensis abundances in the same samples. Moreover, the effect of B. thuringiensis serovar israelensis-based insecticide application on the total Bcg assemblages, including indigenous populations, can be investigated. This type of information is valuable in risk assessment and policy making for use of B. thuringiensis serovar israelensis in the environment.
Collapse
|
25
|
Thorsen L, Kando CK, Sawadogo H, Larsen N, Diawara B, Ouédraogo GA, Hendriksen NB, Jespersen L. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. Int J Food Microbiol 2014; 196:70-8. [PMID: 25528535 DOI: 10.1016/j.ijfoodmicro.2014.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product, while the remaining isolates (PanC type IV) were detected in ash, at 48-72h fermentation and in the final product. This work sheds light on the succession and pathogenic potential of B. cereus species in traditional West African food condiment and clarifies their phylogenetic relatedness to B. cereus biovar anthracis. Future implementation of GMP and HACCP and development of starter cultures for controlled Maari fermentations will help to ensure a safe product.
Collapse
Affiliation(s)
- Line Thorsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Christine Kere Kando
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso; Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Hagrétou Sawadogo
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Bréhima Diawara
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | | | - Niels Bohse Hendriksen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Celandroni F, Salvetti S, Senesi S, Ghelardi E. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol Lett 2014; 361:95-103. [PMID: 25283838 DOI: 10.1111/1574-6968.12615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/20/2023] Open
Abstract
Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.
Collapse
Affiliation(s)
- Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
27
|
Blackburn MB, Martin PAW, Kuhar D, Farrar RR, Gundersen-Rindal DE. Crystalliferous Bacillus cereus group bacteria from a Maryland hardwood forest are dominated by psychrotolerant strains. Microbiologyopen 2014; 3:578-84. [PMID: 24985699 PMCID: PMC4287184 DOI: 10.1002/mbo3.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022] Open
Abstract
Crystal-forming bacteria of the Bacillus cereus group were isolated from soil samples collected at different elevations within a mixed hardwood forest in central Maryland, and their phylogenetic relationships determined by multilocus sequence analysis. The vast majority of isolates obtained were associated with two phylogenetic groups known to be psychrotolerant, with very few isolates representing phylogenetic groups more typically associated with Bacillus thuringiensis. Isolates from the psychrotolerant groups were found to grow on solid media at 7°C. Isolates of 11 highly related, novel sequence types (STs) from the psychrotolerant group that includes Bacillus weihenstephanensis were generally found at higher elevations, and were not associated with soils near streams. Isolates of two related STs from the second psychrotolerant group were nearly always found at the bottoms of ravines near streams, in areas abundant in earthworm castings.
Collapse
Affiliation(s)
- Michael B Blackburn
- Invasive Insect Biocontrol and Behavior Laboratory, USDA/ARS, Beltsville, Maryland, 20705
| | | | | | | | | |
Collapse
|
28
|
Gillis A, Mahillon J. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl Environ Microbiol 2014; 80:4138-52. [PMID: 24795369 PMCID: PMC4068676 DOI: 10.1128/aem.00912-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/25/2014] [Indexed: 11/20/2022] Open
Abstract
GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 2013; 13:716-32. [PMID: 24379445 DOI: 10.1074/mcp.m113.032946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.
Collapse
Affiliation(s)
- Jérôme Chenau
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS One 2013; 8:e80097. [PMID: 24244618 PMCID: PMC3823796 DOI: 10.1371/journal.pone.0080097] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments.
Collapse
|
31
|
Oltuszak-Walczak E, Walczak P. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples. J Microbiol Methods 2013; 95:295-301. [PMID: 24060693 DOI: 10.1016/j.mimet.2013.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
A method for detection of the cytotoxin K cytK structural gene and its active promoter preceded by the PlcR-binding box, controlling the expression level of this enterotoxin, was developed. The method was applied for the purpose of the analysis of 47 bacterial strains belonging to the Bacillus cereus group isolated from different food products. It was found that the majority of the analyzed strains carried the fully functional cytK gene with its PlcR regulated promoter. The cytK gene was not detected in four emetic strains of Bacillus cereus carrying the cesB gene and potentially producing an emetic toxin - cereulide. The cytotoxin K gene was detected in 4 isolates classified as Bacillus mycoides and one reference strain B. mycoides PCM 2024. The promoter region and the N-terminal part of the cytK gene from two strains of B. mycoides (5D and 19E) showed similarities to the corresponding sequences of Bacillus cereus W23 and Bacillus thuringiensis HD-789, respectively. It was shown for the first time that the cytK gene promoter region from strains 5D and 19E of Bacillus mycoides had a similar arrangement to the corresponding sequence of Bacillus cereus ATCC 14579. The presence of the cytK gene in Bacillus mycoides shows that this species, widely recognized as nonpathogenic, may pose potential biohazard to human beings.
Collapse
Affiliation(s)
- Elzbieta Oltuszak-Walczak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Lodz, Wolczanska 171/173, Poland
| | | |
Collapse
|
32
|
Phylogenetic distribution of phenotypic traits in Bacillus thuringiensis determined by multilocus sequence analysis. PLoS One 2013; 8:e66061. [PMID: 23762464 PMCID: PMC3677866 DOI: 10.1371/journal.pone.0066061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/03/2013] [Indexed: 01/24/2023] Open
Abstract
Diverse isolates from a world-wide collection of Bacillus thuringiensis were classified based on phenotypic profiles resulting from six biochemical tests; production of amylase (T), lecithinase (L), urease (U), acid from sucrose (S) and salicin (A), and the hydrolysis of esculin (E). Eighty two isolates representing the 15 most common phenotypic profiles were subjected to phylogenetic analysis by multilocus sequence typing; these were found to be distributed among 19 sequence types, 8 of which were novel. Approximately 70% of the isolates belonged to sequence types corresponding to the classical B. thuringiensis varieties kurstaki (20 isolates), finitimus (15 isolates), morrisoni (11 isolates) and israelensis (11 isolates). Generally, there was little apparent correlation between phenotypic traits and phylogenetic position, and phenotypic variation was often substantial within a sequence type. Isolates of the sequence type corresponding to kurstaki displayed the greatest apparent phenotypic variation with 6 of the 15 phenotypic profiles represented. Despite the phenotypic variation often observed within a given sequence type, certain phenotypes appeared highly correlated with particular sequence types. Isolates with the phenotypic profiles TLUAE and LSAE were found to be exclusively associated with sequence types associated with varieties kurstaki and finitimus, respectively, and 7 of 8 TS isolates were found to be associated with the morrisoni sequence type. Our results suggest that the B. thuringiensis varieties israelensis and kurstaki represent the most abundant varieties of Bt in soil.
Collapse
|
33
|
Ehling-Schulz M, Messelhäusser U. Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling. Front Microbiol 2013; 4:32. [PMID: 23440299 PMCID: PMC3579190 DOI: 10.3389/fmicb.2013.00032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/05/2013] [Indexed: 11/29/2022] Open
Abstract
The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
| | | |
Collapse
|
34
|
Scott E, Dyer DW. Divergence of the SigB regulon and pathogenesis of the Bacillus cereus sensu lato group. BMC Genomics 2012; 13:564. [PMID: 23088190 PMCID: PMC3485630 DOI: 10.1186/1471-2164-13-564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/10/2012] [Indexed: 12/31/2022] Open
Abstract
Background The Bacillus cereus sensu lato group currently includes seven species (B. cereus, B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus) that recent phylogenetic and phylogenomic analyses suggest are likely a single species, despite their varied phenotypes. Although horizontal gene transfer and insertion-deletion events are clearly important for promoting divergence among these genomes, recent studies have demonstrated that a major basis for phenotypic diversity in these organisms may be differential regulation of the highly similar gene content shared by these organisms. To explore this hypothesis, we used an in silico approach to evaluate the relationship of pathogenic potential and the divergence of the SigB-dependent general stress response within the B. cereus sensu lato group, since SigB has been demonstrated to support pathogenesis in Bacillus, Listeria and Staphylococcus species. Results During the divergence of these organisms from a common “SigB-less” ancestor, the placement of SigB promoters at varied locations in the B. cereus sensu lato genomes predict alternative structures for the SigB regulon in different organisms. Predicted promoter changes suggesting differential transcriptional control of a common gene pool predominate over evidence of indels or horizontal gene transfer for explaining SigB regulon divergence. Conclusions Four lineages of the SigB regulon have arisen that encompass different gene contents and suggest different strategies for supporting pathogenesis. This is consistent with the hypothesis that divergence within the B. cereus sensu lato group rests in part on alternative strategies for regulation of a common gene pool.
Collapse
Affiliation(s)
- Edgar Scott
- Department of Microbiology and Immunology, Oklahoma University Health Sciences Center, Oklahoma City, 73117, USA
| | | |
Collapse
|
35
|
Lima LJR, van der Velpen V, Wolkers-Rooijackers J, Kamphuis HJ, Zwietering MH, Nout MJR. Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Appl Environ Microbiol 2012; 78:2904-13. [PMID: 22327588 PMCID: PMC3318835 DOI: 10.1128/aem.07691-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/27/2012] [Indexed: 11/20/2022] Open
Abstract
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.
Collapse
MESH Headings
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/isolation & purification
- Biodiversity
- Biota
- Cacao/microbiology
- Cluster Analysis
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Denaturing Gradient Gel Electrophoresis
- Food Handling
- Industrial Microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Lídia J. R. Lima
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Vera van der Velpen
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Marcel H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - M. J. Rob Nout
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
36
|
Mukhopadhyay K, Haque I, Bandopadhyay R, Covert S, Porter D. AFLP based assessment of genetic relationships among shiitake (Lentinula ssp.) mushrooms. Mol Biol Rep 2012; 39:6059-65. [PMID: 22215213 DOI: 10.1007/s11033-011-1420-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/19/2011] [Indexed: 11/25/2022]
Abstract
Despite the economical importance of shiitake (Lentinula ssp.) mushrooms, until the present date little information exists on cultivated and wild species in correlation with geographic origin applying molecular techniques. Use of a high resolution molecular tool like AFLP for assessing genetic similarity and geographical diversity would be an important step towards understanding of different Lentinula species. Thirteen wild and 17 cultivated accessions of 3 Lentinula species were analysed with 64 EcoRI-MseI primer combinations and finally 32 reproducible and polymorphic primer combinations were considered for the analysis. A total of 816 informative AFLP markers were generated and scored as binary data. These data were analysed using various method packages for cluster analysis, genetic diversity and genetic differentiation. Percentage polymorphism was high (62.99%) among the species studied. Different clustering analysis segregated the wild and the cultivated species into two major branches, with the wild samples being further grouped according to their geographic location. Overall polymorphisms among cultivated strains in the USA were higher than that of the cultivated strains in Japan (58.9%).
Collapse
Affiliation(s)
- Kunal Mukhopadhyay
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | | | | | | | | |
Collapse
|
37
|
Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 2011; 12:430. [PMID: 21864360 PMCID: PMC3171730 DOI: 10.1186/1471-2164-12-430] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacillus cereus sensu lato group consists of six species (B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis, and B. weihenstephanensis). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the Bc species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of B. subtilis. RESULTS Phylogenetic analysis of the Bc species-group utilizing 157 single-copy genes of the family Bacillaceae suggests that several taxonomic revisions of the genus Bacillus should be considered. Within the Bc species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the Bc species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the Bc species-group. CONCLUSIONS Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in B. subtilis. Divergence of the sigma-controlled transcriptional regulons among various members of the Bc species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the Bc species-group.
Collapse
|
38
|
Evaluation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates. Antonie van Leeuwenhoek 2010; 99:697-709. [DOI: 10.1007/s10482-010-9545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
|