1
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2025; 79:383-396. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
2
|
Zhou Q, Gao X, Ma J, Zhao H, Gao D, Zhao H. Decoding the Tissue-Specific Profiles of Bioactive Compounds in Helvella leucopus Using Combined Transcriptomic and Metabolomic Approaches. J Fungi (Basel) 2025; 11:205. [PMID: 40137243 PMCID: PMC11943342 DOI: 10.3390/jof11030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Helvella leucopus, an endangered wild edible fungus, is renowned for its distinct health benefits and nutritional profile, with notable differences in the bioactive and nutritional properties between its cap and stipe. To investigate the molecular basis of these tissue-specific variations, we conducted integrative transcriptomic and metabolomic analyses. Metabolomic profiling showed that the cap is particularly rich in bioactive compounds, including sterols and alkaloids, while the stipe is abundant in essential nutrients, such as glycerophospholipids and amino acids. Transcriptomic analysis revealed a higher expression of genes involved in sterol biosynthesis (ERG1, ERG3, ERG6) and energy metabolism (PGK1, ENO1, PYK1) in the cap, suggesting a more active metabolic profile in this tissue. Pathway enrichment analysis highlighted tissue-specific metabolic pathways, including riboflavin metabolism, pantothenate and CoA biosynthesis, and terpenoid backbone biosynthesis, as key contributors to the unique functional properties of the cap and stipe. A detailed biosynthetic pathway network further illustrated how these pathways contribute to the production of crucial bioactive and nutritional compounds, such as sterols, alkaloids, linoleic acid derivatives, glycerophospholipids, and amino acids, in each tissue. These findings provide significant insights into the molecular mechanisms behind the health-promoting properties of the cap and the nutritional richness of the stipe, offering a theoretical foundation for utilizing H. leucopus in functional food development and broadening our understanding of bioactive and nutritional distribution in edible fungi.
Collapse
Affiliation(s)
- Qian Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Xusheng Gao
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxia Ma
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Haoran Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| |
Collapse
|
3
|
Bolesławska I, Górna I, Sobota M, Bolesławska-Król N, Przysławski J, Szymański M. Wild Mushrooms as a Source of Bioactive Compounds and Their Antioxidant Properties-Preliminary Studies. Foods 2024; 13:2612. [PMID: 39200539 PMCID: PMC11353347 DOI: 10.3390/foods13162612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of this study was to preliminarily determine the content of bioactive components in the fruiting bodies of four previously unstudied mushroom species: Aleuria aurantia, Phallus hadriani, Phanus conchatus, Geastrum pectinatum, their antioxidant activity and the content of polyphenols, minerals and heavy metals. METHODS Determination of active compounds by gas chromatography-mass spectrometry was carried out in addition to thermogravimetric determinations, quantitative determination of total polyphenols by spectrophotometry using Folin-Ciocalteu reagent, determination of antioxidant activity using 2,2-diphenyl-1-picryl hydrazyl radical (DPPH) and 2,2'-azino-di-[3-ethylbentiazoline sulphonated] (ATBS). In addition, spectrometric analysis of selected minerals and heavy metals was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES). RESULTS The mushrooms analysed varied in terms of their bioactive constituents. They contained components with varying effects on human health, including fatty acids, oleamide, 1,2-dipalmitoylglycerol, (2-phenyl-1,3-dioxolan-4-yl)-methyl ester of oleic acid, deoxyspergualin, 2-methylenocholestan-3-ol, hexadecanoamide, isoallochan, 2,6-diaminopurine, and adenine. All contained polyphenols and varying amounts of minerals (calcium, magnesium, iron, zinc, potassium, phosphorus, sodium, copper, silicon and manganese) and exhibited antioxidant properties of varying potency. No exceedances of the permissible concentration of lead and cadmium were observed in any of them. CONCLUSIONS All of the mushrooms studied can provide material for the extraction of various bioactive compounds with physiological effects. In addition, the presence of polyphenols and minerals, as well as antioxidant properties and the absence of exceeding the permissible concentration of heavy metals, indicate that these species could be interesting material in the design of foods with health-promoting properties, nutraceuticals or dietary supplements. However, the use of the fruiting bodies of these mushrooms requires mandatory toxicological and clinical studies.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Marta Sobota
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (I.B.); (M.S.); (J.P.)
| | - Marcin Szymański
- Centre for Advanced Technologies, Adam Mickiewicz University of Poznan, 10 University of Poznan Street, 61-614 Poznan, Poland;
| |
Collapse
|
4
|
Naeem S, Wang Y, Han S, Haider MZ, Sami A, Shafiq M, Ali Q, Bhatti MHT, Ahmad A, Sabir IA, Dong J, Alam P, Manzoor MA. Genome-wide analysis and identification of Carotenoid Cleavage Oxygenase (CCO) gene family in coffee (coffee arabica) under abiotic stress. BMC Genom Data 2024; 25:71. [PMID: 39030545 PMCID: PMC11264761 DOI: 10.1186/s12863-024-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.
Collapse
Affiliation(s)
- Shajiha Naeem
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Adnan Sami
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Muhammad Hamza Tariq Bhatti
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Arsalan Ahmad
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jihong Dong
- School of Environment and Surveying, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
6
|
Li C, Tang T, Du Y, Jiang L, Yao Z, Ning L, Zhu B. Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. BIORESOUR BIOPROCESS 2023; 10:66. [PMID: 38647949 PMCID: PMC10991135 DOI: 10.1186/s40643-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 04/25/2024] Open
Abstract
Ulva is one of the main green algae causing green tide disasters. Ulvan is the primarily component polysaccharide of the cell wall of Ulva and its complex structure and monosaccharide composition resulted in various biological activities. However, the high-value and effective utilization of extracted ulvan have been obstructed by limitations ranging from large molecular weight and low solubility to poor bioavailability. Ulva oligosaccharide obtained by degrading ulvan can not only ideally retain the various biological activities of ulvan very well but also effectively solve the problems of low solubility and poor bioavailability. The preparation and biological activity studies of ulvan and Ulva oligosaccharides have become a hot spot in the field of marine biological resources development research. At present, the comprehensive reviews of ulvan and Ulva oligosaccharides are still scarce. What are overviewed in this paper are the chemical composition, structure, extraction, and purification of ulvan and Ulva oligosaccharides, where research progress on the biological activities of ulvan and Ulva oligosaccharides is summarized and prospected. A theoretical and practical basis has been provided for further research on ulvan and Ulva oligosaccharides, as well as the high-value development and effective utilization of marine algae resources.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Tiancheng Tang
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Limin Ning
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
7
|
Gebreyohannes G, Sbhatu DB. Wild Mushrooms: A Hidden Treasure of Novel Bioactive Compounds. Int J Anal Chem 2023; 2023:6694961. [PMID: 37781342 PMCID: PMC10541307 DOI: 10.1155/2023/6694961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Secondary metabolites are hidden gems in mushrooms. Understanding these secondary metabolites' biological and pharmacological effects can be aided by identifying them. The purpose of this work was to profile the mycochemical components of the extracts of Auricularia auricula judae, Microporus xanthopus, Termitomyces umkowaani, Trametes elegans, and Trametes versicolor to comprehend their biological and pharmacological capabilities. Mushroom samples were collected from Kenya's Arabuko-Sokoke and Kakamega National Reserved Forests and identified using morphological and molecular techniques. Chloroform, 70% ethanol, and hot water solvents were used to extract the mycochemical components. Gas chromatography mass spectrometry (GC-MS) was used to analyze the chloroform, 70% ethanol, and hot water extracts of all the species examined. A total of 51 compounds were isolated from all extracts and classified as carboxylic acids, esters, phenols, fatty acids, alcohol, epoxides, aldehydes, fatty aldehydes, isoprenoid lipids, and steroids. Tetracosamethyl-cyclododecasiloxane (18.90%), oleic acid (72.90%), phenol, 2, 6-bis (1, 1-dimethylethyl)-4-methyl-, and methylcarbamate (26.56%) were all found in high concentrations in A. auricular judae, M. xanthopus, T. umkowaani, T. elegans, and T. versicolor, respectively. Fatty acids make up the majority of the compounds isolated from the T. elegans chloroform extract and the T. umkowaani 70% ethanol extract, respectively. Particularly, these fatty acids play crucial roles in the anti-inflammatory, hypocholesterolemic, anticancer, and antibiofilm formation activities. These bioactive elements indicate that the extracts of five wild mushrooms may be reliable sources of secondary metabolites for therapeutic development. Therefore, additional research is required to comprehend the usefulness of these chemicals in many functional areas and to improve the present understanding of macrofungi.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| |
Collapse
|
8
|
Shi K, Zhou T, Yuan Y, Li D, Gong B, Gao S, Chen Q, Li Y, Han X. Synergistic mediating effect of edible fungal polysaccharides ( Auricularia and Tremellan) and Crataegus flavonoids in hyperlipidemic rats. Food Sci Nutr 2023; 11:4812-4828. [PMID: 37576054 PMCID: PMC10420763 DOI: 10.1002/fsn3.3459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Both edible fungal polysaccharides (Auricularia and Tremellan) and Crataegus flavonoids promote the balance of dyslipidemia, which have a positive biological regulating effect on intestinal flora. In this study, the extraction of water-soluble polysaccharides from Auricularia and Tremellan was investigated and optimized firstly. Polysaccharides and flavonoids were then combined to study the effects on the mediating role of abnormal blood lipid concentration and intestinal flora in vivo. The rats were divided into 10 groups, the NC (normal control), HM (model), PCI (Simvastatin control), PCII (Fenofibrate control), AAP (Auricularia auricular Polysaccharide), TFP (Tremella fuciformis Polysaccharide), HF (Crataegus Flavonoid), LDC (Low-dose combination), MDC (Medium dose combination), and HDC (High-dose combination), used to explore the impact of polysaccharides and flavonoids complex on state of blood lipid, liver, and intestinal flora of dyslipidemia rats. The results showed that the combination of polysaccharides and flavonoids could significantly decrease the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and increase the level of high-density lipoprotein cholesterol (HDL-C). It also significantly decreased the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and improved liver morphology. What is more, the HDC favorably alters the intestinal microflora balance, promotes intestinal integrity and mobility, and inhibits the growth of harmful bacteria such as Escherichia coli/Shigella and Clostridium compared with HM group. In brief, the combination of polysaccharides and flavonoids had a synergistic effect on the remission of dyslipidemia, and promoted health by improving lipid metabolism, protecting liver tissue, and regulating the intestinal flora in hyperlipidemia rats.
Collapse
Affiliation(s)
- Ke Shi
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Tao Zhou
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Yu‐fei Yuan
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Dan‐dan Li
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Bin‐bin Gong
- College of Biological Science and EngineeringXingtai UniversityXingtaiChina
| | - Shan Gao
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Qi‐jia Chen
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| | - Yan‐dong Li
- Hebei Provincial Station of Veterinary Drug and FeedShijiazhuangChina
| | - Xue Han
- College of Food Science and BiologyHebei University of Science and TechnologyShijiazhuangChina
| |
Collapse
|
9
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Gao Y, Abuduaini G, Yang C, Zhang S, Zhang Y, Fan H, Teng X, Bao C, Liu H, Wang D, Liu T. Isolation, purification, and structural elucidation of Stropharia rugosoannulata polysaccharides with hypolipidemic effect. Front Nutr 2022; 9:1092582. [PMID: 36590213 PMCID: PMC9800831 DOI: 10.3389/fnut.2022.1092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Stropharia rugosoannulata is a widely grown edible mushroom with a high nutritional value. S. rugosoannulata polysaccharides is one of the most important bioactive components of S. rugosoannulata and has a wide range of activities. A S. rugosoannulata polysaccharides, named SRF-3, was derived from the S. rugosoannulata extraction by freeze-thaw combine with hot water extraction method, then prepareed with DEAE-cellulose column and Sephacryl S-200 HR gel column, and its hypolipidemic activity was determined. The structural characteristics of SRF-3 were analyzed by infrared spectral scanning (FT-IR), ultra-high performance liquid chromatography (UHPLC), acid hydrolysis, methylation analysis, nuclear magnetic resonance (NMR), and Gas Chromatography-Mass Spectrometer (GC-MS). SRF-3 is composed of mannose, galactose, methyl galactose and fructose with ratios of 16, 12, 58 and 12, respectively. In addition, the average relative molecular mass of SRF-3 is approximately 24 kDa. The main chain of SRF-3 is mainly composed of repeating α-D-1,6-Galp and α-D-1,6-Me-Galp units, with branches in the O-2 position of Gal. The structure is presumed to be a mannogalactan, with a small amount of t-β-D-Manp present as a side chain. Hypolipidemic activity assay showed that SRF-3 had good antioxidant and hypolipidemic effects in vitro, suggesting that SRF-3 have potential application in reducing liver fat accumulation.
Collapse
Affiliation(s)
- Yinlu Gao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Gulijiannaiti Abuduaini
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Chenhe Yang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Chenligen Bao
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Key Laboratory of Technological Innovations for Grain Deep-Processing and High-Efficiency Utilization of By-Products of Jilin, Changchun, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Engineering Research Center of Grain Deep-Processing and High-Efficiency Utilization of Jilin, Changchun, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,*Correspondence: Dawei Wang,
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China,Scientific Research Base of Edible Mushroom Processing Technology Integration, Ministry of Agriculture and Rural Affairs, Changchun, China,Tingting Liu,
| |
Collapse
|