1
|
Jia X, Xu J, Cui Y, Ben D, Wu C, Zhang J, Sun M, Liu S, Zhu T, Liu J, Lin K, Zheng M. Effect of Modification by β-Amylase and α-Glucosidase on the Structural and Physicochemical Properties of Maize Starch. Foods 2024; 13:3763. [PMID: 39682835 DOI: 10.3390/foods13233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Single enzymatic modifications are limited to starch. Complex modification with synergistic amylases will improve starch properties more significantly. In this study, maize starch was compound modified by β-amylase and α-glucosidase. The structure and physicochemical properties of the corn starch were determined by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance hydrogen spectroscopy (1HNMR), high-performance anion-exchange chromatography (HPAEC-PAD), differential scanning calorimetry (DSC) and Rapid Visco analyzer (RVA) to determine the changes in the structure and physicochemical properties of maize starch before and after the dual enzyme modification. The branching degree (4.95-7.10%) of maize starch was increased after bi-enzymatic modification, the amylose content (28.77-18.60%) was decreased, and the amylopectin content (70.79-81.71%) was elevated. The relative crystallinity (20.41-30.20%) and short-range ordered structure of the starch increased, and the dual enzyme modification led to a more compact structure. Dual enzyme-modified maize starch showed a decrease in long chains, an increase in short chains, and its degree of branching was elevated. Dual enzyme modification also affected the thermal stability, pasting, light transmittance (1.40-2.16%), solubility (20.15-13.76%), and swelling (33.97-45.79%) of maize starch. It can be concluded that the complex modification of maize starch by β-amylase and α-glucosidase significantly changed the amylose/amylopectin ratio of the starch and made its structure denser. These results can provide a theoretical basis for the enzymatic preparation of maize starch with different amylose/amylopectin ratios and the development and utilization of functional starches.
Collapse
Affiliation(s)
- Xinge Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Dazhi Ben
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chuyu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Mingru Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shuo Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tianhao Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Ke Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| |
Collapse
|
2
|
Li R, Shi Y, Miao M. Deciphering Biosynthesis Mechanism and Solution Properties of Cyclic Amylopectin. Foods 2024; 13:3474. [PMID: 39517257 PMCID: PMC11545441 DOI: 10.3390/foods13213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
A novel cyclic amylopectin (CA) was synthesized from waxy corn starch (WCS) using Bacillus stearothermophilus branching enzyme (BstBE), providing insights into its biosynthesis mechanism and solution properties. During the first 4 h, BstBE partially cyclized WCS, producing 68.20% CA with a significantly reduced molecular weight (MW), from 8.98 × 10⁶ to 3.19 × 10⁴ g/mol and a lower polymer dispersity index (PDI), decreasing from 1.97 to 1.12. This resulted in a uniform CA structure with shorter chain lengths, particularly increasing DP 3-13, especially DP 7-9. Over the subsequent 4-12 h, the PDI slightly increased to 1.18 as the CA content decreased to 50.48%, with an increase in small ring structures (DP 6-12) of CA, suggesting both ring-opening and ring-downsizing due to continued enzyme catalysis. These results propose a two-stage reaction model: initial cyclization followed bybranching and secondary cyclization. CA exhibited excellent solution properties, with BE-4 and BE-12 samples demonstrating high solubility (≥65 g/100 mL), low viscosity (<0.01 Pa·s), and over 90% light transmittance after 14 days at 4 °C, highlighting its broad application potential.
Collapse
Affiliation(s)
- Ruolan Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China;
| | - Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China;
| |
Collapse
|
3
|
Tran PL, Park EJ, Hong JS, Lee CK, Kang T, Park JT. Mechanism of action of three different glycogen branching enzymes and their effect on bread quality. Int J Biol Macromol 2024; 256:128471. [PMID: 38040154 DOI: 10.1016/j.ijbiomac.2023.128471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Bread staling adversely affects the quality of bread, but starch modification by enzymes can counteract this phenomenon. Glycogen branching enzymes (GBEs) used in this study were isolated from Deinococcus geothermalis (DgGBE), Escherichia coli (EcGBE), and Vibrio vulnificus (VvGBE). These enzymes were characterized and applied for starch dough modification to determine their role in improving bread quality. First, the branching patterns, activity on amylose and amylopectin, and thermostability of the GBEs were determined and compared. EcGBE and DgGBE exhibited better thermostable characteristics than VvGBE, and all GBEs exhibited preferential catalysis of amylopectin over amylose but different degrees. VvGBE and DgGBE produced a large number of short branches. Three GBEs degraded the starch granules and generated soluble polysaccharides. Moreover, the maltose was increased in the starch slurry but most significantly in the DgGBE treatment. Degradation of the starch granules by GBEs enhanced the maltose generation of internal amylases. When used in the bread-making process, DgGBE and VvGBE increased the dough and bread volume by 9 % and 17 %, respectively. The crumb firmness and retrogradation of the bread were decreased and delayed significantly more in the DgGBE bread. Consequently, this study can contribute to understanding the detailed roles of GBEs in the baking process.
Collapse
Affiliation(s)
- Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, An Giang University, Long Xuyen 880000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Eun-Ji Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Sun Hong
- Korea Food Research Institute, Gyeonggi 13539, Republic of Korea
| | | | - Taiyoung Kang
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Shim YE, Song YB, Yoo SH, Lee BH. Production of highly branched α-limit dextrins with enhanced slow digestibility by various glycogen-branching enzymes. Carbohydr Polym 2023; 310:120730. [PMID: 36925263 DOI: 10.1016/j.carbpol.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
α-Limit dextrins (α-LDx) are slowly digestible carbohydrates that attenuate postprandial glycemic response and trigger the secretion of satiety-related hormones. In this study, more highly branched α-LDx were enzymatically synthesized to enhance the slowly digestible property by various origins of glycogen branching enzyme (GBE), which catalyzes the transglycosylation to form α-1,6 branching points after cleaving α-1,4 linkages. Results showed that the proportion of branched α-LDx in starch molecules increased around 2.2-8.1 % compared to α-LDx from starch without GBE treatment as the ratio of α-1,6 linkages increased after different types of GBE treatments. Furthermore, the enzymatic increment of branching points enhanced the slowly digestible properties of α-LDx at the mammalian α-glucosidase level by 17.3-28.5 %, although the rates of glucose generation were different depending on the source of GBE treatment. Thus, the highly branched α-LDx with a higher amount of α-1,6 linkages and a higher molecular weight can be applied as a functional ingredient to deliver glucose throughout the entire small intestine without a glycemic spike which has the potential to control metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Ye-Eun Shim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea; Core-Facility for Bionano Materials, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
5
|
Shao Y, Wang W, Hu Y, Gänzle MG. Characterization of the Glucan-Branching Enzyme GlgB Gene from Swine Intestinal Bacteria. Molecules 2023; 28:molecules28041881. [PMID: 36838868 PMCID: PMC9960391 DOI: 10.3390/molecules28041881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Starch hydrolysis by gut microbiota involves a diverse range of different enzymatic activities. Glucan-branching enzyme GlgB was identified as the most abundant glycosidase in Firmicutes in the swine intestine. GlgB converts α-(1→4)-linked amylose to form α-(1→4,6) branching points. This study aimed to characterize GlgB cloned from a swine intestinal metagenome and to investigate its potential role in formation of α-(1→4,6)-branched α-glucans from starch. The branching activity of purified GlgB was determined with six different starches and pure amylose by quantification of amylose after treatment. GlgB reduced the amylose content of all 6 starches and amylose by more than 85% and displayed a higher preference towards amylose. The observed activity on raw starch indicated a potential role in the primary starch degradation in the large intestine as an enzyme that solubilizes amylose. The oligosaccharide profile showed an increased concentration of oligosaccharide introduced by GlgB that is not hydrolyzed by intestinal enzymes. This corresponded to a reduced in vitro starch digestibility when compared to untreated starch. The study improves our understanding of colonic starch fermentation and may allow starch conversion to produce food products with reduced digestibility and improved quality.
Collapse
|
6
|
Yang T, Hu Q, Liu Y, Xu R, Wang D, Chang Z, Jin M, Huang J. Biochemical characteristics and potential application of a thermostable starch branching enzyme from Bacillus licheniformis. AMB Express 2023; 13:8. [PMID: 36662316 PMCID: PMC9859979 DOI: 10.1186/s13568-023-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
Slowly digestible starch (SDS) has attracted increasing attention for its function of preventing metabolic diseases. Based on transglycosylation, starch branching enzymes (1,4-α-glucan branching enzymes, GBEs, EC 2.4.1.18) can be used to regulate the digestibility of starch. In this study, a GBE gene from Bacillus licheniformis (bl-GBE) was cloned, expressed, purified, and characterized. Sequence analysis and structural modeling showed that bl-GBE belong to the glycoside hydrolase 13 (GH13) family, with which its active site residues were conserved. The bl-GBE was highly active at 80 °C and a pH range of 7.5-9.0, and retained 90% of enzyme activity at 70 °C for 16 h. bl-GBE also showed high substrate specificity (80.88 U/mg) on potato starch. The stability and the changes of the secondary structure of bl-GBE at different temperature were determined by circular dichroism (CD) spectroscopy. The CD data showed a loss of 20% of the enzyme activity at high temperatures (80 °C), due to the decreased content of the α -helix in the secondary structure. Furthermore, potato starch treated with bl-GBE (300 U/g starch) showed remarkable increase in stability, solubility, and significant reduction viscosity. Meanwhile, the slowly digestible starch content of bl-GBE modified potato starch increased by 53.03% compared with native potato starch. Our results demonstrated the potential applications of thermophilic bl-GBE in food industries.
Collapse
Affiliation(s)
- Ting Yang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Qianyu Hu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Yu Liu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Rui Xu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Dongrui Wang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Zhongyi Chang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Mingfei Jin
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Jing Huang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
7
|
Yang W, Su L, Wang L, Wu J, Chen S. Alpha-glucanotransferase from the glycoside hydrolase family synthesizes α(1–6)-linked products from starch: Features and synthesis pathways of the products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Bhatt P, Kumar V, Goel R, Sharma SK, Kaushik S, Sharma S, Shrivastava A, Tesema M. Structural Modifications and Strategies for Native Starch for Applications in Advanced Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2188940. [PMID: 35993055 PMCID: PMC9385375 DOI: 10.1155/2022/2188940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Pharmaceutical excipients are compounds or substances other than API which are added to a dosage form, these excipients basically act as carriers, binders, bulk forming agents, colorants, and flavouring agents, and few excipients are even used to enhance the activity of active pharmaceutical ingredient (API) and various more properties. However, despite of these properties, there are problems with the synthetic excipients such as the possibility of causing toxicity, inflammation, autoimmune responses, lack of intrinsic bioactivity and biocompatibility, expensive procedures for synthesis, and water solubility. However, starch as an excipient can overcome all these problems in one go. It is inexpensive, there is no toxicity or immune response, and it is biocompatible in nature. It is very less used as an excipient because of its high digestibility and swelling index, high glycemic index, paste clarity, film-forming property, crystalline properties, etc. All these properties of starch can be altered by a few modification processes such as physical modification, genetic modification, and chemical modification, which can be used to reduce its digestibility and glycemic index of starch, improve its film-forming properties, and increase its paste clarity. Changes in some of the molecular bonds which improve its properties such as binding, crystalline structure, and retrogradation make starch perfect to be used as a pharmaceutical excipient. This research work provides the structural modifications of native starch which can be applicable in advanced drug delivery. The major contributions of the paper are advances in the modification of native starch molecules such as physically, chemically, enzymatically, and genetically traditional crop modification to yield a novel molecule with significant potential for use in the pharmaceutical industry for targeted drug delivery systems.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
- Department of Pharmaceutical Science, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| | - Vipin Kumar
- Department of Pharmaceutical Science, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| | - Richa Goel
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Somesh Kumar Sharma
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Shikha Kaushik
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Shivani Sharma
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, India
| | - Alankar Shrivastava
- KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Muradnagar, Ghaziabad, India
| | - Mulugeta Tesema
- Department of Chemistry (Analytical), College of Natural and Computational Sciences, Dambi Dollo University, Dambi Dollo, Oromia Region, Ethiopia
| |
Collapse
|
9
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Ye X, Liu W, Liao Y, Liu T, Zhao Y, Wang Y, Zhang Y, Li X, Xia C, Fang X, Huang Y, Li Z, Cui Z, Wang F. Glycogen Branching Enzyme with a Novel Chain Transfer Mode Derived from Corallococcus sp. Strain EGB and Its Potential Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4735-4748. [PMID: 35404056 DOI: 10.1021/acs.jafc.2c01621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary starch with an increased content of resistant starch (RS) has the potential to reduce the prevalence of diabetes, obesity, and cardiovascular diseases. Here, an efficient glycogen branching enzyme, CcGBE, from Corallococcus sp. strain EGB was identified, and its relevant properties, including potential application in the preparation of modified starch, were evaluated. The purified CcGBE exhibited a maximal specific activity of approximately 20,000 U/mg using cassava starch as the optimal substrate. The content of α-1,6-glucosidic bonds in CcGBE-modified cassava starch increased from 2.9 to 13.2%. Meanwhile, both the average chain length (CL) of CcGBE-modified starch and the blue value of the color complex formed by starch and iodine initially increased and then decreased, indicating that a new CL transfer mode was reported. Perforated small starch granules were released after CcGBE treatment, and a time-dependent decrease in the retrogradation enthalpy (ΔHr) of cassava starch indicated that CcGBE inhibited the long-term retrogradation of starch. Moreover, the RS content and cold water solubility (CWS) of CcGBE-modified starch increased from 3.3 to 12.8% and from 23.1 to 93.8%, respectively. These findings indicate the application potential of CcGBE for the preparation of modified starch with increased RS and CWS.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqi Liao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Company Limited, Guangzhou 510000, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Li X, Wang Y, Mu S, Ji X, Zeng C, Yang D, Dai L, Duan C, Li D. Structure, retrogradation and digestibility of waxy corn starch modified by a GtfC enzyme from Geobacillus sp. 12AMOR1. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hong MG, Yoo SH, Lee BH. Effect of highly branched α-glucans synthesized by dual glycosyltransferases on the glucose release rate. Carbohydr Polym 2022; 278:119016. [PMID: 34973805 DOI: 10.1016/j.carbpol.2021.119016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Increasing α-1,6 linkages in starch molecules generates a large amount of α-limit dextrins (α-LDx) during α-amylolysis, which decelerate the release of glucose at the intestinal α-glucosidase level. This study synthesized highly branched α-glucans from sucrose using Neisseria polysaccharea amylosucrase and Rhodothermus obamensis glycogen branching enzyme to enhance those of slowly digestible property. The synthesized α-glucans (Mw: 1.7-4.9 × 107 g mol-1) were mainly composed of α-1,4 linkages and large proportions of α-1,6 linkages (7.5%-9.9%). After treating the enzymatically synthesized α-glucans with the human α-amylase, the quantity of branched α-LDx (36.2%-46.7%) observed was higher than that for amylopectin (26.8%) and oyster glycogen (29.1%). When the synthetic α-glucans were hydrolyzed by mammalin α-glucosidases, the glucose generation rate decreased because the amount of embedded branched α-LDx increased. Therefore, the macro-sized branched α-glucans with high α-LDx has the potential to be used as slowly digestible material to attenuate postprandial glycemic response.
Collapse
Affiliation(s)
- Moon-Gi Hong
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
13
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Li D, Fu X, Mu S, Fei T, Zhao Y, Fu J, Lee BH, Ma Y, Zhao J, Hou J, Li X, Li Z. Potato starch modified by Streptococcus thermophilus GtfB enzyme has low viscoelastic and slowly digestible properties. Int J Biol Macromol 2021; 183:1248-1256. [PMID: 33965495 DOI: 10.1016/j.ijbiomac.2021.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Potato starch with high viscosity and digestibility cannot be added into some foods. To address this issue, a novel starch-acting enzyme 4,6-α-glucosyltransferase from Streptococcus thermophilus (StGtfB) was used. StGtfB decreased the iodine affinity and the molecular weight, but increased the degree of branching of starch at a mode quite different from glycogen 1,4-α-glucan branching enzyme (GBE). StGtfB at 5 U/g substrate mainly introduced DP 1-7 into amylose (AMY) or DP 1-12 branches into amylopectin (AMP), and increased the ratio of short- to long-branches from 0.32 to 2.22 or from 0.41 to 2.50. The DP 3 branch chain was the most abundant in both StGtfB-modified AMY and StGtfB-modified AMP. The DP < 6 branch chain contents in StGtfB-modified AMY were 42.68%, much higher than those of GBE-modified AMY. StGtfB significantly decreased viscoelasticity but still kept pseudoplasticity of starch. The modifications also slowed down the glucose generation rate of products at the mammalian mucosal α-glucosidase level. The slowly digestible fraction in potato starch increased from 34.29% to 53.22% using StGtfB of 5 U/g starch. This low viscoelastic and slowly digestible potato starch had great potential with respect to low and stable postprandial blood glucose.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China; Key Laboratory of Human Health Status Identification and Function Enhancement, Jilin Provincial Department of Science and Technology, Changchun University, Changchun 130022, People's Republic of China
| | - Xuexia Fu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China
| | - Siyu Mu
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China
| | - Teng Fei
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China
| | - Yakun Zhao
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China
| | - Jingchao Fu
- Department of Food Microbiology, Jilin Institute for Food Control, Changchun 130103, People's Republic of China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yanli Ma
- Department of Landscape Architecture, Changchun University, Changchun 130012, People's Republic of China
| | - Jian Zhao
- Key Laboratory of Human Health Status Identification and Function Enhancement, Jilin Provincial Department of Science and Technology, Changchun University, Changchun 130022, People's Republic of China
| | - Jumin Hou
- Key Laboratory of Human Health Status Identification and Function Enhancement, Jilin Provincial Department of Science and Technology, Changchun University, Changchun 130022, People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology, Jilin Provincial Department of Education, Changchun University, Changchun 130022, People's Republic of China; Key Laboratory of Human Health Status Identification and Function Enhancement, Jilin Provincial Department of Science and Technology, Changchun University, Changchun 130022, People's Republic of China.
| | - Zhiyao Li
- Key Laboratory of Human Health Status Identification and Function Enhancement, Jilin Provincial Department of Science and Technology, Changchun University, Changchun 130022, People's Republic of China.
| |
Collapse
|
15
|
Ye X, Liu W, Ma S, Chen X, Qiao Y, Zhao Y, Fan Q, Li X, Dong C, Fang X, Huan M, Han J, Huang Y, Cui Z, Li Z. Expression and characterization of 1,4-α-glucan branching enzyme from Microvirga sp. MC18 and its application in the preparation of slowly digestible starch. Protein Expr Purif 2021; 185:105898. [PMID: 33962003 DOI: 10.1016/j.pep.2021.105898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Nutraceuticals containing modified starch with increased content of slowly-digestible starch (SDS) may reduce the prevalence of obesity, diabetes and cardiovascular diseases due to its slow digestion rate. Enzymatic methods for the preparation of modified starch have attracted increasing attention because of their low environmental impact, safety and specificity. In this study, the efficient glucan branching enzyme McGBE from Microvirga sp. MC18 was identified, and its relevant properties as well as its potential for industrial starch modification were evaluated. The purified McGBE exhibited the highest specificity for potato starch, with a maximal specific activity of 791.21 U/mg. A time-dependent increase in the content of α-1,6 linkages from 3.0 to 6.0% was observed in McGBE-modified potato starch. The proportion of shorter chains (degree of polymerization, DP < 13) increased from 29.2 to 63.29% after McGBE treatment, accompanied by a reduction of the medium length chains (DP 13-24) from 52.30 to 35.99% and longer chains (DP > 25) from 18.51 to 0.72%. The reduction of the storage modulus (G') and retrogradation enthalpy (ΔHr) of potato starch with increasing treatment time demonstrated that McGBE could inhibit the short- and long-term retrogradation of starch. Under the optimal conditions, the SDS content of McGBE-modified potato starch increased by 65.8% compared to native potato starch. These results suggest that McGBE has great application potential for the preparation of modified starch with higher SDS content that is resistant to retrogradation.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Liu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyun Ma
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopei Chen
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd., Guangzhou, 510000, China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province, Chaoyang, 122000, China
| | - Jian Han
- College of Agriculture, Xinjiang Agricultural University, XinJiang, 830052, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Costa Oliveira BE, Ricomini Filho AP, Burne RA, Zeng L. The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Front Microbiol 2021; 12:636684. [PMID: 33603728 PMCID: PMC7884614 DOI: 10.3389/fmicb.2021.636684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans converts extracellular sucrose (Suc) into exopolysaccharides (EPS) by glucosyl-transferase and fructosyl-transferase enzymes and internalizes Suc for fermentation through the phosphotransferase system (PTS). Here, we examined how altering the routes for sucrose utilization impacts intracellular polysaccharide [IPS; glycogen, (glg)] metabolism during carbohydrate starvation. Strain UA159 (WT), a mutant lacking all exo-enzymes for sucrose utilization (MMZ952), and a CcpA-deficient mutant (∆ccpA) were cultured with sucrose or a combination of glucose and fructose, followed by carbohydrate starvation. At baseline (0h), and after 4 and 24h of starvation, cells were evaluated for mRNA levels of the glg operon, IPS storage, glucose-1-phosphate (G1P) concentrations, viability, and PTS activities. A pH drop assay was performed in the absence of carbohydrates at the baseline to measure acid production. We observed glg operon activation in response to starvation (p<0.05) in all strains, however, such activation was significantly delayed and reduced in magnitude when EPS synthesis was involved (p<0.05). Enhanced acidification and greater G1P concentrations were observed in the sucrose-treated group, but mostly in strains capable of producing EPS (p<0.05). Importantly, only the WT exposed to sucrose was able to synthesize IPS during starvation. Contrary to CcpA-proficient strains, IPS was progressively degraded during starvation in ∆ccpA, which also showed increased glg operon expression and greater PTS activities at baseline. Therefore, sucrose metabolism by secreted enzymes affects the capacity of S. mutans in synthesizing IPS and converting it into organic acids, without necessarily inducing greater expression of the glg operon.
Collapse
Affiliation(s)
- Bárbara Emanoele Costa Oliveira
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Gu Z, Chen B, Tian Y. Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. Food Chem 2020; 343:128485. [PMID: 33172750 DOI: 10.1016/j.foodchem.2020.128485] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to prepare a supporting carrier, namely highly branched corn starch (HBCS), and to investigate its encapsulation property with ascorbic acid (AA). High amylose corn starch was converted into HBCS via dual enzymatic modification by successively using α-amylase and glycogen branching enzyme. The results showed that the ratio of α-1, 6 linkage of HBCS increased by 1.93%, and a short-to-medium chain length distribution with a compact branched conformation was formed, which suggested HBCS could be a potential highly branched carrier. The HBCS-AA inclusion complex was formed as confirmed by differential scanning calorimetry. The release of AA conformed to the pseudo-Fickian diffusion mechanism and followed the first-order kinetics. Meanwhile, the photostability and thermostability of the embedded AA were moderately enhanced. These findings suggest that HBCS provides new insights into the preparation of wall materials and can be potentially used to deliver AA into food systems.
Collapse
Affiliation(s)
- Zixuan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
18
|
Li D, Fei T, Wang Y, Zhao Y, Dai L, Fu X, Li X. A cold-active 1,4-α-glucan branching enzyme from Bifidobacterium longum reduces the retrogradation and enhances the slow digestibility of wheat starch. Food Chem 2020; 324:126855. [DOI: 10.1016/j.foodchem.2020.126855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
|
19
|
Ban X, Wu J, Kaustubh B, Lahiri P, Dhoble AS, Gu Z, Li C, Cheng L, Hong Y, Tong Y, Li Z. Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chem 2020; 316:126348. [DOI: 10.1016/j.foodchem.2020.126348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 01/05/2023]
|
20
|
Chen C, Lu K, Hu X, Liu Y, Cui SW, Miao M. Biofabrication, structure and characterization of an amylopectin-based cyclic glucan. Food Funct 2020; 11:2543-2554. [PMID: 32150182 DOI: 10.1039/c9fo02999k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amylopectin-based cyclic architecture was fabricated, arising from microbial branching enzyme treated waxy rice starch. The recombinant enzyme had a molecular weight of 72.0 kDa, and exhibited optimum activity at pH 7.0 and 75 °C. During the cyclization reaction catalyzed by a branching enzyme, the molecular weight of amylopectin rapidly decreased for the initial 2 h, and then very slowly decreased, tapering off at approximately 1.8 × 105 g mol-1 at 12 h. The number of A-chain fractions greatly increased, whereas the percentage of B-chain fractions decreased after enzymatic modification, accompanied by more α-1, 6 linkage formation. The core ring structure as a glucoamylase-resistant fraction had a number-average degree of polymerization of 21, which was constructed by 19 glucose units linked with, 2 glucosyl stubs at the O-6-position of the cyclic glucan through α-1,4 and α-1,6 linkages. Similar to large-ring cyclodextrin with equal glucose units, this cyclic glucan had a cavity geometry with two-circular loops and short stubs in perpendicular planes. Moreover, this cyclic glucan could complex with iodine for the host-guest formation. These results revealed the potential application of the amylopectin-based cyclic glucan as a good delivery system to encapsulate and protect bioactive ingredients.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Keyu Lu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Yao Liu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Steve W Cui
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. and Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ont., Canada N1G 5C9
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
21
|
A two-stage modification method using 1,4-α-glucan branching enzyme lowers the in vitro digestibility of corn starch. Food Chem 2020; 305:125441. [DOI: 10.1016/j.foodchem.2019.125441] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/26/2019] [Accepted: 08/27/2019] [Indexed: 11/18/2022]
|
22
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
Li Y, Li C, Gu Z, Cheng L, Hong Y, Li Z. Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ren J, Li C, Gu Z, Cheng L, Hong Y, Li Z. Digestion rate of tapioca starch was lowed through molecular rearrangement catalyzed by 1,4-α-glucan branching enzyme. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Li X, Fei T, Wang Y, Zhao Y, Pan Y, Li D. Wheat Starch with Low Retrogradation Properties Produced by Modification of the GtfB Enzyme 4,6-α-Glucanotransferase from Streptococcus thermophilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3891-3898. [PMID: 29582651 DOI: 10.1021/acs.jafc.8b00550] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A GtfB enzyme 4,6-α-glucanotransferase from Streptococcus thermophilus lacking 761 N-terminal amino acids was heterologously expressed in Escherichia coli. Purified S. thermophilus GtfB showed transglycosylation activities toward starch, resulting in branch points of (α1→6)-glycosidic linkages plus linear chains of (α1→4)-glycosidic linkages. After wheat starch was modified at a rate of 0.1 g/mL by 1-4 U/g starch GtfB at pH 6.0 and 40 °C for 1 h, the weight-averaged molecular weight decreased from 1.70 × 107 g/mol to 1.21 × 106 to 3.41 × 106 g/mol, the amylose content decreased from 22.07 to 16.34-17.11%, and that of amylopectin long-branch chains decreased from 26.4 to 10.25-15.64% ( P < 0.05). After the GtfB-modified wheat starches were gelatinized and stored at 4 °C for 1-2 weeks, their endothermic enthalpies were significantly lower than that of the control sample ( P < 0.05), indicating low retrogradation rates.
Collapse
Affiliation(s)
- Xiaolei Li
- Engineering Technological Center of Mushroom Industry and School of Biological Science and Biotechnology , Minnan Normal University , 36 Xianqianzhi Street , Zhangzhou 363000 , Fujian , People's Republic of China
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities , Changchun University , 6543 Weixing Road , Changchun 130022 , Jilin , People's Republic of China
| | - Teng Fei
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities , Changchun University , 6543 Weixing Road , Changchun 130022 , Jilin , People's Republic of China
| | - Yong Wang
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities , Changchun University , 6543 Weixing Road , Changchun 130022 , Jilin , People's Republic of China
| | - Yakun Zhao
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities , Changchun University , 6543 Weixing Road , Changchun 130022 , Jilin , People's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry and School of Biological Science and Biotechnology , Minnan Normal University , 36 Xianqianzhi Street , Zhangzhou 363000 , Fujian , People's Republic of China
| | - Dan Li
- College of Food and Biological Engineering , Jimei University , 43 Yindou Road , Xiamen 361021 , Fujian , People's Republic of China
- Key Laboratory of Agro-products Processing Technology at Jilin Provincial Universities , Changchun University , 6543 Weixing Road , Changchun 130022 , Jilin , People's Republic of China
| |
Collapse
|
26
|
Thermostabilization of a thermophilic 1,4-α-glucan branching enzyme through C-terminal truncation. Int J Biol Macromol 2018; 107:1510-1518. [DOI: 10.1016/j.ijbiomac.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/07/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022]
|
27
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
28
|
Liu Y, Li C, Gu Z, Xin C, Cheng L, Hong Y, Li Z. Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02. Int J Biol Macromol 2017; 97:156-163. [DOI: 10.1016/j.ijbiomac.2017.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 12/01/2022]
|
29
|
Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme. Int J Biol Macromol 2017; 97:679-687. [DOI: 10.1016/j.ijbiomac.2017.01.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 11/21/2022]
|
30
|
Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr Polym 2016; 152:51-61. [DOI: 10.1016/j.carbpol.2016.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 11/23/2022]
|
31
|
Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, Li Z. Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme. Food Chem 2016; 203:308-313. [DOI: 10.1016/j.foodchem.2016.02.059] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 11/29/2022]
|
32
|
Suzuki E, Suzuki R. Distribution of glucan-branching enzymes among prokaryotes. Cell Mol Life Sci 2016; 73:2643-60. [PMID: 27141939 PMCID: PMC11108348 DOI: 10.1007/s00018-016-2243-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Glucan-branching enzyme plays an essential role in the formation of branched polysaccharides, glycogen, and amylopectin. Only one type of branching enzyme, belonging to glycoside hydrolase family 13 (GH13), is found in eukaryotes, while two types of branching enzymes (GH13 and GH57) occur in prokaryotes (Bacteria and Archaea). Both of these types are the members of protein families containing the diverse specificities of amylolytic glycoside hydrolases. Although similarities are found in the catalytic mechanism between the two types of branching enzyme, they are highly distinct from each other in terms of amino acid sequence and tertiary structure. Branching enzymes are found in 29 out of 30 bacterial phyla and 1 out of 5 archaeal phyla, often along with glycogen synthase, suggesting the existence of α-glucan production and storage in a wide range of prokaryotes. Enormous variability is observed as to which type and how many copies of branching enzyme are present depending on the phylum and, in some cases, even among species of the same genus. Such a variation may have occurred through lateral transfer, duplication, and/or differential loss of genes coding for branching enzyme during the evolution of prokaryotes.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan.
| | - Ryuichiro Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan
| |
Collapse
|
33
|
Jo AR, Kim HR, Choi SJ, Lee JS, Chung MN, Han SK, Park CS, Moon TW. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydr Polym 2016; 143:164-71. [DOI: 10.1016/j.carbpol.2016.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
|
34
|
Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, Li Z. Relationship between structure and retrogradation properties of corn starch treated with 1,4-α-glucan branching enzyme. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Xu Q, Cao Y, Ma X, Liu L, Wu H, Song T, Xu H, Qiao D, Cao Y. Purification and Characterization of a Novel Glycogen Branching Enzyme from Paenibacillus sp. SSG-1 and its Application in Wheat Bread Making. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qingrui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
- National Engineering Research Center for Biomaterials, Sichuan University
| | - Xiaorui Ma
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Lin Liu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Haizhen Wu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Tao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University
| |
Collapse
|
36
|
Fan Q, Xie Z, Zhan J, Chen H, Tian Y. A glycogen branching enzyme fromThermomonospora curvata: Characterization and its action on maize starch. STARCH-STARKE 2015. [DOI: 10.1002/star.201500197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qin Fan
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Zhengjun Xie
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Jinling Zhan
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Hailong Chen
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
- School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| |
Collapse
|
37
|
Sorndech W, Meier S, Jansson AM, Sagnelli D, Hindsgaul O, Tongta S, Blennow A. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydr Polym 2015; 132:409-18. [DOI: 10.1016/j.carbpol.2015.05.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
|
38
|
Li X, Miao M, Jiang H, Xue J, Jiang B, Zhang T, Gao Y, Jia Y. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chem 2014; 164:502-9. [DOI: 10.1016/j.foodchem.2014.05.074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/22/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
|
39
|
Asención Diez MD, Demonte AM, Guerrero SA, Ballicora MA, Iglesias AA. The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes. Mol Microbiol 2013; 90:1011-27. [PMID: 24112771 DOI: 10.1111/mmi.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje 'El Pozo' CC 242, S3000ZAA, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068, W Sheridan Rd., Chicago, IL, 60660, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
This article surveys methods for the enzymatic conversion of starch, involving hydrolases and nonhydrolyzing enzymes, as well as the role of microorganisms producing such enzymes. The sources of the most common enzymes are listed. These starch conversions are also presented in relation to their applications in the food, pharmaceutical, pulp, textile, and other branches of industry. Some sections are devoted to the fermentation of starch to ethanol and other products, and to the production of cyclodextrins, along with the properties of these products. Light is also shed on the enzymes involved in the digestion of starch in human and animal organisms. Enzymatic processes acting on starch are useful in structural studies of the substrates and in understanding the characteristics of digesting enzymes. One section presents the application of enzymes to these problems. The information that is included covers the period from the early 19th century up to 2009.
Collapse
|
41
|
Jensen SL, Larsen FH, Bandsholm O, Blennow A. Stabilization of semi-solid-state starch by branching enzyme-assisted chain-transfer catalysis at extreme substrate concentration. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
|
43
|
Takata H, Akiyama T, Kajiura H, Kakutani R, Furuyashiki T, Tomioka E, Kojima I, Kuriki T. Application of branching enzyme in starch processing. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420903408393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|