1
|
Maleki A, Amini N, Rezaee R, Safari M, Marzban N, seifi M. Fabrication of Cu@Ag core-shell/nafion/polyalizarin: Applications to simultaneous electrocatalytic oxidation and reduction of nitrite in water samples. Heliyon 2025; 11:e40979. [PMID: 39790879 PMCID: PMC11714694 DOI: 10.1016/j.heliyon.2024.e40979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE. This modified electrode was used to measure nitrite ions in the water samples. Electrochemical analysis of nitrite was conducted using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) methods. For the first time, the results indicated that the Cu@Ag-Nf/PA nanocomposite demonstrated excellent performance in simultaneously electrocatalyzing oxidation at two specific potentials (0.17V and 0.98V denoted as OX1 and OX2 peaks) and one reduction potential (-0.42 V as a Red peak) for nitrite ions. This research showed various advantages, including applications in linear ranges, sensitivities, and detection limits in three potential areas (OX1, OX2, and Red) by elucidating the mechanism of action of the new electrode for detecting nitrite ions in water samples.
Collapse
Affiliation(s)
- Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Amini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Marzban
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Bornim, Germany
| | - Mehran seifi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Xu X, Nilghaz A, Wan X, Liu S, Xue M, Guo W, Tian J. A novel premixing strategy for highly sensitive detection of nitrite on paper-based analytical devices. Anal Chim Acta 2024; 1299:342417. [PMID: 38499414 DOI: 10.1016/j.aca.2024.342417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Nitrite has been involved in many food processing techniques and its excessive consumption is closely related to the development of different diseases. Therefore, highly sensitive detection of nitrite is significant to ensure food safety. RESULT This study presents a simple and novel strategy for the highly sensitive detection of nitrite in food using paper-based analytical devices (PADs). In this proposed strategy, the nitrite present in the sample undergoes efficient diazotization when initially mixed with sulfanilamide solution before reacting with N-(1-naphthyl) ethylenediamine dihydrochloride (NED) coated on the detection region of the PAD, leading to the maximum production of colored azo compounds. Specifically, within the concentration range of 0.1-20 mg/L, the LOD and LOQ for the nitrite assay using the premixing strategy are determined as 0.053 mg/L and 0.18 mg/L, respectively which significantly surpass the corresponding values of 0.18 mg/L (LOD) and 0.61 mg/L (LOQ) achieved with the regular Griess reagent analysis. SIGNIFICANCE The study highlights the critical importance of the premixing strategy in nitrite detection. Under optimized conditions, the strategy demonstrates an excellent limit of detection (LOD) and limit of quantification (LOQ) for nitrite detection in eight different meat samples. In addition to its high precision, the strategy is applicable in the field of nitrite analysis. This strategy could facilitate rapid and cost-effective nitrite analysis in real food samples, ensuring food safety and quality analysis.
Collapse
Affiliation(s)
- Xiaohu Xu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia; Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Xiaofang Wan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shan Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China.
| | - Meigui Xue
- Dongguan Polytechnic, Dongguan, 523808, Guangdong, China
| | - Wan Guo
- Zhejiang Kan New Mat Co Ltd, Lishui, 323300, Zhejiang, China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Razavi R, Amiri M, Divsalar K, Foroumadi A. CuONPs/MWCNTs/carbon paste modified electrode for determination of tramadol: theoretical and experimental investigation. Sci Rep 2023; 13:7999. [PMID: 37198239 DOI: 10.1038/s41598-023-34569-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
A practical technique was applied to fabricate CuO nanostructures for use as the electrocatalyst. The green synthesis of cupric oxide nanoparticles (CuO NPs) via co-precipitation is described in this paper using an aqueous extract of Origanum majorana as both reductant and stabilizer, accompanied by characterization via XRD, SEM, and FTIR. The XRD pattern revealed no impurities, whereas SEM revealed low agglomerated spherical particles. CuO nanoparticles and multi wall carbon nanotubes (MWCNTs) have been used to create a modified carbon paste electrode. Voltammetric methods were used to analyze Tramadol using CuONPs/MWCNT as a working electrode. The produced nanocomposite showed high selectivity for Tramadol analysis with peak potentials of ~ 230 mV and ~ 700 mV and Excellent linear calibration curves for Tramadol ranging from 0.08 to 500.0 µM with a correlation coefficient of 0.9997 and detection limits of 0.025. Also, the CuO NPs/MWCNT/CPE sensor shows an an appreciable sensitivity of 0.0773 μA/μM to tramadol. For the first time the B3LYP/LanL2DZ, quantum method was used to compute DFT to determine nanocomposites' connected energy and bandgap energy. Eventually, CuO NPs/CNT was shown to be effective in detecting Tramadol in actual samples, with a recovery rate ranging from 96 to 104.3%.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| | - Kouros Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Li Y, Zhang X, Sun Y, Yang Z, Liu J. Fabrication non-enzymatic electrochemical sensor based on methyl red and graphene oxide nanocomposite modified carbon paste electrode for determination of nitrite in food samples. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Soares RRA, Hjort RG, Pola CC, Jing D, Cecon VS, Claussen JC, Gomes CL. Ion-selective electrodes based on laser-induced graphene as an alternative method for nitrite monitoring. Mikrochim Acta 2023; 190:43. [PMID: 36595104 DOI: 10.1007/s00604-022-05615-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Robert G Hjort
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Victor S Cecon
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
McMahon NF, Brooker PG, Pavey TG, Leveritt MD. Nitrate, nitrite and nitrosamines in the global food supply. Crit Rev Food Sci Nutr 2022; 64:2673-2694. [PMID: 36168920 DOI: 10.1080/10408398.2022.2124949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inorganic nitrate provided by either nitrate salts or food supplements may improve cardiometabolic health. However, current methods to assess dietary nitrate, nitrite and nitrosamine consumption are inadequate. The purpose of this study was to develop a reference database to estimate the levels of nitrate, nitrite and nitrosamines in the global food supply. A systematic literature search was undertaken; of the 5,747 articles screened, 448 met the inclusion criteria. The final database included data for 1,980 food and beverages from 65 different countries. There were 5,105 unique records for nitrate, 2,707 for nitrite, and 954 for nitrosamine. For ease of use, data were sorted into 12 categories; regarding nitrate and nitrite concentrations in food and beverages, 'vegetables and herbs' were most reported in the literature (n = 3,268 and n = 1,200, respectively). For nitrosamines, 'protein foods of animal origin' were most reported (n = 398 records). This database will allow researchers and practitioners to confidently estimate dietary intake of nitrate, nitrite and nitrosamines. When paired with health data, our database can be used to investigate associations between nitrate intake and health outcomes, and/or exercise performance and could support the development of key dietary nitrate intake guidelines.
Collapse
Affiliation(s)
- Nicholas F McMahon
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paige G Brooker
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Toby G Pavey
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Michael D Leveritt
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
9
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
10
|
Viswanathan P, Lee D, Manivannan S, Yim T, Kim K. Monolayer assembly of gold nanodots on polyelectrolyte support: A multifunctional electrocatalyst for reduction of oxygen and oxidation of sulfite and nitrite. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Perumal Viswanathan
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| | - Dohun Lee
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| | - Shanmugam Manivannan
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Taeeun Yim
- Energy Conversion & Storage Laboratory (ECSLaB), Department of Chemistry Incheon National University Incheon Republic of Korea
| | - Kyuwon Kim
- Department of Chemistry, Electrochemistry Laboratory for Sensors & Energy (ELSE) Incheon National University Incheon Republic of Korea
| |
Collapse
|
11
|
Preparation of mixed-valent manganese-vanadium oxide and Au nanoparticle modified graphene oxide nanosheets electrodes for the simultaneous determination of hydrazine and nitrite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Fitoz A, Yazan Z, Önal M. Simultaneous Trace Electrochemical Determination of Xanthine Theophylline and Theobromine with a Novel Sensor Based on a Composite Including Metal Oxide Nanoparticle Multi‐walled Carbon Nanotube and Nano‐Na‐montmorillonite Clay. ELECTROANAL 2021. [DOI: 10.1002/elan.202100196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alper Fitoz
- Ankara University Faculty of Science, Department of Chemistry 06560 Ankara Turkey
| | - Zehra Yazan
- Ankara University Faculty of Science, Department of Chemistry 06560 Ankara Turkey
| | - Müşerref Önal
- Ankara University Faculty of Science, Department of Chemistry 06560 Ankara Turkey
| |
Collapse
|
13
|
Lim HS, Choi E, Lee SJ, Nam HS, Lee JK. Improved spectrophotometric method for nitrite determination in processed foods and dietary exposure assessment for Korean children and adolescents. Food Chem 2021; 367:130628. [PMID: 34343807 DOI: 10.1016/j.foodchem.2021.130628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 11/04/2022]
Abstract
A spectrophotometric method based on diazo-coupling reaction for nitrite analysis was established and validated, including inter-laboratory validation, linearity, accuracy, precision, the limit of detection (LOD) and limit of quantification (LOQ). The time-saving and high-recovery method was established by examining the filtration step, colorimetric process and concentration range of the calibration curve. This method showed good linearity (r2 > 0.999) in the range of 0.025-1.0 μg/mL. The three-level recoveries were between 86.7% and 108.6%, with the coefficient of variation (CV) below 5.8%. Mean nitrite concentration ranges in processed foods were ND-33.47 mg/kg. The mean nitrite intake was 0.8% of the Acceptable Daily Intake (ADI, 0.07 mg/kg bw/day) for all children and adolescents and 2.8% for the consumer group. The major contributors for all subjects and consumers were ham, sausage and bacon. These results indicated that the improved method was suitable for analyzing nitrite in processed foods and the nitrite exposure levels were safe.
Collapse
Affiliation(s)
- Ho Soo Lim
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Euna Choi
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Sang Jin Lee
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hye Seon Nam
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Jong Kwon Lee
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea.
| |
Collapse
|
14
|
MWCNT-Doped Polypyrrole-Carbon Black Modified Glassy Carbon Electrode for Efficient Electrochemical Sensing of Nitrite Ions. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00675-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Lei H, Zhu H, Sun S, Zhu Z, Hao J, Lu S, Cai Y, Zhang M, Du M. Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Alam MS, Rahman MM, Marwani HM, Hasnat MA. Insights of temperature dependent catalysis and kinetics of electro-oxidation of nitrite ions on a glassy carbon electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
An environmentally friendly microfluidic paper-based analytical device for simultaneous colorimetric detection of nitrite and nitrate in food products. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Rapid sol gel synthesis of BaFe12O19 nanoparticles: An excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
da Silva M, Fernandes Sako AV, Micke GA, Vitali L. A rapid method for simultaneous determination of nitrate, nitrite and thiocyanate in milk by CZE-UV using quaternary ammonium chitosan as electroosmotic flow inverter. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Zhu W, Zhang Y, Gong J, Ma Y, Sun J, Li T, Wang J. Surface Engineering of Carbon Fiber Paper toward Exceptionally High-Performance and Stable Electrochemical Nitrite Sensing. ACS Sens 2019; 4:2980-2987. [PMID: 31645102 DOI: 10.1021/acssensors.9b01474] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we introduce our recent finding that the carbon fiber paper (CFP) treated by simple air annealing (OCFP) could be used for exceptionally high-performance electrochemical nitrite sensing. The air-annealing process endows the pristine CFP with higher defective edge/plane sites, more oxygen-containing functional groups, higher roughness, and improved wettability. The electrochemical studies show that the OCFP exhibits excellent sensing performance for nitrite, with an ultralow determination limit of 0.1 μM and a detection limit of 0.07 μM, an ultrawide linear determination range of 0.1-3838.5 μM, a fast current response of 1 s, and a high sensitivity of 930.4 μA mM-1 cm-2. These performance values are comparable or even superior to those for most reported noble- or transition-metal-based advanced nitrite sensors. Besides, this electrode also presents satisfactory stability, reproducibility, and feasibility of nitrite sensing in food samples. As an ideal monolithic and metal-free catalyst with ultrahigh and stable detection performance, the OCFP has a high potential to be integrated into next-generation electrochemical sensing devices.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yi Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiandong Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an 710065, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Jiang Y, Wang C, Lu G, Zhao L, Gong L, Wang T, Qi D, Chen Y, Jiang J. Compartmentalization within Nanofibers of Double‐Decker Phthalocyanine Induces High‐Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry 2019; 25:16207-16213. [DOI: 10.1002/chem.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Guang Lu
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Luyang Zhao
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of ScienceChina University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
22
|
Ghalkhani M, Bakirhan NK, Ozkan SA. Combination of Efficiency with Easiness, Speed, and Cheapness in Development of Sensitive Electrochemical Sensors. Crit Rev Anal Chem 2019; 50:538-553. [DOI: 10.1080/10408347.2019.1664281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
| | - Nurgul K. Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Science, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Cumba LR, Foster CW, Brownson DAC, Smith JP, Iniesta J, Thakur B, do Carmo DR, Banks CE. Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response? Analyst 2018; 141:2791-9. [PMID: 26883598 DOI: 10.1039/c6an00167j] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mechanical activation (polishing) of screen-printed electrodes (SPEs) is explored and shown to exhibit an improved voltammetric response (in specific cases) when polished with either commonly available alumina slurry or diamond spray. Proof-of-concept is demonstrated for the electrochemical sensing of nitrite where an increase in the voltammetric current is found using both polishing protocols, exhibiting an improved limit of detection (3σ) and a two-fold increase in the electroanalytical sensitivity compared to the respective un-polished counterpart. It is found that mechanical activation/polishing increases the C/O ratio which significantly affects inner-sphere electrochemical probes only (whereas outer-sphere systems remain unaffected). Mechanical activation/polishing has the potential to be a simple pre-treatment technique that can be extended and routinely applied towards other analytes for an observable improvement in the electroanalytical response.
Collapse
Affiliation(s)
- Loanda R Cumba
- Faculdade de Engenharia de Ilha Solteira UNESP - Universidade Estadual Paulista, Departamento de Física e Química. Av. Brasil Centro, 56 CEP 15385-000, Ilha Solteira, SP, Brazil and Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Christopher W Foster
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Dale A C Brownson
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Jamie P Smith
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Jesus Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
| | - Bhawana Thakur
- Chemistry Division, Modular Labs, Bhabha Atomic Research Centre, Trombay 400085, India
| | - Devaney R do Carmo
- Faculdade de Engenharia de Ilha Solteira UNESP - Universidade Estadual Paulista, Departamento de Física e Química. Av. Brasil Centro, 56 CEP 15385-000, Ilha Solteira, SP, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
24
|
Manikandan VS, Liu Z, Chen A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Preconcentration and indirect quantification of trace nitrite, nitrate and total nitrite in selected beverage and milk samples using ion-pairing cloud-point extraction with acridine orange. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Balasubramanian P, Settu R, Chen SM, Chen TW, Sharmila G. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe 2O 4) clusters modified screen printed carbon electrode. J Colloid Interface Sci 2018; 524:417-426. [PMID: 29677610 DOI: 10.1016/j.jcis.2018.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe2O4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM-1 cm-2. Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ramki Settu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ganapathi Sharmila
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
27
|
Arulraj AD, Sundaram E, Vasantha VS, Neppolian B. Polypyrrole with a functionalized multi-walled carbon nanotube hybrid nanocomposite: a new and efficient nitrite sensor. NEW J CHEM 2018. [DOI: 10.1039/c7nj04130f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study mainly focuses on the electrochemical-assisted synthesis of conducting polymers such as polypyrrole (PPy) with sodium dodecyl sulfate (SDS) as a surfactant and supported with functionalized multi-walled carbon nanotubes (f-MWCNTs).
Collapse
Affiliation(s)
| | - Ellairaja Sundaram
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai – 625 021
- India
| | | | | |
Collapse
|
28
|
Jin L, Wang Y, Liu F, Yu S, Gao Y, Zhang J. The determination of nitrite by a graphene quantum dot fluorescence quenching method without sample pretreatment. LUMINESCENCE 2017; 33:289-296. [DOI: 10.1002/bio.3412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Li Jin
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Ying Wang
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Fangtong Liu
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Yan Gao
- Center of Analysis and Measurement; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Jianpo Zhang
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| |
Collapse
|
29
|
Baghayeri M, Mahdavi B, Hosseinpor‐Mohsen Abadi Z, Farhadi S. Green synthesis of silver nanoparticles using water extract of
Salvia leriifolia
: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4057] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehdi Baghayeri
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | - Behnam Mahdavi
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | | | - Samaneh Farhadi
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| |
Collapse
|
30
|
Promsuwan K, Thavarungkul P, Kanatharana P, Limbut W. Flow injection amperometric nitrite sensor based on silver microcubics-poly (acrylic acid)/poly (vinyl alcohol) modified screen printed carbon electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.138] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017; 165:709-720. [PMID: 28153321 DOI: 10.1016/j.talanta.2016.12.044] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Various techniques for the determination of nitrite and/or nitrate developed during the past 15 years were reviewed in this article. 169 references were covered. The detection principles and analytical parameters such as matrix, detection limits and detection range of each method were tabulated. The advantages and disadvantages of various methods were evaluated. In comparison to other methods, spectrofluorimetric methods have become more attractive due to its facility availability, high sensitivity and selectivity, low limits of detection and low-cost.
Collapse
Affiliation(s)
- Qiu-Hua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Ju Yu
- Xi'an Jiaotong University, Xi'an 710018, China; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lan Lin
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ri-Gang Lu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Jian-Ping Zhu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Lan He
- College of Chemistry, Beijing Normal University, Beijing 100875, China; National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Zhong-Lin Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
32
|
Makarska-Bialokoz M, Gladysz-Plaska A. Spectroscopic analysis of porphyrin compounds irradiated with visible light in chloroform with addition of β-myrcene. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Della Betta F, Pereira LM, Siqueira MA, Valese AC, Daguer H, Fett R, Vitali L, Costa ACO. A sub-minute CZE method to determine nitrate and nitrite in meat products: An alternative for routine analysis. Meat Sci 2016; 119:62-8. [DOI: 10.1016/j.meatsci.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
|
34
|
Shaikh T, Ibupoto ZH, Talpur FN, Sirajuddin, Khaskheli AR, Agheem MH, Siddiqui S, Tahira A, Willander M, Yu C. Selective and Sensitive Nitrite Sensor Based on Glassy Carbon Electrode Modified by Silver Nanochains. ELECTROANAL 2016. [DOI: 10.1002/elan.201600221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tayyaba Shaikh
- National Center of Excellence in Analytical Chemistry; University of Sindh; Jamshoro 76080 Pakistan
| | - Zaffar Hussain Ibupoto
- Dr. M. A. Kazi Institute of Chemistry; University of Sindh; Jamshoro 76080 Pakistan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 PR China
| | - Farah N. Talpur
- National Center of Excellence in Analytical Chemistry; University of Sindh; Jamshoro 76080 Pakistan
| | - Sirajuddin
- National Center of Excellence in Analytical Chemistry; University of Sindh; Jamshoro 76080 Pakistan
| | - Abdul Rauf Khaskheli
- Department of Pharmacy; Shaheed Mohtarma Benazir Bhutto Medical University; Larkana
| | - Muhammad H. Agheem
- Center for Pure and Applied Geology; University of Sindh; Jamshoro 76080 Pakistan
| | - Samia Siddiqui
- National Center of Excellence in Analytical Chemistry; University of Sindh; Jamshoro 76080 Pakistan
| | - Aneela Tahira
- Dr. M. A. Kazi Institute of Chemistry; University of Sindh; Jamshoro 76080 Pakistan
| | - Magnus Willander
- Department of Science and Technology, Campus Norrkoping; Linkoping University; SE-60174 Norrkoping Sweden
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 PR China
| |
Collapse
|
35
|
García M, Honores J, Quezada D, Díaz C, Dreyse P, Celis F, Kubiak CP, Canzi G, Guzmán F, Aguirre MJ, Isaacs M. Nitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Yuan Y, Huang X, Liu S, Yang J, Duan R, Hu X. Determination of hypochlorite by quenching the fluorescence of 1-pyrenylboronic acid in tap water. RSC Adv 2016. [DOI: 10.1039/c5ra23367d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In neutral conditions, a new probe based on the oxidative conversion of 1-pyrenylboronic acid to 1-hydroxypyrene was established for the fluorescence signaling of practical hypochlorite.
Collapse
Affiliation(s)
- Yusheng Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xin Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jidong Yang
- College of Chemical and Environmental Engineering
- Chongqing Three Gorges University
- Chongqing 404100
- China
| | - Ruilin Duan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
37
|
Azad UP, Yadav DK, Ganesan V, Marken F. Hydrophobicity effects in iron polypyridyl complex electrocatalysis within Nafion thin-film electrodes. Phys Chem Chem Phys 2016; 18:23365-73. [DOI: 10.1039/c6cp04758k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four polypyridyl redox catalysts Fe(bp)32+, Fe(ph)32+, Fe(dm)32+, and Fe(tm)32+ (with bp, ph, dm, and tm representing 2,2′-bipyridine, 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine, and 3,4,7,8-tetramethyl-1,10-phenanthroline, respectively) are investigated for the electrocatalytic oxidation of three analytes (nitrite, arsenite, and isoniazid).
Collapse
Affiliation(s)
- Uday Pratap Azad
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | | | - Vellaichamy Ganesan
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | | |
Collapse
|
38
|
Kuralay F, Dumangöz M, Tunç S. Polymer/carbon nanotubes coated graphite surfaces for highly sensitive nitrite detection. Talanta 2015; 144:1133-8. [PMID: 26452938 DOI: 10.1016/j.talanta.2015.07.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
This study describes the preparation of poly(vinylferrocenium)/multi-walled carbon nanotubes (PVF(+)/MWCNTs) coated electrode and its use for sensitive electrochemical nitrite detection. PVF(+)/MWCNTs composite coated disposable pencil graphite electrode (PVF(+)/MWCNTs/PGE) was prepared by electropolymerization of poly(vinylferrocene) (PVF) in the presence of MWCNTs with one-step electropolymerization. Characterization of PVF(+)/MWCNTs/PGE was carried out with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Then electrochemical detection of nitrite was performed using differential pulse voltammetry (DPV). Nanocomposite coated electrode showed high sensitivity to nitrite with a detection limit of 0.1 μM. The electrode platform was successfully applied to a commercial mineral water sample.
Collapse
Affiliation(s)
- Filiz Kuralay
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey.
| | - Mehmet Dumangöz
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey
| | - Selma Tunç
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey
| |
Collapse
|
39
|
Turdean GL, Szabo G. Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes – myoglobin modified electrode. Food Chem 2015; 179:325-30. [DOI: 10.1016/j.foodchem.2015.01.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
40
|
WITHDRAWN: Preconcentration and indirect quantification of trace nitrite, nitrate and total nitrite in selected beverage and milk samples using ion-pairing cloud-point extraction with acridine orange. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Chohan S, Booysen IN, Mambanda A, Akerman MP. Synthesis, characterization and electrocatalytic behavior of cobalt and iron phthalocyanines bearing chromone or coumarin substituents. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1023196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sumayya Chohan
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Matthew Piers Akerman
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
42
|
Highly sensitive determination of nitrite using a carbon ionic liquid electrode modified with Fe3O4 magnetic nanoparticle. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0594-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Adekunle AS, Lebogang S, Gwala PL, Tsele TP, Olasunkanmi LO, Esther FO, Boikanyo D, Mphuthi N, Oyekunle JAO, Ogunfowokan AO, Ebenso EE. Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra02008e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrocatalytic behaviour of graphene oxide (GO), iron(iii) oxide (Fe2O3) and Prussian blue (PB) nanoparticles towards nitrite (NO2−) and nitric oxide (NO) oxidation was investigated on a platinum modified electrode.
Collapse
Affiliation(s)
- Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Seonyane Lebogang
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Portia L. Gwala
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Tebogo P. Tsele
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Lukman O. Olasunkanmi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Fayemi O. Esther
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Diseko Boikanyo
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | - Ntsoaki Mphuthi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| | | | | | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
- South Africa
| |
Collapse
|
44
|
Yin J, Liu Z, Zhao T, Jin Y, Zhou X, Wu X. Determination of nitrite in real food and water samples by a novel terbium-macrocycle complex. RSC Adv 2015. [DOI: 10.1039/c5ra10889f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel terbium-macrocycle complex (Tb-Ac) was designed and synthesized for selective and sensitive sensing towards NO2− in real food and water samples, as well as living cells, in terms of reliable accuracy and practicability.
Collapse
Affiliation(s)
- Jinghua Yin
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| | - Zhixue Liu
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| | - Tong Zhao
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| | - Yingjin Jin
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| | - Xin Zhou
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| | - Xue Wu
- Research Centre for Chemical Biology
- Department of Chemistry
- Yanbian University
- Yanji 133002
- P. R. China
| |
Collapse
|
45
|
Yang S, Wo Y, Meyerhoff ME. Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Anal Chim Acta 2014; 843:89-96. [PMID: 25150700 DOI: 10.1016/j.aca.2014.06.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Abstract
Cobalt(III) 5,10,15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl) porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-DL-penicillamine.
Collapse
Affiliation(s)
- Si Yang
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Yaqi Wo
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Mark E Meyerhoff
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
46
|
Voltammetric determination of nitrite in meat products using polyvinylimidazole modified carbon paste electrode. Food Chem 2014; 152:245-50. [DOI: 10.1016/j.foodchem.2013.11.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 11/23/2022]
|
47
|
Tris(1,10-phenanthroline)iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Della Betta F, Vitali L, Fett R, Costa ACO. Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta 2014; 122:23-9. [DOI: 10.1016/j.talanta.2014.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/06/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
49
|
A non-diazotization-coupling reaction-based colorimetric determination of nitrite in tap water and milk. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2215-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Ning D, Zhang H, Zheng J. Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|