1
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
2
|
Vion C, Brambati M, Da Costa G, Richard T, Marullo P. Endo metabolomic profiling of flor and wine yeasts reveals a positive correlation between intracellular metabolite load and the specific glycolytic flux during wine fermentation. Front Microbiol 2023; 14:1227520. [PMID: 37928666 PMCID: PMC10620685 DOI: 10.3389/fmicb.2023.1227520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
This study explored the intracellular metabolic variations between 17 strains of Saccharomyces cerevisiae belonging to two different genetic populations: flor and wine yeasts, in the context of alcoholic fermentation. These two populations are closely related as they share the same ecological niche but display distinct genetic characteristics. A protocol was developed for intracellular metabolites extraction and 1H-NMR analysis. This methodology allowed us to identify and quantify 21 intracellular metabolites at two different fermentation steps: the exponential and stationary phases. This work provided evidence of significant differences in the abundance of intracellular metabolites, which are strain- and time-dependent, thus revealing complex interactions. Moreover, the differences in abundance appeared to be correlated with life-history traits such as average cell size and specific glycolytic flux, which revealed unsuspected phenotypic correlations between metabolite load and fermentation activity.
Collapse
Affiliation(s)
- Charlotte Vion
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Mathilde Brambati
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Grégory Da Costa
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Tristan Richard
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Philippe Marullo
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| |
Collapse
|
3
|
Pastor-Vega N, Carbonero-Pacheco J, Mauricio JC, Moreno J, García-Martínez T, Nitin N, Ogawa M, Rai R, Moreno-García J. Flor yeast immobilization in microbial biocapsules for Sherry wine production: microvinification approach. World J Microbiol Biotechnol 2023; 39:271. [PMID: 37541980 PMCID: PMC10403390 DOI: 10.1007/s11274-023-03713-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
Sherry wine is a pale-yellowish dry wine produced in Southern-Spain which features are mainly due to biological aging when the metabolism of biofilm-forming yeasts (flor yeasts) consumes ethanol (and other non-fermentable carbon sources) from a previous alcoholic fermentation, and produces volatile compounds such as acetaldehyde. To start aging and maintain the wine stability, a high alcohol content is required, which is achieved by the previous fermentation or by adding ethanol (fortification). Here, an alternative method is proposed which aims to produce a more economic, distinctive Sherry wine without fortification. For this, a flor yeast has been pre-acclimatized to glycerol consumption against ethanol, and later confined in a fungal-based immobilization system known as "microbial biocapsules", to facilitate its inoculum. Once aged, the wines produced using biocapsules and free yeasts (the conventional method) exhibited chemical differences in terms of acidity and volatile concentrations. These differences were evaluated positively by a sensory panel. Pre-acclimatization of flor yeasts to glycerol consumption was not successful but when cells were immobilized in fungal pellets, ethanol consumption was lower. We believe that immobilization of flor yeasts in microbial biocapsules is an economic technique that can be used to produce high quality differentiated Sherry wines.
Collapse
Affiliation(s)
- Noelia Pastor-Vega
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616 USA
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, 14014 Spain
| |
Collapse
|
4
|
Andreu C, Del Olmo ML. Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12589-y. [PMID: 37233754 DOI: 10.1007/s00253-023-12589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Many microorganisms are capable of developing biofilms under adverse conditions usually related to nutrient limitation. They are complex structures in which cells (in many cases of different species) are embedded in the material that they secrete, the extracellular matrix (ECM), which is composed of proteins, carbohydrates, lipids, and nucleic acids. The ECM has several functions including adhesion, cellular communication, nutrient distribution, and increased community resistance, this being the main drawback when these microorganisms are pathogenic. However, these structures have also proven useful in many biotechnological applications. Until now, the most interest shown in these regards has focused on bacterial biofilms, and the literature describing yeast biofilms is scarce, except for pathological strains. Oceans and other saline reservoirs are full of microorganisms adapted to extreme conditions, and the discovery and knowledge of their properties can be very interesting to explore new uses. Halotolerant and osmotolerant biofilm-forming yeasts have been employed for many years in the food and wine industry, with very few applications in other areas. The experience gained in bioremediation, food production and biocatalysis with bacterial biofilms can be inspiring to find new uses for halotolerant yeast biofilms. In this review, we focus on the biofilms formed by halotolerant and osmotolerant yeasts such as those belonging to Candida, Saccharomyces flor yeasts, Schwannyomyces or Debaryomyces, and their actual or potential biotechnological applications. KEY POINTS: • Biofilm formation by halotolerant and osmotolerant yeasts is reviewed. • Yeasts biofilms have been widely used in food and wine production. • The use of bacterial biofilms in bioremediation can be expanded to halotolerant yeast counterparts.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés S/N, 46100, València, Burjassot, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, 46100, València, Burjassot, Spain.
| |
Collapse
|
5
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
6
|
Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733513. [PMID: 37744152 PMCID: PMC10512321 DOI: 10.3389/ffunb.2021.733513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 09/26/2023]
Abstract
The identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from human-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism of Saccharomyces cerevisiae were investigated in the context of the enological fermentation. The genetic determinism of this trait was found out by a quantitative trait loci (QTL) mapping approach using the offspring of two strains belonging to the wine genetic group of the species. A total of 14 QTL were identified from which 8 were validated down to the gene level by genetic engineering. The allelic frequencies of the validated genes within 403 enological strains showed that most of the validated QTL had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that contains introgressions from the flor yeast genetic group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These results also reveal that introgressions originated from intraspecific hybridization events promoted phenotypic variability of carbon metabolism observed in wine strains.
Collapse
Affiliation(s)
- Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
7
|
Palková Z, Váchová L. Spatially structured yeast communities: Understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J 2021; 19:5613-5621. [PMID: 34712401 PMCID: PMC8529026 DOI: 10.1016/j.csbj.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
| |
Collapse
|
8
|
Biological Processes Highlighted in Saccharomyces cerevisiae during the Sparkling Wines Elaboration. Microorganisms 2020; 8:microorganisms8081216. [PMID: 32796563 PMCID: PMC7464517 DOI: 10.3390/microorganisms8081216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/20/2022] Open
Abstract
Sparkling wines elaboration has been studied by several research groups, but this is the first report on analysis of biological processes according to the Gene Ontology terms (GO terms) and related to proteins expressed by yeast cells during the second fermentation of sparkling wines. This work provides a comprehensive study of the most relevant biological processes in Saccharomyces cerevisiae P29, a sparkling wine strain, during the second fermentation under two conditions (without and with endogenous CO2 overpressure) in the middle and the end of second fermentation. Consequently, a proteomic analysis with the OFFGEL fractionator and protein identification with LTQ Orbitrap XL coupled to HPLC were performed. The classification of biological processes was carried out using the tools provided by the Saccharomyces Genome Database. Results indicate that a greater number of biological processes were identified under condition without CO2 overpressure and in the middle of the fermentation versus the end of the second fermentation. The biological processes highlighted under condition without CO2 overpressure in the middle of the fermentation were involved in the carbohydrate and lipid metabolic processes and catabolic and biosynthetic processes. However, under CO2 overpressure, specific protein expression in response to stress, transport, translation, and chromosome organization and specific processes were not found. At the end of fermentation, there were higher specific processes under condition without CO2 overpressure; most were related to cell division, growth, biosynthetic process, and gene transcription resulting in increased cell viability in this condition. Under CO2 overpressure condition, the most representative processes were related to translation as tRNA metabolic process, chromosome organization, mRNA processing, ribosome biogenesis, and ribonucleoprotein complex assembly, probably in response to the stress caused by the hard fermentation conditions. Therefore, a broader knowledge of the adaptation of the yeast, and its behavior under typical conditions to produce sparkling wine, might improve and favor the wine industry and the selection of yeast for obtaining a high-quality wine.
Collapse
|
9
|
González-Jiménez MDC, García-Martínez T, Mauricio JC, Sánchez-León I, Puig-Pujol A, Moreno J, Moreno-García J. Comparative Study of the Proteins Involved in the Fermentation-Derived Compounds in Two Strains of Saccharomyces cerevisiae during Sparkling Wine Second Fermentation. Microorganisms 2020; 8:microorganisms8081209. [PMID: 32784425 PMCID: PMC7463476 DOI: 10.3390/microorganisms8081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Sparkling wine is a distinctive wine. Saccharomyces cerevisiae flor yeasts is innovative and ideal for the sparkling wine industry due to the yeasts’ resistance to high ethanol concentrations, surface adhesion properties that ease wine clarification, and the ability to provide a characteristic volatilome and odorant profile. The objective of this work is to study the proteins in a flor yeast and a conventional yeast that are responsible for the production of the volatile compounds released during sparkling wine elaboration. The proteins were identified using the OFFGEL fractionator and LTQ Orbitrap. We identified 50 and 43 proteins in the flor yeast and the conventional yeast, respectively. Proteomic profiles did not show remarkable differences between strains except for Adh1p, Fba1p, Tdh1p, Tdh2p, Tdh3p, and Pgk1p, which showed higher concentrations in the flor yeast versus the conventional yeast. The higher concentration of these proteins could explain the fuller body in less alcoholic wines obtained when using flor yeasts. The data presented here can be thought of as a proteomic map for either flor or conventional yeasts which can be useful to understand how these strains metabolize the sugars and release pleasant volatiles under sparkling wine elaboration conditions.
Collapse
Affiliation(s)
- María del Carmen González-Jiménez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
- Correspondence: ; Tel.: +34-957-218-640; Fax: +34-957-218-650
| | - Irene Sánchez-León
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain;
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (T.G.-M.); (I.S.-L.); (J.M.); (J.M.-G.)
| |
Collapse
|
10
|
Porras-Agüera JA, Moreno-García J, González-Jiménez MDC, Mauricio JC, Moreno J, García-Martínez T. Autophagic Proteome in Two Saccharomyces cerevisiae Strains During Second Fermentation for Sparkling Wine Elaboration. Microorganisms 2020; 8:microorganisms8040523. [PMID: 32268562 PMCID: PMC7232233 DOI: 10.3390/microorganisms8040523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
A correlation between autophagy and autolysis has been proposed in order to acceleratethe acquisition of wine organoleptic properties during sparkling wine elaboration. In this context, aproteomic analysis was carried out in two industrial Saccharomyces cerevisiae strains (P29,conventional sparkling wine strain and G1, implicated in sherry wine elaboration) with the aim ofstudying the autophagy-related proteome and comparing the effect of CO2 overpressure duringsparkling wine elaboration. In general, a detrimental effect of pressure and second fermentationdevelopment on autophagy-related proteome was observed in both strains, although it was morepronounced in flor yeast strain G1. Proteins mainly involved in autophagy regulation andautophagosome formation in flor yeast G1, and those required for vesicle nucleation and expansionin P29 strain, highlighted in sealed bottle. Proteins Sec2 and Sec18 were detected 3-fold underpressure conditions in P29 and G1 strains, respectively. Moreover, 'fingerprinting' obtained frommultivariate data analysis established differences in autophagy-related proteome between strainsand conditions. Further research is needed to achieve more solid conclusions and design strategiesto promote autophagy for an accelerated autolysis, thus reducing cost and time production, as wellas acquisition of good organoleptic properties.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - María del Carmen González-Jiménez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
- Correspondence: ; Tel.: +34-(957)-218640; Fax: +34-(957)-218650
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, C3 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| |
Collapse
|
11
|
González-Jiménez MDC, Moreno-García J, García-Martínez T, Moreno JJ, Puig-Pujol A, Capdevilla F, Mauricio JC. Differential Analysis of Proteins Involved in Ester Metabolism in two Saccharomyces cerevisiae Strains during the Second Fermentation in Sparkling Wine Elaboration. Microorganisms 2020; 8:E403. [PMID: 32183073 PMCID: PMC7143655 DOI: 10.3390/microorganisms8030403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
The aromatic metabolites derived from yeast metabolism determine the characteristics of aroma and taste in wines, so they are considered of great industrial interest. Volatile esters represent the most important group and therefore, their presence is extremely important for the flavor profile of the wine. In this work, we use and compare two Saccharomyces cerevisiae yeast strains: P29, typical of sparkling wines resulting of second fermentation in a closed bottle; G1, a flor yeast responsible for the biological aging of Sherry wines. We aimed to analyze and compare the effect of endogenous CO2 overpressure on esters metabolism with the proteins related in these yeast strains, to understand the yeast fermentation process in sparkling wines. For this purpose, protein identification was carried out using the OFFGEL fractionator and the LTQ Orbitrap, following the detection and quantification of esters with gas chromatograph coupled to flame ionization detector (GC-FID) and stir-bar sorptive extraction, followed by thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Six acetate esters, fourteen ethyl esters, and five proteins involved in esters metabolism were identified. Moreover, significant correlations were established between esters and proteins. Both strains showed similar behavior. According to these results, the use of this flor yeast may be proposed for the sparkling wine production and enhance the diversity and the typicity of sparkling wine yeasts.
Collapse
Affiliation(s)
| | - Jaime Moreno-García
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Teresa García-Martínez
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| | - Juan José Moreno
- Department of Agricultural Chemistry, University of Cordoba, 14014 Cordoba, Spain;
| | - Anna Puig-Pujol
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Fina Capdevilla
- Department of Enological Research, Institute of Agrifood Research and Technology-Catalan Institute of Vine and wine (IRTA-INCAVI), 08720 Barcelona, Spain; (A.P.-P.); (F.C.)
| | - Juan Carlos Mauricio
- Department of Microbiology, University of Cordoba, 14014 Cordoba, Spain; (M.d.C.G.-J.); (J.M.-G.); (J.C.M.)
| |
Collapse
|
12
|
Porras-Agüera JA, Román-Camacho JJ, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. Effect of endogenous CO 2 overpressure on the yeast "stressome" during the "prise de mousse" of sparkling wine. Food Microbiol 2020; 89:103431. [PMID: 32138989 DOI: 10.1016/j.fm.2020.103431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Sparkling wines elaboration by the "Champenoise" method involves a second fermentation of a base wine in hermetically sealed bottles and a subsequent aging period. The whole process is known as "prise de mousse". The endogenous CO2 pressure produced during the second fermentation by the yeast Saccharomyces cerevisiae could modify the sub-proteome involved in the response to different stresses, or "stressome", and cell viability thus affecting the wine organoleptic properties. This study focuses on the stressome evolution along the prise de mousse under CO2 overpressure conditions in an industrial S. cerevisiae strain. The results reveal an important effect of endogenous CO2 overpressure on the stress sub-proteome, cell viability and metabolites such as glycerol, reducing sugars and ethanol. Whereas the content of glycerol biosynthesis-related proteins increased in sealed bottle, those involved in the response to toxic metabolites like ROS, ethanol, acetaldehyde and acetic acid, decreased in content. Proteomic profile obtained in this study may be used to select suitable wine yeast strains for sparkling wine elaboration and improve their stress tolerance.
Collapse
Affiliation(s)
- Juan A Porras-Agüera
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan J Román-Camacho
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan C Mauricio
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| |
Collapse
|
13
|
Porras-Agüera JA, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production. Microorganisms 2019; 7:microorganisms7110542. [PMID: 31717411 PMCID: PMC6920952 DOI: 10.3390/microorganisms7110542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
- Correspondence: ; Tel.: +34-957-218640; Fax: +34-957-218650
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| |
Collapse
|
14
|
Sancho-Galán P, Amores-Arrocha A, Jiménez-Cantizano A, Palacios V. Use of Multiflora Bee Pollen as a Flor Velum Yeast Growth Activator in Biological Aging Wines. Molecules 2019; 24:E1763. [PMID: 31067673 PMCID: PMC6539185 DOI: 10.3390/molecules24091763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/26/2022] Open
Abstract
Flor velum yeast growth activators during biological aging are currently unknown. In this sense, this research focuses on the use of bee pollen as a flor velum activator. Bee pollen influence on viable yeast development, surface hydrophobicity, and yeast assimilable nitrogen has already been studied. Additionally, bee pollen effects on the main compounds related to flor yeast metabolism and wine sensory characteristics have been evaluated. "Fino" (Sherry) wine was supplemented with bee pollen using six different doses ranging from 0.1 to 20 g/L. Its addition in a dose equal or greater than 0.25 g/L can be an effective flor velum activator, increasing yeast populations and its buoyancy due to its content of yeast assimilable nitrogen and fatty acids. Except for the 20 g/L dose, pollen did not induce any significant effect on flor velum metabolism, physicochemical parameters, organic acids, major volatile compounds, or glycerol. Sensory analysis showed that low bee pollen doses increase wine's biological aging attributes, obtaining the highest score from the tasting panel. Multiflora bee pollen could be a natural oenological tool to enhance flor velum development and wine sensory qualities. This study confirms association between the bee pollen dose applied and the flor velum growth rate. The addition of bee pollen could help winemakers to accelerate or reimplant flor velum in biologically aged wines.
Collapse
Affiliation(s)
- Pau Sancho-Galán
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Antonio Amores-Arrocha
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Ana Jiménez-Cantizano
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Víctor Palacios
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
15
|
Moreno-García J, Ogawa M, Joseph CML, Mauricio JC, Moreno J, García-Martínez T. Comparative analysis of intracellular metabolites, proteins and their molecular functions in a flor yeast strain under two enological conditions. World J Microbiol Biotechnol 2018; 35:6. [PMID: 30554283 DOI: 10.1007/s11274-018-2578-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
Flor yeasts confer a wide range of organoleptic properties to Sherry-type wines during a process called "biological aging" that takes place after alcoholic fermentation. These kinds of yeasts adapt to a biological aging condition by forming a biofilm known as "flor velum" and by changing from fermentative to oxidative metabolism. It has been reported that some functions such as increase of cell surface hydrophobicity or changes to lipid metabolism are enhanced when yeasts switch to biofilm lifestyle. Here, we attempt to reveal intracellular metabolites and protein molecular functions not documented before that are relevant in biofilm formation and in fermentation by an endometabolome and proteome screening. We report that at early stages of biofilm formation, flor yeasts accumulate mannose, trehalose, glycerol, oleic and stearic acids and synthesize high amounts of GTPases, glycosylases and lipoproteins. On the other hand, in early fermentation, flor yeasts rapidly consume glucose and phosphoric acid; and produce abundant proteins related to chromatin binding, transcription factors and methyl transferases.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Minami Ogawa
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - C M Lucy Joseph
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Juan C Mauricio
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) building, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
16
|
David-Vaizant V, Alexandre H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front Microbiol 2018; 9:2235. [PMID: 30319565 PMCID: PMC6167421 DOI: 10.3389/fmicb.2018.02235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022] Open
Abstract
Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species. Our results highlight that different strains of Saccharomyces are present in these velums. Unexpectedly, in the same velum, flor yeast strain succession occurred during aging, supporting the assumption that environmental changes are responsible for these shifts. Despite numerous sample wine analyses, very few flor yeasts could be isolated from wine following alcoholic fermentation, suggesting that flor yeast development results from the colonization of yeast present in the aging cellar. We analyzed the FLO11 and ICR1 sequence of different S. cerevisiae strains in order to understand how the same strain of S. cerevisiae could form various types of biofilm. Among the strains analyzed, some were heterozygote at the FLO11 locus, while others presented two different alleles of ICR1 (wild type and a 111 bp deletion). We could not find a strong link between strain genotypes and velum characteristics. The same strain in different wines could form a velum having very different characteristics, highlighting a matrix effect.
Collapse
Affiliation(s)
- Vanessa David-Vaizant
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| | - Hervé Alexandre
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| |
Collapse
|
17
|
Moreno-García J, García-Martínez T, Mauricio JC, Moreno J. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Front Microbiol 2018; 9:241. [PMID: 29497415 PMCID: PMC5819314 DOI: 10.3389/fmicb.2018.00241] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages).
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Juan C. Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry and Soil Science, Agrifood Campus of International Excellence (ceiA3), Campus de Rabanales, University of Cordoba, Cordoba, Spain
| |
Collapse
|
18
|
Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation. Int J Mol Sci 2017; 18:ijms18040720. [PMID: 28350350 PMCID: PMC5412306 DOI: 10.3390/ijms18040720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022] Open
Abstract
Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast “biological process” and “cellular component” according to Gene Ontology Terminology (GO Terms) and, “pathways” was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.
Collapse
|
19
|
Eldarov MA, Kishkovskaia SA, Tanaschuk TN, Mardanov AV. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. BIOCHEMISTRY (MOSCOW) 2017; 81:1650-1668. [DOI: 10.1134/s0006297916130046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Legras JL, Moreno-Garcia J, Zara S, Zara G, Garcia-Martinez T, Mauricio JC, Mannazzu I, Coi AL, Bou Zeidan M, Dequin S, Moreno J, Budroni M. Flor Yeast: New Perspectives Beyond Wine Aging. Front Microbiol 2016; 7:503. [PMID: 27148192 PMCID: PMC4830823 DOI: 10.3389/fmicb.2016.00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed.
Collapse
Affiliation(s)
- Jean-Luc Legras
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Jaime Moreno-Garcia
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Teresa Garcia-Martinez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Juan C Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Anna L Coi
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| | - Marc Bou Zeidan
- Department of Agri-Food Sciences, Holy Spirit University of Kaslik Jounieh, Lebanon
| | - Sylvie Dequin
- SPO, Institut National de la Recherche Agronomique - SupAgro, Université de Montpellier Montpellier, France
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba Cordoba, Spain
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari Sassari, Italy
| |
Collapse
|
22
|
Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol 2015; 51:1-9. [PMID: 26187821 DOI: 10.1016/j.fm.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - M Carmen Millán
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| |
Collapse
|