1
|
Shi Y, Yang D, Hu C, Lyu L. Water self-purification via electron donation effect of emerging contaminants arousing oxygen activation over ordered carbon-enhanced CoFe quantum dots. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100356. [PMID: 38192429 PMCID: PMC10772548 DOI: 10.1016/j.ese.2023.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
The release of emerging contaminants (ECs) into aquatic environments poses a significant risk to global water security. Advanced oxidation processes (AOPs), while effective in removing ECs, are often resource and energy-intensive. Here, we introduce a novel catalyst, CoFe quantum dots embedded in graphene nanowires (CoFeQds@GN-Nws), synthesized through anaerobic polymerization. It uniquely features electron-rich and electron-poor micro-regions on its surface, enabling a self-purification mechanism in wastewater. This is achieved by harnessing the internal energy of wastewater, particularly the bonding energy of pollutants and dissolved oxygen (DO). It demonstrates exceptional efficiency in removing ECs at ambient temperature and pressure without the need for external oxidants, achieving a removal rate of nearly 100.0%. The catalyst's structure-activity relationship reveals that CoFe quantum dots facilitate an unbalanced electron distribution, forming these micro-regions. This leads to a continuous electron-donation effect, where pollutants are effectively cleaved or oxidized. Concurrently, DO is activated into superoxide anions (O2•-), synergistically aiding in pollutant removal. This approach reduces resource and energy demands typically associated with AOPs, marking a sustainable advancement in wastewater treatment technologies.
Collapse
Affiliation(s)
| | | | - Chun Hu
- Institute of Environ. Res. at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lai Lyu
- Institute of Environ. Res. at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Jin L, You S, Ren N, Liu Y. Selective activation of peroxymonosulfate to singlet oxygen by engineering oxygen vacancy defects in Ti 3CNT x MXene for effective removal of micropollutants in water. FUNDAMENTAL RESEARCH 2023; 3:770-776. [PMID: 39659450 PMCID: PMC11630680 DOI: 10.1016/j.fmre.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 01/13/2023] Open
Abstract
Defect engineering is an effective strategy to boost the catalytic activity of MXene towards heterogeneous peroxymonosulfate (PMS) activation for water decontamination. Herein, we developed a facile approach to fine-tune the generation of oxygen vacancies (OVs) on Ti3CNTx crystals by Ce-doping (Ce-Ti3CNTx) with the aim of mediating PMS activation for the degradation of micropollutants in water. By varying the dopant content, the OV concentrations of Ti3CNTx could be varied to enable the activation of PMS to almost 100% singlet oxygen (1O2), and hence the effective degradation of sulfamethoxazole (SMX, a model micropollutant). Various advanced characterization techniques were employed to obtain detailed information on the microstructure, morphology, and defect states of the catalysts. The experimental results showed that SMX removal was proportional to the OVs level. Density functional theory (DFT) models demonstrated that, in contrast to pristine Ti3CNTx, the OVs on 10%Ce-Ti3CNTx could adsorb the terminal O of PMS, which facilitated the formation of SO5 •- as well as the generation of 1O2. We further loaded the optimized catalysts onto a polytetrafluoroethylene microfiltration membrane and also demonstrated the efficient removal of SMX from water using a convection-enhanced mass transport flow-through configuration. This study provides new insights into the effective removal of micropollutants from water by integrating state-of-the-art defect engineering, advanced oxidation, and microfiltration techniques.
Collapse
Affiliation(s)
- Limin Jin
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
3
|
Cao W, Wang Z, Zhang P, Sun Y, Xie Z, Hu C, Wang S, Huang G, Lyu L. Water Self-Purification with Zero External Consumption by Livestock Manure Resource Utilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2837-2845. [PMID: 36773285 DOI: 10.1021/acs.est.2c09163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Improper disposal of waste biomass and an increasing number of emerging contaminants (ECs) in water environment are universal threats to the global environment. Here, we creatively propose a sustainable strategy for the direct resource transformation of livestock manure (LM) into an innovative catalyst (Fe-CCM) for water self-purification with zero external consumption. ECs can be rapidly degraded in this self-purification system at ambient temperature and atmospheric pressure, without any external oxidants or energy input, accompanied by H2O and dissolved oxygen (DO) activation. The performance of the self-purification system is not affected by various types of salinity in the wastewater, and the corresponding second-order kinetic constant is improved 7 times. The enhanced water self-purification mechanism reveales that intermolecular forces between anions and pollutants reinforce electron exchange between pollutants and metal sites on the catalyst, further inducing the utilization of the intrinsic energy of contaminants, H2O, and DO through the interfacial reaction. This work provides new insights into the rapid removal of ECs in complicated water systems with zero external consumption and is expected to advance the resource utilization of livestock waste.
Collapse
Affiliation(s)
- Wenrui Cao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhongkai Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yingtao Sun
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Zhiju Xie
- Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guohe Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
- Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|