1
|
Mardani S, Moradi M, Tajik H, Divsalar E. Chia seed mucilage film with Lactobacillus acidophilus LA-5 postbiotics: Preparation and antimicrobial performance in ultra-filter cheese against Escherichia coli O157:H7. Int J Biol Macromol 2025; 308:142411. [PMID: 40122429 DOI: 10.1016/j.ijbiomac.2025.142411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
A novel biopolymer-based film with antibacterial properties was developed using chia seed mucilage (CSM) and postbiotics. Postbiotics were prepared from Lactobacillus acidophilus LA-5 using Ultra-filter (UF) cheese whey as the culture medium, as a sustainable approach. CSM -LA-5 films containing LA-5 postbiotics (200 mg/mL) and CSM were prepared using a casting method. The CSM film exhibited a weak inhibitory effect against Escherichia coli O157:H7 (12.2 ± 0.2 mm). However, incorporating LA-5 into the CSM film significantly enhanced (P < 0.05) antimicrobial activity, resulting in a larger inhibition zone (15.3 ± 0.5 mm). The presence of active LA-5 postbiotic compounds in the CSM -LA-5 film was confirmed using FTIR spectroscopy. Field Emission Scanning electron microscopy images confirmed the even distribution of LA-5 on the CSM film. The embedding of postbiotics in the CSM film caused changes in CSM mechanical properties, which decreased tensile strength (from 0.98 MPa to 0.49 MPa) and increased strain-to-break (from 209 % to 276 %), mostly owing to the presence of high molecular weight compounds. The antimicrobial properties of the films were evaluated against E. coli in UF cheese. The initial bacterial count on the surface of UF white cheese (∼ 4.46 log10 CFU/g) was completely inactivated by CSM -LA5 (200 mg/mL) after 15 days of storage at 4 °C. In contrast, reductions in E. coli of about 2.46 and 1.81 log10 CFU/g were observed after 15 days in the CSM film and control group, respectively. Biopolymer-based films incorporating LA-5 postbiotics exhibit innovative antibacterial properties and are thus suitable for use in cheese packaging.
Collapse
Affiliation(s)
- Sepideh Mardani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
2
|
Nemati MH, Alian Samakkhah S, Partovi R, Isvand A. The Coating Effect of Persian Gum (Zedo Gum) Containing Lactobacillus sakei on the Beef Quality Parameters During Storage at Refrigerator Temperature. Food Sci Nutr 2025; 13:e70024. [PMID: 39916689 PMCID: PMC11802240 DOI: 10.1002/fsn3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Coatings with antibacterial properties, integrated with biological agents, offer a novel and promising strategy for preserving meat products. This study investigates the effect of Persian gum (PG) coating containing Lactobacillus sakei bacteria on beef quality during refrigerated storage. Beef loin pieces were divided into five groups (control, 1% PG, 2% PG, and 1% and 2% PG with L. sakei bacteria). The groups were evaluated for microbial, chemical, and sensory tests at specific periods (days 0, 2, 4, 6, and 8). The results of the microbial analysis (the mean LAB count) revealed that the quality of meat significantly (p < 0.05) improved in the presence of L. sakei coatings, ranging from 6.08 to 7.31 log10 CFU/g in different treatment groups at the end of the experiment. Additionally, coatings containing L. sakei significantly (p < 0.05) reduced the microbial counts of mesophilic, psychrophilic, and Enterobacteriaceae bacteria, resulting in an extended shelf life of at least 8 days. The chemical findings indicated that increases in pH values (ranging from 5.98 to 6.57), total volatile basic nitrogen (TVB-N) levels (from 18.30 to 32.33 mg N/g), thiobarbituric acid reactive substances (TBARs) (from 2.16 to 4.12 mg MDA/kg), and protein carbonyl (PC) concentrations (from 1.33 to 2.05 nmol/mg protein) during storage at 4°C were ranked as follows: PG 2% + L. sakei < PG 1% + L. sakei < PG 2% < PG 1% < control. Additionally, overall acceptability, texture, odor, and color were significantly higher in the groups coated with L. sakei than in other groups. Based on the results, the groups covered with PG and L. sakei indicated that the quality and safety of beef increased and extended the shelf life of meat. In conclusion, PG solution containing L. sakei bacteria can be recommended as a new method for beef packaging.
Collapse
Affiliation(s)
- Mohammad Hasan Nemati
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern Technologies (AUSMT)AmolIran
| | - Shohreh Alian Samakkhah
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern Technologies (AUSMT)AmolIran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern Technologies (AUSMT)AmolIran
| | - Abbas Isvand
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| |
Collapse
|
3
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
4
|
Fernandes N, Achemchem F, Gonzales-Barron U, Cadavez V. Biopreservation strategies using bacteriocins to control meat spoilage and foodborne outbreaks. Ital J Food Saf 2024; 13:12558. [PMID: 39749182 PMCID: PMC11694622 DOI: 10.4081/ijfs.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/09/2024] [Indexed: 01/04/2025] Open
Abstract
Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities. However, challenges include the effective diffusion of bacteriocins through the meat matrix and the potential inhibition of starter cultures by bacteriocins targeting closely related lactic acid bacteria (LAB). LAB, predominant in meat, produce bacteriocins - small, stable peptides with broad antimicrobial properties effective across varying pH and temperature conditions. This review highlights the recent advances in the optimization of bacteriocin use, considering its structure and mode of action. Moreover, the strengths and weaknesses of different techniques for bacteriocin screening, including novel bioengineering methods, are described. Finally, we discuss the advantages and limitations of the modes of application of bacteriocins toward the preservation of fresh, cured, and novel meat products.
Collapse
Affiliation(s)
- Nathália Fernandes
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Fouad Achemchem
- LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Ursula Gonzales-Barron
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Vasco Cadavez
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| |
Collapse
|
5
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Ramazanidoroh F, Hosseininezhad M, Shahrampour D, Wu X. Edible Packaging as a Functional Carrier of Prebiotics, Probiotics, and Postbiotics to Boost Food Safety, Quality, and Shelf Life. Probiotics Antimicrob Proteins 2024; 16:1327-1347. [PMID: 37389789 DOI: 10.1007/s12602-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The safety limitations of chemical preservatives led to an increasing trend among industries and customers toward preservative-free foods; hence, the necessity has arisen for developing innovative, safe antimicrobial elements to prolong the shelf life. Beneficial microorganisms that are described as probiotics and also their metabolites are increasingly being considered as bioprotective agents. These microorganisms could be beneficial for extending food shelf-life and boosting human health. During distribution and storage (25 °C or 4 °C), they could contribute to suppressing unwanted microbes and then improving food safety and quality. Also, by tolerating the harsh conditions of gastrointestinal tract (low pH (~3), presence of bile salts, digestive enzymes, competition with other microbes, etc.), probiotics could exert several biological effects at the host. Besides inclusion in foods and supplements, probiotics and their functional metabolites could be delivered via edible packaging (EP). Recent studies have demonstrated the strong potential of pre/pro/post-biotic EP in food biopreservation. These packaging systems may show different potency of food biopreservation. Among others, postbiotics, as metabolic by-products of probiotics, have gained tremendous attention among researchers due to their unique properties like presenting a variety of antimicrobial activities, convenience in use in different industrial stages and commercialization, extended shelf life, and stability in a wide range of pH and temperature. In addition to antimicrobial activities, various bio-EP could differently influence physical or sensorial attributes of food commodities, impacting their acceptance by consumers. Hence, this study is aimed at presenting a comprehensive review of the application of bio-EP, not only by providing a protective barrier against physical damage but also by creating a controlled atmosphere to improve the health and shelf life of food.
Collapse
Affiliation(s)
- Fahimeh Ramazanidoroh
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Marzieh Hosseininezhad
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Dina Shahrampour
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Grigore-Gurgu L, Bucur FI, Mihalache OA, Nicolau AI. Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods 2024; 13:734. [PMID: 38472848 DOI: 10.3390/foods13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a group of human illnesses that appear more frequently in countries with better-developed food supply systems. This review discusses the efficacy of actual biocontrol methods combined with the main types of food involved in illnesses. Comments on bacteriophages, lactic acid bacteria, bacteriocins, essential oils, and endolysins and derivatives, as main biological antilisterial agents, are made bearing in mind that, using them, food processors can intervene to protect consumers. Both commercially available antilisterial products and solutions presented in scientific papers for mitigating the risk of contamination are emphasized. Potential combinations between different types of antilisterial agents are highlighted for their synergic effects (bacteriocins and essential oils, phages and bacteriocins, lactic acid bacteria with natural or synthetic preservatives, etc.). The possibility to use various antilisterial biological agents in active packaging is also presented to reveal the diversity of means that food processors may adopt to assure the safety of their products. Integrating biocontrol solutions into food processing practices can proactively prevent outbreaks and reduce the occurrences of L. monocytogenes-related illnesses.
Collapse
Affiliation(s)
- Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Octavian Augustin Mihalache
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| |
Collapse
|
8
|
Mishra B, Mishra AK, Mohanta YK, Yadavalli R, Agrawal DC, Reddy HP, Gorrepati R, Reddy CN, Mandal SK, Shamim MZ, Panda J. Postbiotics: the new horizons of microbial functional bioactive compounds in food preservation and security. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:28. [DOI: 10.1186/s43014-023-00200-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent decades, consumers, manufacturers, and researchers have been more interested in functional foods, which include probiotics, prebiotics, and postbiotics. Probiotics are live microbes that, when regulated in enough quantities, provide health benefits on the host, while the prebiotics are substrates that host microorganisms selectively use. Postbiotics are metabolites and cell-wall components that are beneficial to the host and are released by living bacteria or after lysis. Postbiotic dietary supplements are more stable than probiotics and prebiotics. Many bioactivities of postbiotics are unknown or poorly understood. Hence, this study aims to present a synopsis of the regular elements and new developments of the postbiotics including health-promoting effects, production, conceptualization of terms, bioactivities, and applications in the field of food safety and preservation. Postbiotics aid in bio preservation and the reduction of biofilm development in food due to their organic acids, bacteriocins, and other antibacterial activities. The present study examines the production of postbiotic metabolites in situ in food and the effects of external and internal food components. The antimicrobial roles, removal of biofilms, and its applications in preservation and food safety have also been discussed. This paper also explored the various aspects like manipulation of postbiotic composition in the food system and its safety measures.
Graphical Abstract
Collapse
|
9
|
Dong J, Wang S, Li M, Liu J, Sun Z, Mandlaa, Chen Z. Application of a Chitosan-based Active Packaging Film Prepared with Cell-free Supernatant of Lacticaseibacillus paracasei ALAC-4 in Mongolian Cheese Preservation. J Food Prot 2023; 86:100158. [PMID: 37699510 DOI: 10.1016/j.jfp.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Fungal spoilage of food is a worldwide concern prompting the development of many antimicrobial agents and applications. In this study, the cell-free supernatant (CFS) of Lacticaseibacillus paracasei ALAC-4 had a significant inhibition effect on fungi. The CFS with antifungal activities were combined with chitosan (CS) matrix to prepare an active packaging CS-CFS films by using a solvent casting method and used for the packaging of Mongolian cheese for 15 days during storage at 4 ± 1℃. The optimized formulation of the film were 1.25% (w/v) chitosan, 1.75% (w/v) gelatin, 0.3% (v/v) glycerol, and 9.6% (w/v) CFS. It was found that CS-CFS films exhibited strong antifungal activities against molds and yeasts, especially Candida albicans, and also had excellent mechanical properties. Additionally, FTIR spectroscopy indicated that hydrogen bonds between the CFS and CS formed, and there was a smooth surface, compact cross-section observed in SEM morphologies of CS-CFS films. Furthermore, CS-CFS film also displayed a strong antifungal effect against molds and yeasts on cheese surface. These results suggest that the chitosan-based CS-CFS film has a promising application for Mongolian cheese and food preservation.
Collapse
Affiliation(s)
- Jing Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Minyu Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziyu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mandlaa
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhongjun Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
10
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023; 64:12524-12554. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
11
|
Akman PK, Kutlu G, Tornuk F. Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. Int J Biol Macromol 2023:125240. [PMID: 37301346 DOI: 10.1016/j.ijbiomac.2023.125240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, sodium alginate based biodegradable films were prepared by the supplementation with postbiotics of Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) W2 strain and the effect of probiotics (probiotic-SA film) and postbiotics (postbiotic-SA film) incorporation on physical, mechanical (tensile strength and elongation at break), barrier (oxygen and water vapor permeability), thermal and antimicrobial properties of the films were investigated. The pH, titratable acidity and brix of the postbiotic was 4.02, 1.24 % and 8.37, respectively while gallic acid, protocatechuic acid, myricetin and catechin were the major phenolic compounds. Mechanical and barrier properties of the alginate-based films were improved by probiotic or postbiotic supplementation while postbiotic showed a more pronounced (P < 0.05) effect. Thermal analysis showed that postbiotics supplementation increased thermal stability of the films. In FTIR spectra, the absorption peaks at 2341 and 2317 cm-1 for probiotic-SA and postbiotic-SA edible films confirmed the incorporation of probiotics/postbiotics of L. plantarum W2 strain. Postbiotic supplemented films showed strong antibacterial activity against gram-positive (L. monocytogenes, S. aureus and B. cereus) and one gram-negative bacterial strain (E. coli O157:H7) while probiotic incorporation did not add an antibacterial effect to the films. SEM images revealed that the supplementation of postbiotics provided a rougher and rigid film surface. Overall, this paper brought a new perspective for development of novel active biodegradable films by incorporation of postbiotics with improved performance.
Collapse
Affiliation(s)
- Perihan Kubra Akman
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Gozde Kutlu
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey.
| |
Collapse
|
12
|
Baillo AA, Cisneros L, Villena J, Vignolo G, Fadda S. Bioprotective Lactic Acid Bacteria and Lactic Acid as a Sustainable Strategy to Combat Escherichia coli O157:H7 in Meat. Foods 2023; 12:foods12020231. [PMID: 36673323 PMCID: PMC9858170 DOI: 10.3390/foods12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human infection by Enterohemorrhagic Escherichia coli (EHEC) constitutes a serious threat to public health and a major concern for the meat industry. Presently, consumers require safer/healthier foods with minimal chemical additives, highlighting the need for sustainable solutions to limit and prevent risks. This work evaluated the ability of two antagonistic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum CRL681 and Enterococcus mundtii CRL35, and their combination in order to inhibit EHEC in beef (ground and vacuum sealed meat discs) at 8 °C during 72 h. The effect of lower lactic acid (LA) concentrations was evaluated. Meat color was studied along with how LAB strains interfere with the adhesion of Escherichia coli to meat. The results indicated a bacteriostatic effect on EHEC cells when mixed LAB strains were inoculated. However, a bactericidal action due to a synergism between 0.6% LA and LAB occurred, producing undetectable pathogenic cells at 72 h. Color parameters (a*, b* and L*) did not vary in bioprotected meat discs, but they were significantly modified in ground meat after 24 h. In addition, LAB strains hindered EHEC adhesion to meat. The use of both LAB strains plus 0.6% LA, represents a novel, effective and ecofriendly strategy to inactivate EHEC in meat.
Collapse
Affiliation(s)
- Ayelen A. Baillo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Lucia Cisneros
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| | - Graciela Vignolo
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
| | - Silvina Fadda
- Laboratory of Technology of Meat and Meat Products, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000ILC, Argentina
- Correspondence: (J.V.); (S.F.); Tel.: +54-381-4310465 (ext. 196) (S.F.)
| |
Collapse
|
13
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
15
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
16
|
Aggarwal S, Sabharwal V, Kaushik P, Joshi A, Aayushi A, Suri M. Postbiotics: From emerging concept to application. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microbiome innovation has resulted in an umbrella term, postbiotics, which refers to non-viable microbial cells, metabolic byproducts and their microbial components released after lysis. Postbiotics, modulate immune response, gene expression, inhibit pathogen binding, maintain intestinal barriers, help in controlling carcinogenesis and pathogen infections. Postbiotics have antimicrobial, antioxidant, and immunomodulatory properties with favorable physiological, immunological, neuro-hormonal, regulatory and metabolic reactions. Consumption of postbiotics relieves symptoms of various diseases and viral infections such as SARS-CoV-2. Postbiotics can act as alternatives for pre-probiotic specially in immunosuppressed patients, children and premature neonates. Postbiotics are used to preserve and enhance nutritional properties of food, elimination of biofilms and skin conditioning in cosmetics. Postbiotics have numerous advantages over live bacteria with no risk of bacterial translocation from the gut to blood, acquisition of antibiotic resistance genes. The process of extraction, standardization, transport, and storage of postbiotic is more natural. Bioengineering techniques such as fermentation technology, high pressure etc., may be used for the synthesis of different postbiotics. Safety assessment and quality assurance of postbiotic is important as they may induce stomach discomfort, sepsis and/or toxic shock. Postbiotics are still in their infancy compared to pre- and pro- biotics but future research in this field may contribute to improved physiological functions and host health. The current review comprehensively summarizes new frontiers of research in postbiotics.
Collapse
|
17
|
Anti-Biofilm Activity of Cell Free Supernatants of Selected Lactic Acid Bacteria against Listeria monocytogenes Isolated from Avocado and Cucumber Fruits, and from an Avocado Processing Plant. Foods 2022; 11:foods11182872. [PMID: 36141000 PMCID: PMC9498153 DOI: 10.3390/foods11182872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes forms biofilms on food contact surfaces, a niche from where it dislodges to contaminate food products including fresh produce. Probiotics and their derivatives are considered promising alternative strategies to curb the presence of L. monocytogenes in varied food applications. Nonetheless, studies on their anti-biofilm effects against L. monocytogenes from avocados and cucumbers are sparse. This study screened the biofilm formation capabilities of L. monocytogenes strains Avo and Cuc isolated from the avocado and cucumber fruits respectively, and strain 243 isolated from an avocado processing plant; and evaluated the anti-biofilm effects of cell free supernatants (CFS) of Lactobacillus acidophilus La14 150B, Lactiplantibacillus plantarum B411 and Lacticaseibacillus rhamnosus ATCC 53103 against their biofilms formed on polyvinyl chloride (PVC) and stainless steel. All the L. monocytogenes strains formed biofilms (classified either as moderate or strong biofilm formers) on these materials. The presence of CFS reduced the biofilm formation capabilities of these strains and disrupted the integrity of their pre-formed biofilms. Quantitative reverse transcriptase polymerase chain reaction revealed significant reduction of positive regulatory factor A (prfA) gene expression by L. monocytogenes biofilm cells in the presence of CFS (p < 0.05). Thus, these CFS have potential as food grade sanitizers for control of L. monocytogenes biofilms in the avocado and cucumber processing facilities.
Collapse
|
18
|
İncili GK, Karatepe P, Akgöl M, Güngören A, Koluman A, İlhak Oİ, Kanmaz H, Kaya B, Hayaloğlu AA. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol 2022; 104:104001. [DOI: 10.1016/j.fm.2022.104001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
19
|
Inhibitory Capacity of Chitosan Films Containing Lactic Acid Bacteria Cell-Free Supernatants against Colletotrichum gloeosporioides. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
21
|
TIAN T, LIU Y, WANG X. Shelf-life extension of chilled beef by sodium lactate enhanced with Natamycin against discoloration and spoilage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.30522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
LINO LPFDV, PEREIRA FILHO JM, SOUZA MPD, ARAÚJO DGDS, OLIVEIRA JPFD, SILVA FILHO ECD, SILVA ALD, MAZZETTO SE, OLIVEIRA RL, ROCHA KNDS, MOURA JFPD, BEZERRA LR. Control of microbial growth and lipid oxidation on beef steak using a cashew nut shell liquid (CNSL)-based edible coating treatment. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Mani-López E, Arrioja-Bretón D, López-Malo A. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf 2021; 21:604-641. [PMID: 34907656 DOI: 10.1111/1541-4337.12872] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Lactic acid bacteria (LAB) are distinguished by their ability to produce lactic acid, among other interesting metabolites with antimicrobial activity. A cell-free supernatant (CFS) is a liquid containing the metabolites resulting from microbial growth and the residual nutrients of the medium used. CFS from LAB can have antimicrobial activity due to organic acids, fatty acids, and proteinaceous compounds, among other compounds. This review aims to summarize the information about CFS production, CFS composition, and the antimicrobial (antibacterial and antifungal) activity of CFS from LAB in vitro, on foods, and in active packaging. In addition, the mechanisms of action of CFS on cells, the stability of CFS during storage, CFS cytotoxicity, and the safety of CFS are reviewed. The main findings are that CFS's antibacterial and antifungal activity in vitro has been widely studied, particularly in members of the genus Lactobacillus. CFS has produced strong inhibition of bacteria and molds on foods when applied directly or in active packaging. In most studies, the compounds responsible for antimicrobial activity are identified. A few studies indicate that CFSs are stable for 1 to 5 months at temperatures ranging from 4 to 35°C. The cytotoxicity of CFS on human cells has not been well studied. However, the studies that have been performed reported no toxicity of CFS. Therefore, it is necessary to investigate novel growth mediums for CFS preparation that are compatible with food sensory properties. More studies into CFS stability and cytotoxic effects are also needed.
Collapse
Affiliation(s)
- Emma Mani-López
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Daniela Arrioja-Bretón
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
24
|
Zong X, Zhang X, Bi K, Zhou Y, Zhang M, Qi J, Xu X, Mei L, Xiong G, Fu M. Novel emulsion film based on gelatin/polydextrose/camellia oil incorporated with Lactobacillus pentosus: Physical, structural, and antibacterial properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Elaboration of Whey Protein-Based Films in Food Products: Emphasis on the Addition of Natural Edible Bio-nanocomposites With Antioxidant and Antimicrobial Activity. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
: Food spoilage is one of the major elements of food insecurity that has acquired significant attention over recent decades due to global human population growth. Several studies have investigated increasing shelf life of food products using natural and environmentally friendly compounds. Whey protein (WP) can be an important additive material because it is well-known for its high value of nutrition and well characteristics for the formation of edible films. Furthermore, natural bioactive compounds have been incorporated with WP-based films to confer their antioxidant and antimicrobial activities. Herein, nanotechnology has been effectively potentiated the antimicrobial and antioxidant properties of WP films. A wide range of bioactive agents has been embedded in the WP films, such as essential oils (EOs), TiO2, nano-clay, and even lactic acid bacteria. The current paper reviews the antioxidant and antimicrobial effects of different types of WP films and their applications in food products. This study also discussed the impact of WP films on shelf life, chemical and microbiological quality indices of meats, processed meats, poultry meat products, and fish.
Collapse
|
26
|
Punia Bangar S, Chaudhary V, Thakur N, Kajla P, Kumar M, Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021; 10:2282. [PMID: 34681331 PMCID: PMC8534497 DOI: 10.3390/foods10102282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India
| | - Neha Thakur
- Department of Livestock Product Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India;
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton 10 Technology, Mumbai 400019, India;
| | - Monica Trif
- CENCIRA Agrofood Research and Innovation Centre, Research and Development Department, Ion Meșter, 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. COATINGS 2021. [DOI: 10.3390/coatings11091056] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The recent surge in environmental awareness and consumer demand for stable, healthy, and safe foods has led the packaging and food sectors to focus on developing edible packaging materials to reduce waste. Edible films and coatings as a modern sustainable packaging solution offer significant potential to serve as a functional barrier between the food and environment ensuring food safety and quality. Whey protein is one of the most promising edible biopolymers in the food packaging industry that has recently gained much attention for its abundant nature, safety, and biodegradability and as an ecofriendly alternative of synthetic polymers. Whey protein isolate and whey protein concentrate are the two major forms of whey protein involved in the formation of edible films and coatings. An edible whey film is a dry, highly interacting polymer network with a three-dimensional gel-type structure. Films/coatings made from whey proteins are colorless, odorless, flexible, and transparent with outstanding mechanical and barrier properties compared with polysaccharide and other-protein polymers. They have high water vapor permeability, low tensile strength, and excellent oxygen permeability compared with other protein films. Whey protein-based films/coatings have been successfully demonstrated in certain foods as vehicles of active ingredients (antimicrobials, antioxidants, probiotics, etc.), without considerably altering the desired properties of packaging films that adds value for subsequent industrial applications. This review provides an overview of the recent advances on the formation and processing technologies of whey protein-based edible films/coatings, the incorporation of additives/active ingredients for improvement, their technological properties, and potential applications in food packaging.
Collapse
|
28
|
Rasouli Y, Moradi M, Tajik H, Molaei R. Fabrication of anti-Listeria film based on bacterial cellulose and Lactobacillus sakei-derived bioactive metabolites; application in meat packaging. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 2021; 184:429-437. [PMID: 34166693 DOI: 10.1016/j.ijbiomac.2021.06.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
This study was carried out to characterize antioxidant activity, total phenolic content, and the phenolic and flavonoids profile of postbiotic of Pediococcus acidilactici and to evaluate the effects of postbiotics (10% and 50%) alone and in combination with chitosan coating (1%) on the microbial and chemical quality of chicken breast fillets during storage at 4 °C. Antioxidant activity and total phenolic content of the postbiotics were found to be 1291.02 ± 1.5 mg/L TEAC and 2336.11 ± 2.36 mg/L GAE, respectively. The most abundant phenolic was vanillic acid, followed by t-caffeic, gallic, and caftaric acids. The postbiotic-chitosan (50% + 1%) combination decreased L. monocytogenes and S. Typhimurium counts by 1.5 and 2.1 log10 CFU/g, respectively, compared to the control (P < 0.05). This combination decreased the total viable count (TVC), lactic acid bacteria (LAB), and psychrotrophic bacteria count compared to the control (P < 0.05). No differences were found in thiobarbituric acid (TBA) values among the samples during storage (P > 0.05). Postbiotic treatment did not significantly change the pH values and color properties of the breast fillets (P > 0.05). Postbiotic-chitosan combinations extended the shelf-life by up to 12 days compared to the control. In conclusion, the postbiotic-chitosan combination can be used to preserve and improve the microbial quality of chicken meat products.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
30
|
Feng Y, Yin N, Zhou Z, Han Y. Physical and antibacterial properties of bacterial cellulose films supplemented with cell-free supernatant enterocin-producing Enterococcus faecium TJUQ1. Food Microbiol 2021; 99:103828. [PMID: 34119113 DOI: 10.1016/j.fm.2021.103828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
In this study, a composite film was prepared with bacterial cellulose (BC) of Gluconacetobacter xylinus and cell-free supernatant (CFS) of Enterococcus faecium TJUQ1, which was named BC-E. The optimum conditions for the preparation of the composite film with a minimal antibacterial activity were the soak of BC in 80 AU/mL CFS for 6 h. By scanning electron microscope observation, the surface network structure of BC-E was denser than that of BC. The tensile strength of BC and BC-E was 4.65 ± 0.88 MPa and 16.30 ± 0.92 MPa, the elongation at break of BC and BC-E was 3.33 ± 0.89% and 31.60 ± 1.15%, respectively, indicating the mechanical properties of BC-E were significantly higher than that of BC (P < 0.05). The swelling ratio of BC-E (456.67 ± 7.20%) was lower than that of BC (1377.78 ± 9.07%), demonstrating BC-E films presented better water resistance. BC-E films were soaked with 320 AU/mL CFS, and then used to pack the ground meat with 6.55 log10 CFU/g of Listeria monocytogenes. After 8 days of storage, the number of bacteria decreased by 3.16 log10 CFU/g. Similarly, total mesophilic bacterial levels in the ground meat decreased by 2.41 log10 CFU/g compared to control groups.
Collapse
Affiliation(s)
- Yunshu Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Nan Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
31
|
Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
33
|
Jung JI, Baek SM, Nguyen TH, Kim JW, Kang CH, Kim S, Imm JY. Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and RANKL-Induced Osteoclastogenesis in RAW 264.7 Macrophages. Molecules 2021; 26:molecules26030733. [PMID: 33572576 PMCID: PMC7867007 DOI: 10.3390/molecules26030733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Postbiotics are a promising functional ingredient that can overcome the limitations of viability and storage stability that challenge the production of probiotics. To evaluate the effects of postbiotics on oral health, eight spent culture supernatants (SCSs) of probiotics were prepared, and the effects of SCSs on Streptococcus mutans-induced cariogenic biofilm formation and the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis were evaluated in RAW 264.7 macrophages. SCS of Lactobacillus salivarius MG4265 reduced S. mutans-induced biofilm formation by 73% and significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity, which is a biomarker of mature osteoclasts in RAW 264.7 macrophages. The suppression of RANKL-induced activation of mitogen activated the protein kinases (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) and nuclear factor κB pathways, as well as the upregulation of heme oxygenase-1 expression. The suppression of RANK-L-induced activation of mitogen also inhibited the expression of transcriptional factors (c-fos and nuclear factor of activated T cells cytoplasmic 1) and, subsequently, osteoclastogenesis-related gene expression (tartrate-resistant acid phosphatase-positive (TRAP), cathepsin K, and matrix metalloproteinase-9).Therefore, SCS of L. salivarius MG4265 has great potential as a multifunctional oral health ingredient that inhibits biofilm formation and suppresses the alveolar bone loss that is associated with periodontitis.
Collapse
Affiliation(s)
- Jae-In Jung
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
| | - Seung-Min Baek
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
| | - Trung Hau Nguyen
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Jin Woo Kim
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Seonyoung Kim
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
- Correspondence: ; Tel.: +82-10-2526-1219
| |
Collapse
|
34
|
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137:109660. [DOI: 10.1016/j.foodres.2020.109660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
35
|
Gonçalves SM, de Melo NR, da Silva JP, Chávez DW, Gouveia FS, Rosenthal A. Antimicrobial packaging and high hydrostatic pressure: Combined effect in improving the safety of coalho cheese. FOOD SCI TECHNOL INT 2020; 27:301-312. [PMID: 32903099 DOI: 10.1177/1082013220953238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Active cellulose acetate films incorporated with oregano essential oil (antimicrobial film) were previously subjected to high hydrostatic pressure treatment (300 MPa/5 min (FHP1) or 400 MPa/10 min (FHP2)) and investigated for possible changes in their antimicrobial efficiency. In parallel, the efficiency of the antimicrobial films, high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min), or a combination of antimicrobial film and high hydrostatic pressure, was tested on coalho cheese, experimentally contaminated with Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus, stored for 21 days under refrigeration. Investigations in culture media (agar, brain-heart infusion broth, and micro-atmosphere) detected antimicrobial efficiency for all films, with or without high hydrostatic pressure, against the three bacteria. However, the data indicated that the treatment with 300 MPa/5 min may have impaired the migration of oregano essential oil from FHP1, justifying its lower efficiency in solid medium and brain-heart infusion broth. In cheese samples, the combination of antimicrobial film and 400 MPa/10 min caused greater reductions in counts for the three microorganisms, at zero time throughout the entire coalho cheese storage. Only antimicrobial film or combination (antimicrobial film and high hydrostatic pressure) were able to control microbial multiplication during the 21 days. Therefore, the results confirm that the individual use of high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min) at the level evaluated can allow bacterial multiplication during storage and that the combination of antimicrobial packaging and high hydrostatic pressure has greater potential to ensure a safer coalho cheese.
Collapse
Affiliation(s)
- Sheyla M Gonçalves
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Nathália R de Melo
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil.,Department of Agribusiness Engineering, Federal Fluminense University (UFF), Brazil
| | | | - Davy Wh Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Fabíola S Gouveia
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Amauri Rosenthal
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil.,Embrapa Food Technology, Brazil
| |
Collapse
|
36
|
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf 2020; 19:3390-3415. [PMID: 33337065 DOI: 10.1111/1541-4337.12613] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Brazil
| | - Nurten Yılmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Anita Lotfi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
37
|
Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. Int J Food Microbiol 2020; 321:108561. [PMID: 32078868 DOI: 10.1016/j.ijfoodmicro.2020.108561] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 01/19/2023]
Abstract
Lyophilized postbiotics of Lactobacillus plantarum was prepared and impregnated in bacterial nanocellulose (BNC) by ex-situ method to develop an antimicrobial ground meat wrapping nanopaper. The postbiotics incorporated BNC (P-BNC) films were optimized by response surface methodology and their antimicrobial activity against Listeria monocytogenes were examined. The BNC with postbiotics at 21.21% concentration and 28 min impregnation time was chosen as an optimized P-BNC film. The FTIR results confirmed the immobilization of postbiotics in BNC. The P-BNC film represented a significant reduction (~5 log cycles) in L.monocytogenes counts in ground meat at the end of the storage period (9 days at 4 °C). Meat wrapped by P-BNC film displayed a significant decrease in total mesophilic and psychrophiles count and TBA values than the controls. BNC can be considered as a proper carrier for development of antimicrobial film using postbiotics of LAB for food application.
Collapse
|
38
|
Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 2020; 145:1031-1038. [DOI: 10.1016/j.ijbiomac.2019.09.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
|
39
|
Mehdizadeh T, Tajik H, Langroodi AM, Molaei R, Mahmoudian A. Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef. Meat Sci 2020; 163:108073. [PMID: 32014807 DOI: 10.1016/j.meatsci.2020.108073] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/16/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
The aim of the current study was to investigate the effects of pomegranate peel extract (PPE) and chitosan-starch (CH-S) composite film incorporated with Thymus kotschyanus essential oil (TEO) on the shelf-life of beef during storage period of 21 days at 4 °C. The physico-mechanical parameters, the color and Fourier Transform Infrared spectra values of the films were determined. Changes in odor, color, pH, thiobarbituric value for lipid oxidation levels and Pseudomonas spp. total viable counts, lactic acid and Listeria monocytogenes were determined during the storage time. All treated films showed lower elongation, strength and transparency values compared with chitosan - starch (CH-S) group. Results showed that CH-S-PPE 1%-TEO 2% treatment had the highest inhibition effect against L. monocytogenes. The bacterial counts and lipid oxidation were successfully inhibited using PPE and TEO. CH-S-PPE 1% group containing up to 2% TEO had the best acceptable sensory characteristic. Beef samples wrapped with CH-S film containing PPE and TEO also had longer shelf life.
Collapse
Affiliation(s)
- Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Mahmoudian
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| |
Collapse
|
40
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Evaluation of antioxidant, antibacterial and physicochemical properties of whey protein-based edible films incorporated with different soy sauces. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108587] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Brink I, Šipailienė A, Leskauskaitė D. Antimicrobial properties of chitosan and whey protein films applied on fresh cut turkey pieces. Int J Biol Macromol 2019; 130:810-817. [DOI: 10.1016/j.ijbiomac.2019.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 11/29/2022]
|
43
|
Effects of Bioactive Packaging Films Incorporated with Bifidocin A on Microbial Reduction and Quality Parameters of Chill-Stored Spanish Mackerel (Scomberomorus niphonius) Fillets. J FOOD QUALITY 2019. [DOI: 10.1155/2019/7108382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To evaluate the potential of bifidocin A for preservation of fresh Spanish mackerel fillets, the bioactive packaging films incorporated with bifidocin A (1 × minimal inhibition concentration (MIC), 2 × MIC and 4 × MIC) were developed, and their effects on the microbiological and physicochemical properties and sensory profile of mackerel fillets at refrigerated storage were investigated. Results showed that the incorporation of bifidocin A in cellulosic matrix films did not affect the thickness and elongation of the films, but reduced slightly the tension strength. The films incorporated with 2 × MIC and 4 × MIC bifidocin A presented a broad spectrum of activity against most tested bacteria, including some fish-borne specific spoilage bacteria such as Pseudomonas fluorescens, Shewanella putrefaciens, Brochothrix thermosphacta, and Micrococcus luteus, and maintained their 100% activity for 28 days during storage at 4°C. The bioactive packaging films incorporated with bifidocin A could generally suppress the growth of microflora, especially Pseudomonas and Enterobacteriaceae, as well as substantially inhibit the accumulation of total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS) and hypoxanthine, during chilled mackerel fillets storage. Overall, from a microbiological and physicochemical point of view, a much more effective treatment was achieved with 4 × MIC bifidocin A, extending the shelf life to 12 days and maintaining the relatively low TVB-N value (≤13.2 mg/100 g), TBARS value (≤0.45 mg MDA/kg), and K-value (≤32.8%), as well as a relatively high sensory score (≥7.1) during the whole storage. Hence, the bioactive packaging films incorporated with bifidocin A could be a promising hurdle technology and alternative to conventional processes used for improving the safety and quality of chilled mackerel fillets.
Collapse
|
44
|
Physical and Antibacterial Properties of Sodium Alginate-Sodium Carboxymethylcellulose Films Containing Lactococcus lactis. Molecules 2018; 23:molecules23102645. [PMID: 30326631 PMCID: PMC6222306 DOI: 10.3390/molecules23102645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/08/2023] Open
Abstract
Edible films have gradually become a research focus for food packaging materials due to a variety of benefits, including environmental friendliness, good barrier properties, and good carrying capacity. In this experimental study, we used sodium alginate as a film-forming substrate, sodium carboxymethylcellulose as a modifier, and glycerol as a plasticizer, then Lactococcus lactis was added to film solutions to form bacteriostatic films via the tape casting method. With the addition of Lactococcus lactis, the films did not significantly change thickness, while the transparency decreased and a significant increase in red and yellow hues was observed. Meanwhile, the dispersion of bacterial cells in film solutions destroyed intermolecular interactions in the solutions during film formation and increased the volume of voids in the Lactococcus lactis-containing films, thereby slightly decreasing the tensile strength of the films, but significantly increasing water vapor permeability. Moreover, the films with added Lactococcus lactis showed significant bacteriostatic activity against Staphylococcus aureus at 4 °C. In a seven-day bacteriostatic test, the films with Lactococcus lactis added at a level of 1.5 g/100 g resulted in a decrease in the viable cell count of Staphylococcus aureus by at least four logarithmic units. This study of Lactococcus lactis-containing films has provided a new method and strategy for antibacterial preservation of foods.
Collapse
|
45
|
Behbahani BA, Imani Fooladi AA. Shirazi balangu (Lallemantia royleana) seed mucilage: Chemical composition, molecular weight, biological activity and its evaluation as edible coating on beefs. Int J Biol Macromol 2018; 114:882-889. [PMID: 29625218 DOI: 10.1016/j.ijbiomac.2018.03.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022]
Abstract
In this study, Lallemantia royleana seed mucilage (LRSM) was extracted from whole seeds using hot-water extraction. The structural information (monosaccharide compositions and molecular weight analysis), chemical composition (moisture, protein, ash, fat and carbohydrate), biological activity (antimicrobial, total phenol content and antioxidant activity) and effect LRSM edible coating on population of microbial pathogens (total viable count (TVC), psychrotrophic bacteria, Escherichia coli, Staphylococcus aureus and fungi), chemical changes (thiobarbituric acid, peroxide value and pH) and sensory attributes (color, odor and total acceptability) of the beef slices at 4°C for 18days (0, 3, 6, 9, 12, 15 and 18) were determined. The LRSM had 76.74% carbohydrate, 3.86% protein, 9.92% ash and 9.48% moisture. LRSM is a high molecular weight (1.19×106Da) polysaccharide, composed of galactose (36.28%), arabinose (35.96%), rhamnose (15.18%), xylose (7.38%) and glucose (5.20%). The LRSM total phenolic content and antioxidant activity (IC50) were equal to 82.56±1.6μgGAE/mg and 528.54±0.35μg/ml, respectively. The results showed that, the beef shelf life based on TVC for samples control, LRSM, LRSM+1% AHEO, LRSM+1.5% AHEO, and LRSM+2% AHEO were 6, 9, 9, 12, and 15days, respectively. There was no significant difference between LRSM+1% AHEO and LRSM samples, but the TVC in first one had slight changes than LRSM. Compared to the control samples, LRSM extended the microbial shelf life, oxidative stability and sensorial acceptability of beef by 3, 6 and 6days, respectively.
Collapse
Affiliation(s)
- Behrooz Alizadeh Behbahani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|