1
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Jeyaraman M, Eltzov E. Enhancing food safety: A low-cost biosensor for Bacillus licheniformis detection in food products. Talanta 2024; 276:126152. [PMID: 38718642 DOI: 10.1016/j.talanta.2024.126152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.
Collapse
Affiliation(s)
- Mareeswaran Jeyaraman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
3
|
Yuan L, Dai H, He G, Yang Z, Jiao X. Invited review: Current perspectives for analyzing the dairy biofilms by integrated multiomics. J Dairy Sci 2023; 106:8181-8192. [PMID: 37641326 DOI: 10.3168/jds.2023-23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Biofilms formed by pathogenic or spoilage microorganisms have become serious issues in the dairy industry, as this mode of life renders such microorganisms highly resistant to cleaning-in-place (CIP) procedures, disinfectants, desiccation, and other control strategies. The advent of omics techniques, especially the integration of different omics tools, has greatly improved our understanding of the features of microbial biofilms, and provided in-depth knowledge on developing effective methods that are directly against deleterious biofilms. This review provides novel insights into the single use of each omics tool and the application of multiomics tools to unravel the mechanisms of biofilm formation, specific molecular phenotypes exhibited by biofilms, and biofilm control strategies. Challenges and future perspective on the integration of omics tools for biofilm studies are also addressed.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| |
Collapse
|
4
|
Catania AM, Di Ciccio P, Ferrocino I, Civera T, Cannizzo FT, Dalmasso A. Evaluation of the biofilm-forming ability and molecular characterization of dairy Bacillus spp. isolates. Front Cell Infect Microbiol 2023; 13:1229460. [PMID: 37600945 PMCID: PMC10432688 DOI: 10.3389/fcimb.2023.1229460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Food processing lines represents a suitable environment for bacterial biofilm formation. One of the most common biofilm-forming genera in dairy processing plants is Bacillus, which includes species that may have a negative impact on safety and/or quality of dairy products. In the current study, we evaluated the biofilm forming ability and molecular characteristics of dairy Bacillus spp. isolates (B. cereus and B. subtilis). Reference strains (B. cereus ATCC 14579 and B. subtilis NCTC 3610) were also included in the experiment. All isolates were screened by micro-titer plate (96 wells) to assess their ability to form biofilm. Then, they were tested on two common food contact surfaces (polystyrene and stainless steel) by using 6-well plates and AISI 316 stainless steel coupons. Biofilm formation, expressed as biofilm production index (BPI), was higher on polystyrene than stainless steel (except for B. cereus ATCC 14579). These observations were further confirmed by scanning electron microscopy, which allowed the microscopy observation of biofilm structure. Moreover, a possible correlation among total viable cell counts (CFU) and BPI was examined, as well as a connection among biofilm formation and bacterial cell hydrophobicity. Finally, whole genome sequencing was performed highlighting a genetic similarity among the strains belonging to the same species. The presence of selected genes involved in biofilm formation was also examined showing that strains with a greater presence of these genes were able to produce more biofilm in the tested materials. Additionally, for B. cereus strains enterotoxin genes were detected.
Collapse
Affiliation(s)
- Angela Maria Catania
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| | | | - Alessandra Dalmasso
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Grugliasco, Turin, Italy
| |
Collapse
|
5
|
Shen G, Yang L, Lv X, Zhang Y, Hou X, Li M, Zhou M, Pan L, Chen A, Zhang Z. Antibiofilm Activity and Mechanism of Linalool against Food Spoilage Bacillus amyloliquefaciens. Int J Mol Sci 2023; 24:10980. [PMID: 37446158 DOI: 10.3390/ijms241310980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pellicle biofilm-forming bacteria Bacillus amyloliquefaciens are the major spoilage microorganisms of soy products. Due to their inherent resistance to antibiotics and disinfectants, pellicle biofilms formed are difficult to eliminate and represent a threat to food safety. Here, we assessed linalool's ability to prevent the pellicle of two spoilage B. amyloliquefaciens strains. The minimum biofilm inhibitory concentration (MBIC) of linalool against B. amyloliquefaciens DY1a and DY1b was 4 μL/mL and 8 μL/mL, respectively. The MBIC of linalool had a considerable eradication rate of 77.15% and 83.21% on the biofilm of the two strains, respectively. Scanning electron microscopy observations revealed that less wrinkly and thinner pellicle biofilms formed on a medium supplemented with 1/2 MBIC and 1/4 MBIC linalool. Also, linalool inhibited cell motility and the production of extracellular polysaccharides and proteins of the biofilm matrix. Furthermore, linalool exposure reduced the cell surface hydrophobicity, zeta potential, and cell auto-aggregation of B. amyloliquefaciens. Molecular docking analysis demonstrated that linalool interacted strongly with quorum-sensing ComP receptor and biofilm matrix assembly TasA through intermolecular hydrogen bonds, hydrophobic contacts, and van der Waals forces interacting with site residues. Overall, our findings suggest that linalool may be employed as a potential antibiofilm agent to control food spoilage B. amyloliquefaciens.
Collapse
Affiliation(s)
- Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lu Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyu Lv
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yingfan Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Le Pan
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
6
|
Wardani AK, Buana EOGHN, Sutrisno A. The potency of bacteriophages isolated from chicken intestine and beef tribe to control biofilm-forming bacteria, Bacillus subtilis. Sci Rep 2023; 13:8222. [PMID: 37217567 DOI: 10.1038/s41598-023-35474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Biofilm becomes one of the crucial food safety problems in the food industry as the formation of biofilm can be a source of contamination. To deal with the problem, an industry generally employs physical and chemical methods including sanitizers, disinfectants, and antimicrobials to remove biofilm. However, the use of these methods may bring about new problems, which are bacterial resistance in the biofilm and the risk for product contamination. New strategies to deal with bacterial biofilms are needed. Bacteriophages (phages), as a green alternative to chemical, have re-emerged as a promising approach to treat bacterial biofilm. In the present study, the potential of lytic phages which have antibiofilm activity on biofilm-forming bacteria (Bacillus subtilis), were isolated from chicken intestines and beef tripe obtained from Indonesian traditional markets using host cells obtained isolated from these samples. Phages isolation was conducted by using double layer agar technique. A lytic test of phages was administered on biofilm-forming bacteria. The difference of turbidity level between control (which were not infected by phages) and the test tubes containing host bacteria infected by phages was investigated. The infection time for the production of phages was determined based on the level of clarity of the media in the test tube with a longer lysate addition time. Three phages were isolated namely: ϕBS6, ϕBS8, and ϕUA7. It showed the ability to inhibit B. subtilis as biofilm-forming spoilage bacteria. The best inhibition results were obtained from ϕBS6. Infection with ϕBS6 in B. subtilis lead to 0.5 log cycle decreased in bacterial cells. This study showed that isolated phages might be used as a potential approach for handling the problem of biofilm formation by B. subtilis.
Collapse
Affiliation(s)
- Agustin Krisna Wardani
- Department of Food Science and Biotechnology, Universitas Brawijaya, Malang, 65145, Indonesia.
| | | | - Aji Sutrisno
- Department of Food Science and Biotechnology, Universitas Brawijaya, Malang, 65145, Indonesia
| |
Collapse
|
7
|
Radwan AA, Darwesh OM, Emam MT, Mohamed KA, Shady HMA. A combined treatment of Proteinase K and biosynthesized ZnO-NPs for eradication of dairy biofilm of sporeformers. AIMS Microbiol 2022; 8:507-527. [PMID: 36694584 PMCID: PMC9834087 DOI: 10.3934/microbiol.2022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms of sporeformers found in the dairy industry are the major contaminants during processing, as they withstand heat and chemical treatment that are used to control microbes. The present work is aimed to remove these resistant forms of bacterial community (biofilm) present in dairy production lines using ecofriendly agents based on proteinase K (Prot-K) coupled with Zinc oxide nanoparticles (ZnO-NPs). Some metal/metal oxide (Ag, CuO and ZnO) NPs were prepared microbially, and ZnO-NPs were characterized as the most effective ones among them. The produced ZnO-NPs were 15-25 nm in size with spherical shape, and FTIR analysis confirmed the presence of proteins and alkanes surrounding particles as capping agents. Application of Prot-K for eradication (removal) of a model biofilm of mixed sporeformers on food-grade stainless steel resulted in an 83% reduction in the absorbance of crystal violet-stained biofilm. When Prot-K was mixed with the biosynthesized NPs ZnO_G240, the reduction increased to 99.19%. This finding could contribute to an efficient cleaning approach combined with CIP to remove the recalcitrant biofilms in dairy production lines.
Collapse
Affiliation(s)
- Ahmed A. Radwan
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Osama M. Darwesh
- Agricultural Microbiology Dept., National Research Centre (NRC), Cairo, 12622, Egypt,* Correspondence: , ; Tel: +201155265558
| | - Maha T. Emam
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Karima A. Mohamed
- Genetics and Cytology Dept., National Research Centre (NRC), Cairo, 12622, Egypt
| | - Hala M. Abu Shady
- Microbiology Dept., Faculty of Science, Ain-Shams University Cairo, Egypt
| |
Collapse
|
8
|
Fessia A, Sartori M, García D, Fernández L, Ponzio R, Barros G, Nesci A. In vitro studies of biofilm-forming Bacillus strains, biocontrol agents isolated from the maize phyllosphere. Biofilm 2022; 4:100097. [PMID: 36504526 PMCID: PMC9731887 DOI: 10.1016/j.bioflm.2022.100097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to assess how biofilm formation by three Bacillus isolates was affected by changes in temperature, water potential, growth media, time, and the combinations between these factors. The strains had been selected as potential biological control agents (BCAs) in earlier studies, and they were identified as B. subtilis and B. velezensis spp. through 16 rRNA sequencing and MALDI-TOF MS. Maize leaves (ML) were used as one of the growth media, since they made it possible to simulate the nutrient content in the maize phyllosphere, from which the bacteria were originally isolated. The strains were able to form biofilm both in ML and biofilm-inducing MSgg after 24, 48, and 72 h. Biofilm development in the form of pellicles and architecturally complex colonies varied morphologically from one strain to another and depended on the conditions mentioned above. In all cases, colonies and pellicles were less complex when both temperature and water potential were lower. Scanning electron microscopy (SEM) revealed that changing levels of complexity in pellicles were correlated with those in colonies. Statistical analyses found that the quantification of biofilm produced by the isolates was influenced by all the conditions tested. In terms of motility (which may contribute to biofilm formation), swimming and swarming were possible for all strains in 0.3 and 0.7% agar, respectively. A more in-depth understanding of how abiotic factors influence biofilm formation can contribute to a more effective use of these biocontrol strains against pathogens in the maize phyllosphere.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina,Corresponding author. Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
| | - Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daiana García
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Luciana Fernández
- Departamento de Física, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Rodrigo Ponzio
- Departamento de Física, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
9
|
Microbial degradation of polyethylene terephthalate: a systematic review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractPlastic pollution levels have increased rapidly in recent years, due to the accumulation of plastic waste, including polyethylene terephthalate (PET). Both high production and the lack of efficient methods for disposal and recycling affect diverse aquatic and terrestrial ecosystems owing to the high accumulation rates of plastics. Traditional chemical and physical degradation techniques have caused adverse effects on the environment; hence, the use of microorganisms for plastic degradation has gained importance recently. This systematic review was conducted for evaluating the reported findings about PET degradation by wild and genetically modified microorganisms to make them available for future work and to contribute to the eventual implementation of an alternative, an effective, and environmentally friendly method for the management of plastic waste such as PET. Both wild and genetically modified microorganisms with the metabolic potential to degrade this polymer were identified, in addition to the enzymes and genes used for genetic modification. The most prevalent wild-type PET-degrading microorganisms were bacteria (56.3%, 36 genera), followed by fungi (32.4%, 30 genera), microalgae (1.4%; 1 genus, namely Spirulina sp.), and invertebrate associated microbiota (2.8%). Among fungi and bacteria, the most prevalent genera were Aspergillus sp. and Bacillus sp., respectively. About genetically modified microorganisms, 50 strains of Escherichia coli, most of them expressing PETase enzyme, have been used. We emphasize the pressing need for implementing biological techniques for PET waste management on a commercial scale, using consortia of microorganisms. We present this work in five sections: an Introduction that highlights the importance of PET biodegradation as an effective and sustainable alternative, a section on Materials and methods that summarizes how the search for articles and manuscripts in different databases was done, and another Results section where we present the works found on the subject, a final part of Discussion and analysis of the literature found and finally we present a Conclusion and prospects.
Collapse
|
10
|
Liu Z, Li H, Li L, Ma Q, Fang Z, Wang H, Lee Y, Zhao J, Zhang H, Chen W, Lu W. Gene-trait matching analysis reveals putative genes involved in Bifidobacterium spp. biofilm formation. Gene 2022; 826:146449. [PMID: 35337850 DOI: 10.1016/j.gene.2022.146449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
Biofilm formation by bacteria represents an adaptation strategy to the environment, and some special genes may lead to a strong biofilm phenotype. In this study, we attempted to find functional genes associated with bifidobacterial biofilm formation. Firstly, we evaluated the biofilm formation ability of bifidobacterial strains from six species, which showed that Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium animalis, Bifidobacterium adolescentis, and Bifidobacterium pseudocatenulatum had biofilm-forming and non-biofilm-forming strains, while all Bifidobacterium bifidum strains could form strong biofilms. Then 48 strains were selected for genome sequencing and comparative analysis. The gene-trait matching analysis revealed that B. bifidum biofilm formation phenotype may associate with their unique genes, involving in stress response, quorum sensing, two components, and peptide synthesis. B. pseudocatenulatum biofilm formation was positively correlated with the eps cluster (rfbX). While no genotype related to the biofilm phenotype was found in B. longum using this analysis, but all contain autoinducer-2 (AI-2) receptor genes. Moreover, luxS, rbsB, rfbX were selected for real-time qPCR analysis, suggesting that their expression are important to biofilm formation. These results indicated that strains carrying certain genes tend to form stronger biofilms than those formed by strains without these genes.
Collapse
Affiliation(s)
- Zongmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - QingQing Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - ZhiFeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuankun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Alonso VPP, Ferreira RCDC, Cotta MA, Kabuki DY. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
13
|
Abreu ACDS, Carazzolle MF, Crippa BL, Barboza GR, Mores Rall VL, de Oliveira Rocha L, Silva NCC. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Alonso VPP, de Oliveira Morais J, Kabuki DY. Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates. Int J Food Microbiol 2021; 354:109318. [PMID: 34246014 DOI: 10.1016/j.ijfoodmicro.2021.109318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022]
Abstract
The presence of mesophilic and thermophilic spore-forming bacteria in UHT milk, as well as biofilm formation in dairy plants, are concerning. The current study explored the spore-forming bacilli diversity in 100 samples of UHT milk (skimmed and whole). Through this work, a total of 239 isolates from UHT milk samples were obtained. B. cereus s.s. was isolated from 7 samples, B. sporothermodurans from 19 and, G. stearothermophilus from 25 samples. Genes encoding hemolysin (HBL), and non-hemolytic (NHE) enterotoxins were detected in B. cereus s.s. isolates. All isolates of B. cereus s.s. (12) B. sporothermodurans (38), and G. stearothermophilus (47) were selected to verify the ability of biofilm formation in microtiter plates. The results showed all isolates could form biofilms. The OD595 values of biofilm formation varied between 0.14 and 1.04 for B. cereus, 0.20 to 1.87 for B. sporothermodurans, and 0.49 to 2.77 for G. stearothermophilus. The data highlights that the dairy industry needs to reinforce control in the initial quality of the raw material and in CIP cleaning procedures; avoiding biofilm formation and consequently a persistent microbiota in processing plants, which can shelter pathogenic species such as B. cereus s.s.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | - Jéssica de Oliveira Morais
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Ryabtseva S, Tabakova Y, Khramtsov A, Anisimov G, Kravtsov V. Modelling formation and removal of biofilms in secondary dairy raw materials. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-59-68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Microorganisms of dairy raw materials tend to adhere to the surfaces of processing equipment and form sustainable biofilms, which is a serious issue in the dairy industry. The goal of the present work was to investigate formation of biofilms on a glass surface in static model conditions, and removal of such biofilms by cleaning.
Study objects and methods. The study objects were the permeates of skim milk, sweet whey and acid whey, as well as the biofilms formed and washings from glass slides. Biofilms were removed from the glass with detergents used in the dairy industry. Standard methods of determining microbiological and physicochemical properties were used to characterize the permeates. The biofilm structure and morphology of microorganisms participating in biofilm formation were investigated with a light spectroscopy. The efficiency of biofilm removal in a cleaning process was quantified with optical density of washings.
Results and discussion. Biofilms in whey permeates formed slower compared to those in skimmed milk permeate during the first 24 h. Yeasts contributed significantly to the biofilm microflora in acid whey permeate throughout 5 days of biofilm growth. Well adhered biofilm layers were the most stable in skimmed milk permeate. The highest growth of both well and poorly adhered biofilm layers was observed in sweet whey permeate after 3–5 days. It was established that the primary attachment of microorganisms to a glass surface occurred within 8 h, mature multicultural biofilms formed within 48 h, and their partial destruction occurred within 72 h.
Conclusion. The research results can be used to improve the cleaning equipment procedures in processing secondary dairy raw materials.
Collapse
|
16
|
Phenotypic properties and genotyping analysis of Bacillus cereus group isolates from dairy and potato products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Dergham Y, Sanchez-Vizuete P, Le Coq D, Deschamps J, Bridier A, Hamze K, Briandet R. Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches. Microorganisms 2021; 9:microorganisms9030633. [PMID: 33803642 PMCID: PMC8003051 DOI: 10.3390/microorganisms9030633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model.
Collapse
Affiliation(s)
- Yasmine Dergham
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Pilar Sanchez-Vizuete
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Dominique Le Coq
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Centre National de la Recherche Scientifique (CNRS), Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Julien Deschamps
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300 Fougères, France;
| | - Kassem Hamze
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Romain Briandet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Correspondence:
| |
Collapse
|
18
|
Murphy SI, Kent D, Skeens J, Wiedmann M, Martin NH. A standard set of testing methods reliably enumerates spores across commercial milk powders. J Dairy Sci 2020; 104:2615-2631. [PMID: 33358815 DOI: 10.3168/jds.2020-19313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/01/2020] [Indexed: 11/19/2022]
Abstract
Contamination of dairy powders with sporeforming bacteria is a concern for dairy processors who wish to penetrate markets with stringent spore count specifications (e.g., infant powders). Despite instituted specifications, no standard methodology is used for spore testing across the dairy industry. Instead, a variety of spore enumeration methods are in use, varying primarily by heat-shock treatments, plating method, recovery medium, and incubation temperature. Importantly, testing the same product using different methodologies leads to differences in spore count outcomes, which is a major issue for those required to meet specifications. As such, we set out to identify method(s) to recommend for standardized milk powder spore testing. To this end, 10 commercial milk powders were evaluated using methods varying by (1) heat treatment (e.g., 80°C/12 min), (2) plating method (e.g., spread plating), (3) medium type (e.g., plate count milk agar), and (4) incubation time and temperature combinations (e.g., 32°C for 48 h). The resulting data set included a total of 48 methods. With this data set, we used a stepwise process to identify optimal method(s) that would explain a high proportion of variance in spore count outcomes and would be practical to implement across the dairy industry. Ultimately, spore pasteurized mesophilic spore count (80°C/12 min, incubated at 32°C for 48 h), highly heat resistant thermophilic spore count (100°C/30 min, incubated at 55°C for 48 h), and specially thermoresistant spore enumeration (106°C/30 min, incubated at 55°C for 48 h) spread plating on plate count milk agar were identified as the optimal method set for reliable enumeration of spores in milk powders. Subsequently, we assessed different powder sampling strategies as a way to reduce variation in powder spore testing outcomes using our recommended method set. Results indicated that 33-g composite sampling may reduce variation in spore testing outcomes for highly heat resistant thermophilic spore count over 11-g and 33-g discrete sampling, whereas there was no significant difference across sampling strategies for specially thermoresistant spore enumeration or spore pasteurized mesophilic spore count. Finally, an interlaboratory study using our recommended method set and a modified method set (using tryptic soy agar with 1% starch) among both university and industry laboratories showed increased variation in spore count outcomes within milk powders, which not only was due to natural variation in powders but also was hypothesized to be due to technical errors, highlighting the need for specialized training for technicians who perform spore testing on milk powders. Overall, this study addresses challenges to milk powder spore testing and recommends a method set for standardized spore testing for implementation across the dairy industry.
Collapse
Affiliation(s)
- S I Murphy
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - D Kent
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - J Skeens
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
19
|
Formation and resistance to cleaning of biofilms at air-liquid-wall interface. Influence of bacterial strain and material. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Caraballo Guzmán A, González Hurtado MI, Cuesta-Astroz Y, Torres G. Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia. Braz J Microbiol 2020; 51:1259-1267. [PMID: 32221908 PMCID: PMC7455661 DOI: 10.1007/s42770-020-00260-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteria inside biofilms are more persistent and resistant to stress conditions found in the production environment of food processing plants, thus representing a constant risk for product safety and quality. Therefore, the aim of this study was to characterize, using 16S rRNA sequencing, the bacterial communities from biofilms found in four food processing plants (P1, P2, P3, and P4). In total, 50 samples from these four processing plants were taken after cleaning and disinfection processes. Four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroides represented over 94% of the operational taxonomic units found across these four plants. A total of 102 families and 189 genera were identified. Two genera, Pseudomonas spp. and Acinetobacter spp., were the most frequently found (93.47%) across the four plants. In P1, Pseudomonas spp. and Lactobacillus spp. were the dominant genera, whereas Lactobacillus spp. and Streptococcus spp. were identified in P2. On the other hand, biofilms found in P3 and P4 mainly consisted of Pseudomonas spp. and Acinetobacter spp. Our results indicate that different bacterial genera of interest to the food industry due to their ability to form biofilm and affect food quality can coexist inside biofilms, and as such, persist in production environments, representing a constant risk for manufactured foods. In addition, the core microbiota identified across processing plants evaluated was probably influenced by type of food produced and cleaning and disinfection processes performed in each one of these.
Collapse
Affiliation(s)
- Arley Caraballo Guzmán
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| | | | - Yesid Cuesta-Astroz
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| | - Giovanny Torres
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| |
Collapse
|
21
|
Hutchings C, Rajasekharan SK, Reifen R, Shemesh M. Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods 2020; 9:foods9081094. [PMID: 32796547 PMCID: PMC7466369 DOI: 10.3390/foods9081094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Dairy products are a sector heavily impacted by food loss, often due to bacterial contaminations. A major source of contamination is associated with the formation of biofilms by bacterial species adopted to proliferate in milk production environment and onto the surfaces of milk processing equipment. Bacterial cells within the biofilm are characterized by increased resistance to unfavorable environmental conditions and antimicrobial agents. Members of the Bacillus genus are the most commonly found spoilage microorganisms in the dairy environment. It appears that physiological behavior of these species is somehow depended on the availability of bivalent cations in the environment. One of the important cations that may affect the bacterial physiology as well as survivability are Zn2+ ions. Thus, the aim of this study was to examine the antimicrobial effect of Zn2+ ions, intending to elucidate the potential of a zinc-based antibacterial treatment suitable for the dairy industry. The antimicrobial effect of different doses of ZnCl2 was assessed microscopically. In addition, expression of biofilm related genes was evaluated using RT-PCR. Analysis of survival rates following heat treatment was conducted in order to exemplify a possible applicative use of Zn2+ ions. Addition of zinc efficiently inhibited biofilm formation by B. subtilis and further disrupted the biofilm bundles. Expression of matrix related genes was found to be notably downregulated. Microscopic evaluation showed that cell elongation was withheld when cells were grown in the presence of zinc. Finally, B. cereus and B. subtilis cells were more susceptible to heat treatment after being exposed to Zn2+ ions. It is believed that an anti-biofilm activity, expressed in downregulation of genes involved in construction of the extracellular matrix, would account for the higher sensitivity of bacteria during heat pasteurization. Consequently, we suggest that Zn2+ ions can be of used as an effective antimicrobial treatment in various applications in the dairy industry, targeting both biofilms and vegetative bacterial cells.
Collapse
Affiliation(s)
- Carmel Hutchings
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Satish Kumar Rajasekharan
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
| | - Ram Reifen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- Correspondence: ; Tel.: +972-3-968-3868
| |
Collapse
|
22
|
Shemesh M, Ostrov I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2327-2336. [PMID: 31975392 DOI: 10.1002/jsfa.10285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Biofilm-forming Bacillus species are often involved in persistent contamination and spoilage of dairy products. They therefore present a major microbiological challenge in the field of dairy food quality and safety. Due to their substantial physiological versatility, Bacillus species can survive in various parts of dairy manufacturing plants, leading to a high risk of product spoilage and potential dissemination of foodborne diseases. Furthermore, biofilm and heat-resistant spore formation make these bacteria challenging to eliminate. Thus, some strategies have been employed to remove, prevent, or delay the formation of Bacillus biofilms in the dairy industry, but with limited success. Lack of understanding of the Bacillus biofilm structure and behavior in conditions relevant to dairy-associated environments could partially account for this situation. The current paper reviews dairy-associated biofilm formation by Bacillus species, with particular attention to the role of biofilm in Bacillus species adaptation and survival in a dairy processing environment. Relevant model systems are discussed for the development of novel antimicrobial approaches to improve the quality of dairy food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
23
|
Duanis-Assaf D, Kenan E, Sionov R, Steinberg D, Shemesh M. Proteolytic Activity of Bacillus subtilis upon κ-Casein Undermines Its "Caries-Safe" Effect. Microorganisms 2020; 8:microorganisms8020221. [PMID: 32041335 PMCID: PMC7074799 DOI: 10.3390/microorganisms8020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Milk is believed to be a relatively “caries-safe” food. This belief relies on the fact that caseins, which constitute around 80% of milk’s protein content, were found to inhibit the adhesion of Streptococcus mutans to enamel and, therefore, decrease biofilm formation. While S. mutans is considered a leading cause of dental disorders, Bacillus subtilis is a non-pathogenic foodborne bacterium, frequently contaminating milk and its products. This study aimed to investigate the effects of dairy-associated foodborne bacteria such as B. subtilis on biofilm formation by S. mutans in the presence of casein proteins. Our results indicate that there is a significant decrease in total biofilm formation by S. mutans exposed to a casein protein mixture in a mono-species culture, whereas, in the co-culture with B. subtilis, an inhibitory effect of the caseins mixture on S. mutans biofilm formation was observed. Proteolytic activity analysis suggested that B. subtilis is capable of breaking down milk proteins, especially κ-casein, which enables biofilm formation by S. mutans in the presence of milk caseins. Therefore, these findings may challenge the assumption that milk is “caries-safe”, especially in a complex microbial environment.
Collapse
Affiliation(s)
- Danielle Duanis-Assaf
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Eli Kenan
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Ronit Sionov
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem 9112001, Israel; (E.K.); (R.S.); (D.S.)
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
- Correspondence: ; Tel.: +972-3-968-3868
| |
Collapse
|
24
|
Sánchez-Lozano I, Hernández-Guerrero CJ, Muñoz-Ochoa M, Hellio C. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. Int J Mol Sci 2019; 20:E4863. [PMID: 31574976 PMCID: PMC6801554 DOI: 10.3390/ijms20194863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Biofouling causes major economic losses in the maritime industry. In our site study, the Bay of La Paz (Gulf of California), biofouling on immersed structures is a major problem and is treated mostly with copper-based antifouling paints. Due to the known environmental effect of such treatments, the search for environmentally friendly alternatives in this zone of high biodiversity is a priority to ensure the conservation and protection of species. The aim of this work was to link chemical ecology to marine biotechnology: indeed, the natural defense of macroalgae and sponge was evaluated against biofoulers (biofilm and macrofoulers) from the same geographical zone, and some coatings formulation was done for field assays. Our approach combines in vitro and field bioassays to ensure the selection of the best AF agent prospects. The 1st step consisted of the selection of macroalgae (5 species) and sponges (2 species) with surfaces harboring a low level of colonizers; then extracts were prepared and assayed for toxicity against Artemia, activity towards key marine bacteria involved in biofilm formation in the Bay of La Paz, and the potency to inhibit adhesion of macroorganisms (phenoloxidase assays). The most active and non-toxic extracts were further studied for biofouling activity in the adhesion of the bacteria involved in biofilm formation and through incorporation in marine coatings which were immersed in La Paz Bay during 40 days. In vitro assays demonstrated that extracts of Laurencia gardneri, Sargassum horridum (macroalgae), Haliclona caerulea and Ircinia sp. (sponges) were the most promising. The field test results were of high interest as the best formulation were composed of extracts of H. caerulea and S. horridum and led to a reduction of 32% of biofouling compared with the control.
Collapse
Affiliation(s)
- Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claudia Judith Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Mauricio Muñoz-Ochoa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico.
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France.
| |
Collapse
|
25
|
Ostrov I, Polishchuk I, Shemesh M, Pokroy B. Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food. ACS APPLIED BIO MATERIALS 2019; 2:4932-4940. [DOI: 10.1021/acsabm.9b00674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
- Institute of Dental Sciences, Hebrew University−Hadassah Medical School, Jerusalem 91120, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Moshe Shemesh
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
26
|
Friedlander A, Nir S, Reches M, Shemesh M. Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Front Microbiol 2019; 10:1405. [PMID: 31297098 PMCID: PMC6608603 DOI: 10.3389/fmicb.2019.01405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/04/2019] [Indexed: 01/24/2023] Open
Abstract
Biofilm-forming bacteria, which colonize the surfaces of equipment in the dairy industry, may adversely affect the safety and quality of the milk and its products. Despite numerous efforts to combat biofilm formation, there is still no effective technological means to thoroughly solve the biofilm problem in the dairy industry. Here, we introduced peptide-based coating in order to modify the physical properties of the stainless steel surface by affecting its availability for bacterial adhesion. We found that the coated surface displays a notable decrease in the ability of bacterial cells to attach and to subsequently form biofilm by Gram-positive Bacillus licheniformis and Gram-negative Pseudomonas aeruginosa. Furthermore, the coated surface retained its anti-biofilm ability following its exposure to raw milk. Importantly, the modified surface did not affect the milk coagulation process or its nutritious properties and quality. Overall, this anti-biofilm approach may serve as an attractive solution for the dairy industry in its struggle against bacterial contamination.
Collapse
Affiliation(s)
- Alon Friedlander
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Dental Sciences, The Hebrew University-Hadassah, Jerusalem, Israel
| | - Sivan Nir
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meital Reches
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
27
|
Ostrov I, Paz T, Shemesh M. Robust Biofilm-Forming Bacillus Isolates from the Dairy Environment Demonstrate an Enhanced Resistance to Cleaning-in-Place Procedures. Foods 2019; 8:E134. [PMID: 31010041 PMCID: PMC6518050 DOI: 10.3390/foods8040134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
One of the main strategies for maintaining the optimal hygiene level in dairy processing facilities is regular cleaning and disinfection, which is incorporated in the cleaning-in-place (CIP) regimes. However, a frail point of the CIP procedures is their variable efficiency in eliminating biofilm bacteria. In the present study, we evaluated the susceptibility of strong biofilm-forming dairy Bacillus isolates to industrial cleaning procedures using two differently designed model systems. According to our results, the dairy-associated Bacillus isolates demonstrate a higher resistance to CIP procedures, compared to the non-dairy strain of B. subtilis. Notably, the tested dairy isolates are highly persistent to different parameters of the CIP operations, including the turbulent flow of liquid (up to 1 log), as well as the cleaning and disinfecting effects of commercial detergents (up to 2.3 log). Moreover, our observations indicate an enhanced resistance of poly-γ-glutamic acid (PGA)-overproducing B. subtilis, which produces high amounts of proteinaceous extracellular matrix, to the CIP procedures (about 0.7 log, compared to the wild-type non-dairy strain of B. subtilis). We therefore suggest that the enhanced resistance to the CIP procedures by the dairy Bacillus isolates can be attributed to robust biofilm formation. In addition, this study underlines the importance of evaluating the efficiency of commercial cleaning agents in relation to strong biofilm-forming bacteria, which are relevant to industrial conditions. Consequently, we believe that the findings of this study can facilitate the assessment and refining of the industrial CIP procedures.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
- The Hebrew University-Hadassah, 9112001 Jerusalem, Israel.
| | - Tali Paz
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, 7528809 Rishon LeZion, Israel.
| |
Collapse
|