1
|
Qiu D, Zhou J, Feng Q, Ren K, Zhang H, He Y, Li C, Liu J, Mai NTT. Functionality, physicochemical properties, and applications of chitosan/nano-hydroxyapatite-tea polyphenol films. Food Chem X 2024; 24:101762. [PMID: 39314538 PMCID: PMC11417202 DOI: 10.1016/j.fochx.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
An active chitosan (CS) film containing a nano-hydroxyapatite-tea polyphenol (HAP-TP) complex was designed and prepared. The effects of HAP-TP loading on the structural and physicochemical properties of the CS-based film were evaluated. The mechanical and thermal properties of the film were significantly improved by the resulting intermolecular interactions and formation of hydrogen bonds between HAP-TP and CS, which reduced the water vapor and oxygen permeabilities of the film by 29.78 and 35.59 %, respectively. The CS-HAP-TP film exhibited excellent slow-release behavior and antioxidant activity, with a cumulative release rate at 700 h 6.79 % lower than that of CS-TP films. The CS-HAP-TP film significantly inhibited the deterioration of semi-dried golden pompano, and thus helped to retain the taste of umami and sweet amino acids in fish samples, while reducing off-flavor generation. The film therefore shows considerable potential as an active packaging material for the preservation of semi-dried fish products.
Collapse
Affiliation(s)
- Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Kun Ren
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Hongying Zhang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Jing Liu
- School of Public Health, Hainan Medical University, Haikou 571199, Hainan, China
| | - Nga Thi Tuyet Mai
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu St., Nha Trang City, Viet Nam
| |
Collapse
|
2
|
Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM. Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 2024; 263:130230. [PMID: 38373564 DOI: 10.1016/j.ijbiomac.2024.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - José Juan Pablo Pizaña-Aranda
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda A Flores-Contreras
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico.
| |
Collapse
|
3
|
Rentería-Ortega M, Colín-Alvarez MDL, Gaona-Sánchez VA, Chalapud MC, García-Hernández AB, León-Espinosa EB, Valdespino-León M, Serrano-Villa FS, Calderón-Domínguez G. Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima. MEMBRANES 2023; 13:797. [PMID: 37755219 PMCID: PMC10536577 DOI: 10.3390/membranes13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
The inadequate management of organic waste and excessive use of plastic containers cause damage to the environment; therefore, different studies have been carried out to obtain new biomaterials from agricultural subproducts. The objective of this work was to evaluate the feasibility of using the pectin extracted from the peel of Passiflora tripartita var. mollissima (PT), characterizing its type and viability for the production of edible biodegradable films. In addition, films of two thicknesses (23.45 ± 3.02 µm and 53.34 ± 2.28 µm) were prepared. The results indicated that PT is an excellent raw material for the extraction of pectin, with high yields (23.02 ± 0.02%), high galacturonic acid content (65.43 ± 2.241%), neutral sugars (ribose, xylose, glucose) and a high degree of esterification (76.93 ± 1.65%), classifying it as a high-methoxy pectin. Regarding the films, they were malleable and flexible, with a water vapor permeability from 2.57 × 10-10 ± 0.046 to 0.13 × 10-10 ± 0.029 g/s mPa according to thickness, being similar to other Passiflora varieties of edible films. The pectin extraction yield from PT makes this fruit a promising material for pectin production and its chemical composition a valuable additive for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Minerva Rentería-Ortega
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - María de Lourdes Colín-Alvarez
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Víctor Alfonso Gaona-Sánchez
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Mayra C. Chalapud
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Alitzel Belém García-Hernández
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma de Villada 52005, Mexico;
| | - Erika Berenice León-Espinosa
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Mariana Valdespino-León
- Tecnológico Nacional de México/IT Superior de Cintalapa, Carretera Panamericana Km 995, Cintalapa 30400, Mexico;
| | - Fatima Sarahi Serrano-Villa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Ciudad de México 07738, Mexico;
| | - Georgina Calderón-Domínguez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Ciudad de México 07738, Mexico;
| |
Collapse
|
4
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
5
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
|
7
|
Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jackfruit leaf protein concentrate (LPC) was hydrolyzed by pepsin (H–Pep) and pancreatin (H–Pan) at different hydrolysis times (30–240 min). The effect of the enzyme type and hydrolysis time of the LPC on the amino acid composition, structure, and thermal properties and its relationship with the formation of O/W emulsions were investigated. The highest release of amino acids (AA) occurred at 240 min for both enzymes. H–Pan showed the greatest content of essential and hydrophobic amino acids. Low β-sheet fractions and high β-turn contents had a greater influence on the emulsifier properties. In H–Pep, the β-sheet fraction increased, while in H–Pan it decreased as a function of hydrolysis time. The temperatures of glass transition and decomposition were highest in H–Pep due to the high content of β-sheets. The stabilized emulsions with H–Pan (180 min of hydrolysis) showed homogeneous distributions and smaller particle sizes. The changes in the secondary structure and AA composition of the protein hydrolysates by the effect of enzyme type and hydrolysis time influenced the emulsifying properties. However, further research is needed to explore the use of H–Pan as an alternative to conventional emulsifiers or ingredients in functional foods.
Collapse
|
8
|
Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of ultrasound-assisted extraction (UAE) was evaluated on the functionality of jackfruit leaf protein hydrolysates. Leaf protein concentrate was obtained by ultrasound (LPCU) and conventional extractions by maceration (LPCM). LPCM and LPCU were hydrolyzed with pancreatin (180 min), and hydrolysates by maceration (HM) and ultrasound (HU) were obtained. The composition of amino acids, techno-functional (solubility, foaming, and emulsifying properties), and antioxidant properties of the hydrolysates were evaluated. A higher amount of essential amino acids was found in HU, while HM showed a higher content of hydrophobic amino acids. LPCs exhibited low solubility (0.97–2.89%). However, HM (67.8 ± 0.98) and HU (77.39 ± 0.43) reached maximum solubility at pH 6.0. The foaming and emulsifying properties of the hydrolysates were improved when LPC was obtained by UAE. The IC50 of LPCs could not be quantified. However, HU (0.29 ± 0.01 mg/mL) showed lower IC50 than HM (0.32 ± 0.01 mg/mL). The results reflect that the extraction method had a significant (p < 0.05) effect on the functionality of protein hydrolysates. The UAE is a suitable method for enhancing of quality, techno-functionality, and antioxidant properties of LPC.
Collapse
|
9
|
|
10
|
Lin X, Chen S, Wang R, Li C, Wang L. Fabrication, characterization and biological properties of pectin and/or chitosan-based films incorporated with noni (Morinda citrifolia) fruit extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021; 27:60. [PMID: 35011292 PMCID: PMC8746547 DOI: 10.3390/molecules27010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| |
Collapse
|