1
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
2
|
Kingsbury JM, Horn B, Armstrong B, Midwinter A, Biggs P, Callander M, Mulqueen K, Brooks M, van der Logt P, Biggs R. The impact of primary and secondary processing steps on Campylobacter concentrations on chicken carcasses and portions. Food Microbiol 2023; 110:104168. [DOI: 10.1016/j.fm.2022.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
3
|
Takeuchi MG, de Melo RT, Dumont CF, Peixoto JLM, Ferreira GRA, Chueiri MC, Iasbeck JR, Timóteo MF, de Araújo Brum B, Rossi DA. Agents of Campylobacteriosis in Different Meat Matrices in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6087. [PMID: 35627626 PMCID: PMC9140573 DOI: 10.3390/ijerph19106087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
We aimed to identify the prevalence of thermophilic species of Campylobacter in meats of different species available on the Brazilian commercial market and to determine the genetic diversity, antimicrobial resistance and virulence potential of the isolates. A total of 906 samples, including chicken, beef and pork carcasses and chicken and beef livers, were purchased in retail outlets, and prevalences of 18.7% (46/246), 3.62% (5/138), 10.14% (14/138), 3.62% (5/138) and 4.47% (11/132), respectively, were identified, evidencing the dissemination of genotypes in the main producing macro-regions. Of all isolates, 62.8% were classified as multidrug resistant (MDR), with resistance to amoxicillin-clavulanate (49.4%), tetracycline (51.8%) and ciprofloxacin (50.6%) and co-resistance to macrolides and fluoroquinolones (37.1%). Multivirulent profiles were identified mainly in isolates from chicken carcasses (84.8%), and the emergence of MDR/virulent strains was determined in pork isolates. All isolates except those from chicken carcasses showed a high potential for biofilm formation (71.4% luxS) and consequent persistence in industrial food processing. For chicken carcasses, the general virulence was higher in C. jejuni (54.3%), followed by C. coli (24%) and Campylobacter spp. (21.7%), and in the other meat matrices, Campylobacter spp. showed a higher prevalence of virulence (57.2%). The high rates of resistance and virulence reinforce the existence of strain selection pressure in the country, in addition to the potential risk of strains isolated not only from chicken carcasses, but also from other meat matrices.
Collapse
Affiliation(s)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (M.G.T.); (C.F.D.); (J.L.M.P.); (G.R.A.F.); (M.C.C.); (J.R.I.); (M.F.T.); (B.d.A.B.); (D.A.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|