1
|
Lan Z, Zhang X, Cai X, Pan W, Li W, Sun Y, Wang S, Xue X, Wu M, Meng J. Metabolite profiling and 'dryness'-like effect analysis of 'Chenpi' plant tea (Citri Reticulatae Pericarpium peel) with and without steaming peocessing. Food Res Int 2025; 206:116089. [PMID: 40058930 DOI: 10.1016/j.foodres.2025.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Citri Reticulatae Pericarpium peel ('Chenpi' tea) is a popular food-medicine functional tea, which mainly existing unsteamed (CRP) and steamed (SCRP) products. In this study, a combination of electronic nose and GC-MS analysis showed that aged SCRP had a more intense aroma, which was attributed to the significant reduction or disappearance of components representing refreshing aroma, such as β-Myrcene and d-Limonene, while some components with thick odors like Valencene were newly formed. For the 'dryness'-like effect, the weaker effect of SCRP relative to CRP was initially confirmed in rats, as characterized by water intake, submandibular gland index, and hemorheology, consistenting with the expression trend of aquaporin (AQP) 2, 3 and 5 mRNA. Molecular docking further revealed that the key differential components responsible for the different 'dryness'-like effects of SCR and SCRP by affecting AQPs were Narirutin, Rutin, Calceolarioside C, Hesperidin, Melitidin and Limonin. Taken together, our findings enhance the understanding of steaming processing-induced aroma and 'dryness'-like effect changes in 'Chenpi' tea and their impact on consumer experience, offering a novel perspective for optimizing 'Chenpi' tea products.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoting Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Xinhang Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Weijie Pan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Wangjun Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| | - Xingyang Xue
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Menghua Wu
- College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Sun X, Yang C, Zhang W, Zheng J, Ou J, Ou S. Toxicity of formaldehyde, and its role in the formation of harmful and aromatic compounds during food processing. Food Chem X 2025; 25:102225. [PMID: 39968039 PMCID: PMC11833356 DOI: 10.1016/j.fochx.2025.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Formaldehyde is a highly reactive compound known to pose several health risks, including carcinogenic, neurotoxic, reproductive, allergic, immunological, genetic, and respiratory toxicity. While its free concentration in processed foods is typically low even it can be formed through various biochemical and chemical pathways in foods. This study aims to investigate the fate of formaldehyde in food processing from two key perspectives: (1) its role in the formation of other harmful compounds, such as heterocyclic aromatic amines, methylimidazole, advanced glycation end-products, and N-nitrosamines, and (2) its potential to contribute to the generation of aromatic compounds, including oxygen-, sulfur-, and nitrogen-containing heterocyclic aromas. This review provides insights that may help food scientists develop strategies to mitigate formaldehyde's harmful effects while potentially harnessing its role in producing beneficial aromatic compounds.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Chunmin Yang
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Weiyue Zhang
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jie Zheng
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Lu JW, Lin CY, Fang M. Roasted fish reaction flavor by plant-based ingredients. Food Chem 2024; 460:140492. [PMID: 39032289 DOI: 10.1016/j.foodchem.2024.140492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Currently, there are no commercially available plant-based products that replicate the flavor profile of roasted fish. As the increasing demand of plant-based meat in the recent years, the exploration of plant-based meat flavors holds significant importance. This study revealed that a blend of lysine, leucine, glutamic acid, alanine, cysteine, glucose, and algae oil (rich in docosahexaenoic acid, DHA), when subjected to heating in low pH, generated the distinct flavor like roasted mackerel. The precursor, mechanism and flavor note were investigated. Key aromatic compounds such as isovaleric acid, octanoic acid, 1,5-octadien-3-one, 2,4-octadienal, 2-octenal, furaneol, 2,5-furandicarboxaldehyde, and 2-pentenylfuran were found as important contributors in the reaction flavor model. These compounds primarily derived from heat-induced lipid oxidation, lipid degradation, and Maillard reaction of these plant-based ingredients. The development of plant-based meat flavors is crucial for promoting the substantial progress of plant-based meat products.
Collapse
Affiliation(s)
- Jing-Wen Lu
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan..
| | - Chun-Yu Lin
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan
| | - Mingchih Fang
- Department of Food Science, Collage of Life Science, National Taiwan Ocean University. 2, Beining Rd., Keelung City, Taiwan..
| |
Collapse
|
4
|
Mu Y, Ao X, Zhao Z, Liu D, Meng D, Chen L, Wang X, Lv Z. The anabolism of volatile compounds during the pasteurization process of sea buckthorn ( Hippophae rhamnoides) pulp. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1823-1832. [PMID: 39285994 PMCID: PMC11401805 DOI: 10.1007/s13197-024-05943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 09/19/2024]
Abstract
Pasteurization (PS) causes the abnormal changes in volatiles and off-flavors in juices and limit the commercial production of juices. Herein, the first study on the biochemical reaction of volatile and nonvolatile compounds in response to PS factors during the process of sea buckthorn pulp (SBP) was evaluated. Processing conditions (mainly 80 °C for 20 min) had significant effects on the volatile and nonvolatile compounds. The restricted unsaturated fatty acid metabolism led to the greatest decrease of 20.25% in esters with fruity odor, and furans, smelling like caramel and toast, exhibited the highest increase of 136.40% because of the enhancement of the Maillard reaction. Dimethyl sulfide and dimethyl trisulfide elicited a cooked onion-like off-flavor, generated mainly from Strecker degradation of sulfur-containing amino acids, strengthened by the high pH and sufficient substrates due to the highest consumption rates of 4.66% and 12.01% for organic acids and sugars. Reasonable temperature and time control are crucial to the improvement of the process for PS for the SBP industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05943-z.
Collapse
Affiliation(s)
- Yihan Mu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xuan Ao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhichao Zhao
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou, 730060 China
| | - Dongwei Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Luyao Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
- Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
5
|
Taiti C, Costantini L, Comparini D, Merendino N, Garzoli S. Physico-Chemical Properties and Chemical Analysis of Wildflower Honey Before and After the Addition of Spirulina ( Arthrospira platensis). Molecules 2024; 29:4373. [PMID: 39339368 PMCID: PMC11434565 DOI: 10.3390/molecules29184373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, in order to verify the effects due to the addition of spirulina (Arthrospira platensis) in a food product, a wildflower honey was analyzed in terms of chemical composition, physicochemical properties and antioxidant activity before and after the addition of the spirulina. HS-SPME/GC-MS and HPLC/UV were applied to carry out the chemical analyses. The obtained results demonstrated that the volatile profile and also the sugar content were significantly influenced by the addition of spirulina, showing significant qualitative and quantitative differences compared to honey without spirulina. The increase in HMF in honey added with spirulina was significant, demonstrating that its presence could accelerate the Maillard reaction. Electrical conductivity measured by using a conductometer was also increased while the moisture content was reduced in honey enriched with spirulina. Instead, the pH value was similar between the two samples. On the other hand, honey fortification with spirulina determined a significant increase of 12.5% in the total phenolic content (TPC), and a 56.25% increase in protein content. Further, the total antioxidant capacity (TAC) was also evaluated and a significant increase was determined as a result of the addition of spirulina. In conclusion, honey enriched with A. platensis was found to be characterized by a high pool of bioactive metabolites as well as significant changes in almost all the measurements performed.
Collapse
Affiliation(s)
- Cosimo Taiti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo Dell'Università Snc, 01100 Viterbo, Italy
| | - Diego Comparini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo Dell'Università Snc, 01100 Viterbo, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
6
|
Hu BB, Yin WT, Zhang HB, Zhai ZQ, Liu HM, Wang XD. The interaction between lipid oxidation and the Maillard reaction model of lysine-glucose on aroma formation in fragrant sesame oil. Food Res Int 2024; 186:114397. [PMID: 38729739 DOI: 10.1016/j.foodres.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.
Collapse
Affiliation(s)
- Bei-Bei Hu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Wen-Ting Yin
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China.
| | - Heng-Bo Zhang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Zhuo-Qing Zhai
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Hua-Min Liu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xue-de Wang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| |
Collapse
|
7
|
Du W, Wang Y, Yan Q, Bai S, Huang Y, Li L, Mu Y, Shakoor A, Fan B, Wang F. The number and position of unsaturated bonds in aliphatic aldehydes affect the cysteine-glucose Maillard reaction: Formation mechanism and comparison of volatile compounds. Food Res Int 2023; 173:113337. [PMID: 37803647 DOI: 10.1016/j.foodres.2023.113337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to reveal the effect of the number and position of unsaturated bond in aliphatic aldehydes on Maillard reaction for the generation of 88 stewed meat-like volatile compounds. The results showed that (E,E)-2,4-nonadienal and (E,Z)-2,6-nonadienal exhibited greater inhibition of the cysteine reaction with glucose than nonanal and (E)-2-nonenal. However, the positions of the unsaturated bonds in aliphatic aldehydes in the Maillard reaction stage were similar. A carbohydrate module labeling approach was used to present the formation pathways of 34 volatile compounds derived from the Maillard reaction with aliphatic aldehyde systems. The number and position of unsaturated bonds in aliphatic aldehydes generate multiple pathways of flavor compound formation. 2-Propylfuran and (E)-2-(2-pentenyl)furan resulted from aliphatic aldehydes. 5-Butyldihydro-2(3H)-furanone and 2-methylthiophene were produced from the Maillard reaction. 2-Furanmethanol, 2-thiophenecarboxaldehyde, and 5-methyl-2-thiophenecarboxaldehyde were derived from the interaction of aliphatic aldehydes and the Maillard reaction. In Particular, the addition of aliphatic aldehydes changed the formation pathway of 2-propylthiophene, thieno[3,2-b]thiophene, and 2,5-thiophenedicarboxaldehyde. Heatmap and PLS-DA analysis could discriminate volatile compound compositions of the five systems and screen the marker compounds differentiating volatile compounds.
Collapse
Affiliation(s)
- Wenbin Du
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yutang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghong Yan
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Long Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuwen Mu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashbala Shakoor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Ma Y, Li J, Xue Y, Xu Y, Liu C, Su D. Comprehensive improvement of nutrients and volatile compounds of black/purple rice by extrusion-puffing technology. Front Nutr 2023; 10:1248501. [PMID: 37885443 PMCID: PMC10598597 DOI: 10.3389/fnut.2023.1248501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Black/purple rice is a pigmented rice variety that contains high levels of anthocyanins, flavonoids, and other valuable bioactive compounds. Owing to its robust anti-inflammatory and antioxidant properties, black/purple rice exerts a beneficial effect on human health. Extrusion puffing technology has emerged as a promising means of improving rice flavor with lesser effect on nutrient content. In this study, metabolomics approach was used to conduct comprehensive metabolomics analyses aimed at examining the impact of extrusion puffing on black/purple rice nutritional value and flavor. Methods Firstly, the basic nutrient composition contents and extrudate characteristics of black/purple rice and Extrusion puffed black/purple rice were conducted. Then metabolomics profiling analyses of black/purple rice samples were performed to explore the impact of the extrusion puffing process on nutrient content and bioactive properties, in which we quantitatively determined the flavonoids and evaluated relative contents of volatile compounds. Results These analyses revealed that following extrusion puffing, black/purple rice exhibited significant improvements in the content of nutrients including flavonoids, minerals, and proteins together. Extrusion puffing additionally increased the diversity of volatile compounds within black/purple rice. Discussion These results suggest that extrusion puffing represents an effective means of substantially improving the functional and nutritional properties of black/purple rice, offering beneficial effects on consumer health. Overall, these data provide novel insights into the quality of extrusion puffed black/purple rice that will guide future efforts to establish how extrusion puffing can alter the nutrient content in a range of foods, thereby supporting the further development of a range of healthy food products.
Collapse
Affiliation(s)
- Yanrong Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Jiaxing Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Yan Xue
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Chunming Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| |
Collapse
|
9
|
Raweh HSA, Badjah-Hadj-Ahmed AY, Iqbal J, Alqarni AS. Physicochemical Composition of Local and Imported Honeys Associated with Quality Standards. Foods 2023; 12:foods12112181. [PMID: 37297426 DOI: 10.3390/foods12112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The compliance with honey standards is crucial for its validity and quality. The present study evaluated the botanical origin (pollen analysis) and physicochemical properties: moisture, color, electrical conductivity (EC), free acidity (FA), pH, diastase activity, hydroxymethylfurfural (HMF), and individual sugar content of forty local and imported honey samples. The local honey exhibited low moisture and HMF (14.9% and 3.8 mg/kg, respectively) than imported honey (17.2% and 23 mg/kg, respectively). Furthermore, the local honey showed higher EC and diastase activity (1.19 mS/cm and 11.9 DN, respectively) compared to imported honey (0.35 mS/cm and 7.6 DN, respectively). The mean FA of local honey (61 meq/kg) was significantly naturally higher than that of imported honey (18 meq/kg). All local nectar honey that originated from Acacia spp. exhibited naturally higher FA values that exceeded the standard limit (≤50 meq/kg). The Pfund color scale ranged from 20 to 150 mm in local honey and from 10 to 116 mm in imported honey. The local honey was darker, with a mean value of 102.3 mm, and was significantly different from imported honey (72.7 mm). The mean pH values of local and imported honey were 5.0 and 4.5, respectively. Furthermore, the local honey was more diverse in pollen grain taxa compared to imported honey. Local and imported honey elicited a significant difference regarding their sugar content within individual honey type. The mean content of fructose, glucose, sucrose, and reducing sugar of local honey (39.7%, 31.5%, 2.8%, and 71.2%, respectively) and imported honey (39.2%, 31.8%, 0.7%, and 72.0%, respectively) were within the permitted quality standards. This study indicates the necessity of increasing the awareness regarding quality investigations for healthy honey with good nutritional value.
Collapse
Affiliation(s)
- Hael S A Raweh
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Javaid Iqbal
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz S Alqarni
- Melittology Research Lab, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Xiao Q, Huang Q, Ho CT. Influence of Deamidation on the Formation of Pyrazines and Proline-Specific Compounds in Maillard Reaction of Asparagine and Proline with Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7090-7098. [PMID: 37126799 DOI: 10.1021/acs.jafc.3c00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Maillard reaction products obtained from the model system of binary amino acids (asparagine and proline) with glucose were first studied. GC-MS results showed that proline-specific aromatic compounds, 2,3-dihydro-1H-pyrrolizines and cyclopent[b]azepin-8(1H)-ones, were dominant among overall products, followed by pyrazines at different temperatures. Aspartic acid was first applied to model reactions as the precise control of asparagine deamidation, and lysine was further introduced into model systems for improving pyrazine formation. Quantitative results of model reaction products demonstrated that pyrazines were not significantly increased in deamidated states (Asn-Asp-Pro and Asp-Pro) while proline-specific compounds had a rapid enhancement at the same time. With excellent ability to form pyrazines, lysine did help to increase the formation of pyrazines, but still far fewer than pyrrolizines and azepines. It was assumed that proline would preferentially react with α-dicarbonyl compounds in Maillard reaction cascades with lower activation energies.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
11
|
Garvey EC, O'Sullivan MG, Kerry JP, Kilcawley KN. Aroma generation in sponge cakes: The influence of sucrose particle size and sucrose source. Food Chem 2023; 417:135860. [PMID: 36958203 DOI: 10.1016/j.foodchem.2023.135860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The influence of sucrose source and particle size was investigated in relation to the volatile and aromatic properties of sponge cakes. Six sponge cake formulations were studied using two sucrose sources (sugarbeet and sugarcane), at two particle sizes (large and small) with controls. Volatiles profiles and odour active compounds were identified by gas chromatography mass spectrometry and olfactometry. Sixty two volatile compounds were identified, incorporating twenty five odour active compounds/co-eluting compounds, with 5 odours perceived without any corresponding volatile. Particle size had the greatest impact on volatile abundance, with particle size especially influencing pyrazine abundance. Five odour active volatiles (methional, furfural, 2,3-dimethylpyrazine, heptanal and (E)-2-octenal) contributed most to the aroma of these sponge cakes. Small particle size particularly from sugarbeet yielded higher levels of some Maillard and caramelisation reaction compounds, such as furfural (spicy/ bready), where larger particle size supressed volatile abundance in comparison to the control.
Collapse
Affiliation(s)
- E C Garvey
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - M G O'Sullivan
- Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - J P Kerry
- Food Packaging Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - K N Kilcawley
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| |
Collapse
|
12
|
Abdugheni R, Wang W, Wang Y, Du M, Liu F, Zhou N, Jiang C, Wang C, Wu L, Ma J, Liu C, Liu S. Metabolite profiling of human-originated Lachnospiraceae at the strain level. IMETA 2022; 1:e58. [PMID: 38867908 PMCID: PMC10989990 DOI: 10.1002/imt2.58] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
The human gastrointestinal (GI) tract harbors diverse microbes, and the family Lachnospiraceae is one of the most abundant and widely occurring bacterial groups in the human GI tract. Beneficial and adverse effects of the Lachnospiraceae on host health were reported, but the diversities at species/strain levels as well as their metabolites of Lachnospiraceae have been, so far, not well documented. In the present study, we report on the collection of 77 human-originated Lachnospiraceae species (please refer hLchsp, https://hgmb.nmdc.cn/subject/lachnospiraceae) and the in vitro metabolite profiles of 110 Lachnospiraceae strains (https://hgmb.nmdc.cn/subject/lachnospiraceae/metabolites). The Lachnospiraceae strains in hLchsp produced 242 metabolites of 17 categories. The larger categories were alcohols (89), ketones (35), pyrazines (29), short (C2-C5), and long (C > 5) chain acids (31), phenols (14), aldehydes (14), and other 30 compounds. Among them, 22 metabolites were aromatic compounds. The well-known beneficial gut microbial metabolite, butyric acid, was generally produced by many Lachnospiraceae strains, and Agathobacter rectalis strain Lach-101 and Coprococcus comes strain NSJ-173 were the top 2 butyric acid producers, as 331.5 and 310.9 mg/L of butyric acids were produced in vitro, respectively. Further analysis of the publicly available cohort-based volatile-metabolomic data sets of human feces revealed that over 30% of the prevailing volatile metabolites were covered by Lachnospiraceae metabolites identified in this study. This study provides Lachnospiraceae strain resources together with their metabolic profiles for future studies on host-microbe interactions and developments of novel probiotics or biotherapies.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
| | - Wen‐Zhao Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yu‐Jing Wang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng‐Xuan Du
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Feng‐Lan Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Cheng‐Ying Jiang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chang‐Yu Wang
- Colleg of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Juncai Ma
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
13
|
Huang YH, Kao TH, Chen BH. Development of a GC–MS/MS method coupled with HS-SPME-Arrow for studying formation of furan and 10 derivatives in model systems and commercial foods. Food Chem 2022; 395:133572. [PMID: 35777214 DOI: 10.1016/j.foodchem.2022.133572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
|
14
|
Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr Rev Food Sci Food Saf 2022; 21:3867-3909. [PMID: 35810334 DOI: 10.1111/1541-4337.12999] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tea is among the most consumed nonalcoholic beverages worldwide. Understanding tea flavor, in terms of both sensory aspects and chemical properties, is essential for manufacturers and consumers to maintain high quality of tea products and to correctly distinguish acceptable or unacceptable products. This article gives a comprehensive review on the aroma and off-flavor characteristics associated with 184 odorants. Although many efforts have been made toward the characterization of flavor compounds in different types of tea, modern flavor analytical techniques that affect the results of flavor analysis have not been compared and summarized systematically up to now. Thus, the overview mainly provides the instrumental flavor analytical techniques for both aroma and taste of tea (i.e., extraction and enrichment, qualitative, quantitative, and chemometric approaches) as well as descriptive sensory analytical methodologies for tea, which is helpful for tea flavor researchers. Flavor developments of tea evolved toward time-saving, portability, real-time monitoring, and visualization are also prospected to get a deeper insight into the influences of different processing techniques on the formation and changes of flavor compounds, especially desired flavor compounds and off-flavor substances present at (ultra)trace amounts in tea and tea products.
Collapse
Affiliation(s)
- Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, Faculty of Natural Science, University of Hohenheim, Stuttgart, Germany
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Deng S, Cui H, Hayat K, Zhai Y, Zhang Q, Zhang X, Ho CT. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model. Food Chem 2022; 382:132500. [PMID: 35245757 DOI: 10.1016/j.foodchem.2022.132500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The generation of pyrazines in a binary methionine/glucose (Met/Glc) mixture and corresponding methionine/glucose-derived Amadori rearrangement product (MG-ARP) was studied. Quantitative analyses of pyrazines and methional revealed that MG-ARP generated more methional compared to Met/Glc, whereas lower content and fewer species of pyrazines were observed in the MG-ARP model. Comparing the availability of α-dicarbonyl compounds generated from the Met/Glc model, methylglyoxal (MGO) was a considerably effective α-dicarbonyl compound for the formation of pyrazines during MG-ARP degradation, but glyoxal (GO) produced from MG-ARP did not effectively participate in the corresponding formation of pyrazines due to the asynchrony on the formation of GO and recovered Met. Diacetyl (DA) content was not high enough to form corresponding pyrazines in the MG-ARP model. The insufficient interaction of precursors and rapid drops in pH limited the formation of pyrazines during MG-ARP degradation. Increasing reaction temperature could reduce the negative inhibitory effect by promoting the content of precursors.
Collapse
Affiliation(s)
- Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, PR China.
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA.
| | - Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., LTD, No. 1 Shengli Road, Jieshou, Anhui 236500, PR China.
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
16
|
Cui H, Ma M, Wang Z, Hayat K, Zhang X, Ho CT. Temperature-Dependent Catalysis of Glycylglycine on Its Amadori Compound Degradation to Deoxyosone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8409-8416. [PMID: 35771137 DOI: 10.1021/acs.jafc.2c03427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Amadori rearrangement product derived from xylose-glycylglycine (XGG-ARP) is reactive to be attacked by another glycylglycine to generate a xylose-glycylglycine cross-linking product (XGG-CP) as a secondary product of the ARP. In this research, the role of additional glycylglycine in the XGG-ARP degradation was studied, and the dependence of glycylglycine on temperature was further clarified. The yields of XGG-CP and its degradation products were significantly affected by the molar ratio of glycylglycine to XGG-ARP. At the similar total concentration of reactant XGG-ARP and glycylglycine, the yields of XGG-CP, 3-deoxyxylosone, and furfural were dramatically decreased as the molar ratio of glycylglycine to XGG-ARP was increased. However, when the reaction temperature was increased to 120 °C, the increased additional glycylglycine percentage showed an obvious catalytic effect on the XGG-ARP degradation to deoxyosone and thus improved the furfural yield as well. The results revealed that an increased glycylglycine dosage level enhanced both the conversion of XGG-ARP to XGG-CP and the conversion of XGG-CP to 3-deoxyosone. The high-temperature-induced unequal acceleration for XGG-CP formation and degradation at a high glycylglycine dosage further led to a catalytic effect on the ARP degradation to deoxyosone. The concentration of 3-deoxyosone was increased by 37.5% when the molar ratio of glycylglycine to XGG-ARP increased from 1:2 to 2:1 at a temperature of 120 °C.
Collapse
Affiliation(s)
- Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mengyu Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ziyan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
17
|
Huang YH, Kao TH, Inbaraj BS, Chen BH. Improved Analytical Method for Determination of Furan and Its Derivatives in Commercial Foods by HS-SPME Arrow Combined with Gas Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7762-7772. [PMID: 35704793 DOI: 10.1021/acs.jafc.2c01832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to the presence of significant levels of toxic furan compounds reported globally in commercial foods by various food authorities, the objectives of this study were to develop an analytical method for determination of furan and its 10 derivatives in commercial foods using headspace-solid phase microextraction (HS-SPME)-Arrow coupled with gas chromatography-tandem mass spectrometry. Furan and its 10 derivatives were separated within 10 min by employing an HP-5MS capillary column with d4-furan as the internal standard for quantitation. The most optimal sample weight and extraction time for various commercial food samples, respectively, ranged from 1 to 5 g and 10-15 min depending on the sample variety. For extraction, carboxen/poly(dimethylsiloxane) (CAR/PDMS) cellulose was used with the temperature at 30 °C, equilibration time of 15 min, and desorption time of 3 min. The limit of detection ranged from 0.001 to 1.071 ng/g, while the limit of quantitation ranged from 0.003 to 3.571 ng/g. A high precision and accuracy were obtained for this method. The total furan content in commercial foods ranged from nd to 40 725.85 ng/g, in which the mean contents were the highest for brewed coffee (35 082.26 ng/g) and canned coffee (25 152.22 ng/g), while the lowest were for potato chip and cookies (0.57-1.48 ng/g), donut (1.50 ng/g), milk (0.34-30.38 ng/g), and oat (6.56 ng/g).
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
18
|
Gu Z, Jin Z, Schwarz P, Rao J, Chen B. Uncovering aroma boundary compositions of barley malts by untargeted and targeted flavoromics with HS-SPME-GC-MS/olfactometry. Food Chem 2022; 394:133541. [PMID: 35759835 DOI: 10.1016/j.foodchem.2022.133541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
In this study, HS-SPME/GC-MS based untargeted and targeted flavoromics combing with olfactometry were employed to uncover aroma boundary compositions of five types of commercial barley malts with a wide range of Lovibond (L), including kilned base malts (1.8 L and 3.5 L) and roasted caramel malts (10 L, 60 L, and 120 L). Thirty-two compounds were identified as aroma-active with modified detection frequency (MF) > 50%. 3-Methylbutanal (malty), (2E)-nonenal (fatty, cardboard-like), and 2-furfural (burnt, bready) were recognized as the most influential odorants with MF > 70% in all the malts. After untargeted flavoromics, twenty-eight aromas were retained and quantitated. Furthermore, aroma boundary compositions inside/among malt groups were explored with PLS-DA. Eight aroma markers, 3-methylbutanal, 2-isopropyl-5-methyl-2-hexenal, (2E,4E)-Decadienal, 2-furfual, maltol, 2-acetylpyrrole, phenylacetaldehyde, and ethyl hexadecanoate were shortlisted for aroma boundary compositions regarding to the Lovibond of malts.
Collapse
Affiliation(s)
- Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
19
|
Exogenous glutamic acid effectively involved in N-(1-deoxy-D-galulos-1-yl)-glutamic acid degradation for simultaneous improvement of both milk-like and baking flavor. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
21
|
Zhan H, Cui H, Yu J, Hayat K, Wu X, Zhang X, Ho CT. Characteristic flavor formation of thermally processed N-(1-deoxy-α-d-ribulos-1-yl)-glycine: Decisive role of additional amino acids and promotional effect of glyoxal. Food Chem 2022; 371:131137. [PMID: 34562777 DOI: 10.1016/j.foodchem.2021.131137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/22/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
The role of amino acids and α-dicarbonyls in the flavor formation of Amadori rearrangement product (ARP) during thermal processing was investigated. Comparisons of the volatile compounds and their concentrations when N-(1-deoxy-α-d-ribulos-1-yl)-glycine reacted with different amino acids or glyoxal (GO) at 100 °C were executed. Additional amino acids, such as glycine (Gly), in ARP models contributed to the diversity of furanoids by the chain elongation of the derived formaldehyde. Whereas the monoanion of additional glutamic acid acted as nucleophile, favored 2-ethyl-3,5-dimethylpyrazine and 2,5-dimethylpyrazine formation; the nonionized amino group of additional lysine were involved in α-dicarbonyls formation, causing pyrazine and methylpyrazine accumulation in the ARP model. Moreover, the high dosage and pH stabilization of additional GO probably promoted the ARP degradation and deoxyosones retro-aldol cleavage, resulting in methylpyrazine rather than furanoids formation. The present work provided the guidance for the controlled flavor formation of ARP in industrial application.
Collapse
Affiliation(s)
- Huan Zhan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu, Wuxi, Jiangsu 214122, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu, Wuxi, Jiangsu 214122, PR China
| | - Junhe Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA.
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu, Wuxi, Jiangsu 214122, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, NJ, USA.
| |
Collapse
|
22
|
Yin W, Shi R, Li S, Ma X, Wang X, Wang A. Changes in key aroma‐active compounds and sensory characteristics of sunflower oils induced by seed roasting. J Food Sci 2022; 87:699-713. [DOI: 10.1111/1750-3841.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Wen‐ting Yin
- College of Food Science and Technology Henan University of Technology Zhengzhou China
- Institute of Special Oilseed Processing and Technology, College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Rui Shi
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Shi‐jia Li
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xue‐ting Ma
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xue‐de Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou China
- Institute of Special Oilseed Processing and Technology, College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - An‐na Wang
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
23
|
Zhai Y, Cui H, Zhang Q, Hayat K, Wu X, Deng S, Zhang X, Ho CT. Degradation of 2-Threityl-Thiazolidine-4-Carboxylic Acid and Corresponding Browning Accelerated by Trapping Reaction between Extra-Added Xylose and Released Cysteine during Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10648-10656. [PMID: 34463101 DOI: 10.1021/acs.jafc.1c03727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2-Threityl-thiazolidine-4-carboxylic acid (TTCA), a nonvolatile precursor of flavor and color, is considered to be more stable than its isomeric Amadori compound (ARP). The degradation behavior of TTCA favors higher temperatures and pH. In order to adjust and control the thermal degradation of TTCA to improve its food processing adaptability, a TTCA-Xyl thermal reaction model was constructed to explore the effect of extra-added Xyl on the thermal degradation behavior of TTCA. The results confirmed that the extra-added Xyl was involved in the degradation pathway of TTCA and accelerated its depletion, thus promoting the formation of characteristic downstream products of TTCA including some α-dicarbonyl compounds, and consequently accelerating the browning formation. The isotope-labeling technique was further applied to confirm that the added Xyl could trap the Cys released from the decomposition of ARP and formed additional TTCA, which could promote the movement of chemical equilibrium and gradually accelerate the degradation rate of TTCA as well as melanoidins formation. The higher pH value could even promote this phenomenon.
Collapse
Affiliation(s)
- Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Qiang Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Chi-Tang Ho
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., LTD, No. 1 Shengli Road, Jieshou, Anhui 236500, P. R. China
| |
Collapse
|
24
|
Yang M, Zhai X, Huang X, Li Z, Shi J, Li Q, Zou X, Battino M. Rapid discrimination of beer based on quantitative aroma determination using colorimetric sensor array. Food Chem 2021; 363:130297. [PMID: 34153677 DOI: 10.1016/j.foodchem.2021.130297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
In this study, 6 beers from Tsingtao Brewery were analyzed by using colorimetric GC-MS and sensor array (CSA). First, forty volatile compounds of six beers, including 16 esters, 10 alcohols, 4 acids and 4 aldehydes, were identified by GC-MS. Beers from the same category were grouped using principal component analysis (PCA) score plot and hierarchical clustering analysis (HCA) dendrogram. Discrimination of the beers was subsequently implemented using a 4 × 4 CSA combined with multivariate analysis. A linear discriminant analysis (LDA) model achieved a 100% recognition rates of the 6 beers. In addition, a partial least square (PLS) model could be used to quantitatively determine ethyl octanoate, phenethyl acetate, isoamyl alcohol and octanoic acid, with correlation coefficients over 0.85 for both the calibration curves of the training and prediction sets. Hence, CSA could be used for rapid and non-destructive determination of beer quality.
Collapse
Affiliation(s)
- Mei Yang
- School of Bioengineering, Jiangnan University, Wuxi 214000, China; State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd., 26600, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Li
- School of Bioengineering, Jiangnan University, Wuxi 214000, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maurizio Battino
- Marche Polytechnic University, Dipartimento Sci Clin Specialist & Odontostom, Via Ranieri 65, I-60130 Ancona, Italy
| |
Collapse
|
25
|
Deng S, Cui H, Hayat K, Hussain S, Tahir MU, Zhai Y, Zhang Q, Zhang X, Ho CT. Effect of Methionine on the Thermal Degradation of N-(1-Deoxy-d-fructos-1-yl)-methionine Affecting Browning Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5167-5177. [PMID: 33891395 DOI: 10.1021/acs.jafc.1c02023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of additional dl-methionine (Met) on the thermal degradation of a methionine-glucose-derived Amadori rearrangement product (MG-ARP) was investigated under different reaction conditions. The resulting color formation and changes in the concentrations of MG-ARP, Met, and α-dicarbonyl compounds were investigated. Additional Met did not affect the degradation rate of MG-ARP but got involved in subsequent reactions and resulted in a decrease in the contents of C6-α-dicarbonyl compounds. During MG-ARP degradation, the formation of glyoxal (GO) and methylglyoxal (MGO) was facilitated by additional Met, through retro-aldolization reaction of C6-α-dicarbonyl compounds. This effect of Met addition was dependent on the reaction temperature, and the consistent conclusion could be made in a buffer system. The improvement of GO and MGO formation as color precursors caused by the additional Met contributed to the acceleration of browning formation.
Collapse
Affiliation(s)
- Shibin Deng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Co., Ltd, No. 1 Shengli Road, Jieshou, Anhui 236500, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Fuentes Molina O, Alizadeh K, Bucarey SA, Castaneza Zúñiga E, Vásquez-Quitral P. Analysis of organic molecules, physicochemical parameters, and pollen as indicators for authenticity, botanical origin, type and quality of honey samples examined. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1850775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- O. Fuentes Molina
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad De Chile, La Pintana, Santiago, Chile
| | - K. Alizadeh
- Department of Palynology and Climate Dynamics, University of Göttingen, Göttingen, Germany
- Quality Service International (QSI) GmbH, Bremen, Germany
| | - Sergio A. Bucarey
- Laboratorio de Biotecnología Veterinaria (BIOVETEC), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad De Chile, La Pintana, Santiago, Chile
| | - E. Castaneza Zúñiga
- Instituto Profesional DUOC-UC, Sede Puente Alto, Puente Alto, Santiago, Chile
| | - P. Vásquez-Quitral
- Instituto De Ciencias Químicas Aplicadas, Facultad De Ingeniería, Universidad Autónoma De Chile, San Miguel, Santiago, Chile
| |
Collapse
|
27
|
Liu J, Wan P, Xie C, Chen DW. Key aroma-active compounds in brown sugar and their influence on sweetness. Food Chem 2020; 345:128826. [PMID: 33601657 DOI: 10.1016/j.foodchem.2020.128826] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Brown sugar (non-centrifugal cane sugar) is popular for its pleasant caramel-like aroma and sweetness. Vacuum simultaneous steam distillation and extraction (V-SDE) and gas chromatography-mass spectrometry (GC-MS) was used to study the volatile fraction of brown sugar. To further determine the aroma-active compounds in brown sugar, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) were used in conjunction with aroma extraction dilution analysis (AEDA), odor activity values (OAVs), and sensory evaluation to analyze the effects of the key aroma-active compounds on sweetness. A total of 37 aroma-active compounds were obtained, mainly including ketones, pyrazines, alkanes, phenols and alcohols, which contributed caramel, sweet and fruity notes to brown sugar. Among them, furfural, benzeneacetaldehyde, 2,3-butanedione, β-damascenone, 2-methoxyphenol, dihydro-2-methyl-3(2H)-furanone, 2-furanmethanol and butyrolactone could significantly enhance the sweetness of sugar solution because of the congruency of the aroma attributes and sweetness.
Collapse
Affiliation(s)
- Jie Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China; Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China; Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Caifeng Xie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
28
|
Xiaocong Li, Xu L, Liu G. Binary Solid–Liquid Solubility Determination and Model Correlation of Furaneol in Different Pure Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420130130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Correlation between the Characteristic Flavour of Youtiao and Trans Fatty Acids Assessed via Gas Chromatography Mass Spectrometry and Partial Least Squares Regression Analyses. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8845401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to analyse trans fatty acid (TFA) levels and key volatile flavour substances in fried youtiao prepared using five common edible oils and the relationship between TFAs and key volatile flavour substances via partial least squares regression (PLSR) analysis. Total TFA levels were the highest on using rapeseed oil during frying (approximately 1.061 mg/g), probably owing to the high content of unsaturated fatty acids in rapeseed oil and their instability. In total, 22 key flavour substances were detected. Although the flavours differed with different oils, flavour compounds including 3-(methyl sulphide) propionic aldehyde, (E,E)-2,4-sebacedienal, nonaldehyde, and 3-hydroxy-2-butanone contributed to overall flavour. PLSR analysis revealed that C18:2, 9t12t is produced with (E)-2-hexenaldehyde and nonaldehyde. (E,E)-2,4-sebacedienal levels were positively correlated with those of C18:2, 9c12t and C18:2, 9t12c. Most aliphatic aldehydes and pyrazines yield C18:3, 9t12t15c TFAs. These results indicate the characteristic flavour profile of youtiao and promote the preparation of healthy fried food.
Collapse
|
30
|
Núñez-Carmona E, Abbatangelo M, Zottele I, Piccoli P, Tamanini A, Comini E, Sberveglieri G, Sberveglieri V. Nanomaterial Gas Sensors for Online Monitoring System of Fruit Jams. Foods 2019; 8:E632. [PMID: 31810272 PMCID: PMC6963516 DOI: 10.3390/foods8120632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022] Open
Abstract
Jams are appreciated worldwide and have become a growing market, due to the greater attention paid by consumers for healthy food. The selected products for this study represent a segment of the European market that addresses natural products without added sucrose or with a low content of natural sugars. This study aims to identify volatile organic compounds (VOCs) that characterize three flavors of fruit and five recipes using gas chromatography-mass spectrometry (GC-MS) and solid-phase micro-extraction (SPME) analysis. Furthermore, an innovative device, a small sensor system (S3), based on gas sensors with nanomaterials has been used; it may be particularly advantageous in the production line. Results obtained with linear discriminant analysis (LDA) show that S3 can distinguish among the different recipes thanks to the differences in the VOCs that are present in the specimens, as evidenced by the GC-MS analysis. Finally, this study highlights how the thermal processes for obtaining the jam do not alter the natural properties of the fruit.
Collapse
Affiliation(s)
- Estefanía Núñez-Carmona
- CNR-IBBR, Institute of Bioscience and Bioresources, via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI, Italy; (E.N.-C.); (V.S.)
| | - Marco Abbatangelo
- Department of Information Engineering, University of Brescia, Brescia, via Branze, 38, 25123 Brescia, BS, Italy;
| | - Ivano Zottele
- Menz&Gasser S.p.A., Sede Legale Zona Industriale, 38050 Novaledo (TN), Italy; (I.Z.); (P.P.); (A.T.)
| | - Pierpaolo Piccoli
- Menz&Gasser S.p.A., Sede Legale Zona Industriale, 38050 Novaledo (TN), Italy; (I.Z.); (P.P.); (A.T.)
| | - Armando Tamanini
- Menz&Gasser S.p.A., Sede Legale Zona Industriale, 38050 Novaledo (TN), Italy; (I.Z.); (P.P.); (A.T.)
| | - Elisabetta Comini
- Department of Information Engineering, University of Brescia, Brescia, via Branze, 38, 25123 Brescia, BS, Italy;
- Nano Sensor Systems, NASYS Spin-Off University of Brescia, Brescia, via Camillo Brozzoni, 9, 25125 Brescia, BS, Italy;
| | - Giorgio Sberveglieri
- Nano Sensor Systems, NASYS Spin-Off University of Brescia, Brescia, via Camillo Brozzoni, 9, 25125 Brescia, BS, Italy;
| | - Veronica Sberveglieri
- CNR-IBBR, Institute of Bioscience and Bioresources, via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI, Italy; (E.N.-C.); (V.S.)
- Nano Sensor Systems, NASYS Spin-Off University of Brescia, Brescia, via Camillo Brozzoni, 9, 25125 Brescia, BS, Italy;
| |
Collapse
|
31
|
Lopez J, Kerley T, Jenkinson L, Luckett CR, Munafo JP. Odorants from the Thermal Treatment of Hydrolyzed Mushroom Protein and Cysteine Enhance Saltiness Perception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11444-11453. [PMID: 31592644 DOI: 10.1021/acs.jafc.9b04153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Innovative approaches to develop flavors with high sensory appeal are critical in encouraging increased consumer preference and adoption of low sodium foods. Gas chromatography-olfactometry, coupled with stable isotope dilution assays and sensory experiments, led to the identification of the odorants responsible for an enhancement in saltiness perception of chicken broth prepared with thermally treated enzymatically hydrolyzed mushroom protein and cysteine, then reacted under kitchen-like cooking conditions. Comparative aroma extract dilution analysis revealed 36 odorants with flavor dilution factors between a range of 1 and 256. Sixteen odorants were quantitated and odor activity values (OAVs) calculated. Important odorants included 2-furfurylthiol (coffee, OAV 610), 1-(2-furyl)ethanethiol (meaty, OAV 78), 3-sulfanylpentan-2-one (catty, OAV 42), sotolon (maple, OAV 20), indole (animal, OAV 8), 2-methyl-3-(methyldithio)furan (meaty, OAV 3), and p-cresol (barnyard, OAV 1). An odor simulation model was evaluated in two consumer sensory studies. These studies confirmed that the addition of the aroma model increased the perceived saltiness of low sodium chicken broth (p < 0.05).
Collapse
Affiliation(s)
- Jordan Lopez
- Department of Food Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Trent Kerley
- Department of Food Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Lindsay Jenkinson
- Department of Food Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Curtis R Luckett
- Department of Food Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - John P Munafo
- Department of Food Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
32
|
Du W, Zhao M, Zhen D, Tan J, Wang T, Xie J. Key aroma compounds in Chinese fried food of youtiao. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenbin Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing China
| | - Mengyao Zhao
- The Business Research Institute of Henan Academy of Science Zhengzhou China
| | - Dawei Zhen
- Beijing Lanjingzhongyu Scientific Development Co. Ltd Beijing China
| | - Jia Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing China
| | - Tianze Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing China
| | - Jianchun Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing China
| |
Collapse
|
33
|
Yang P, Song H, Wang L, Jing H. Characterization of Key Aroma-Active Compounds in Black Garlic by Sensory-Directed Flavor Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7926-7934. [PMID: 31250635 DOI: 10.1021/acs.jafc.9b03269] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Black garlic is a new garlic product produced through fermentation of fresh garlic and is very popular in Asia countries due to its health benefits. Its key aroma-active compounds were characterized by gas chromatography-olfactometry-mass spectrometry (GC-O-MS), gas chromatography-time-of-flight mass spectrometry (GC-TOFMS), and sensory evaluation. In total 52 aroma compounds were identified, and 15 of them with high flavor dilution (FD) factors based on aroma extract dilution analysis (AEDA) were selected and quantitated. Finally, 9 key aroma-active compounds, including acetic acid (sour), allyl methyl trisulfide (cooked garlic), Furaneol (caramel), diallyldisulfide (garlic), diallyltrisulfide (sulfur), (E,Z)-2,6-nonadien-1-ol (cucumber), 3-methylbutanoic acid (sweat), 5-heptyldihydro-2(3H)-furanone (apricot), and diallyl sulfide (garlic), were determined through aroma recombination and omission experiment. In addition to the sulfur-containing compounds, heterocyclic compounds were the major aroma contributors in black garlic. Sensory evaluation revealed that the flavor profile of black garlic mainly consisted of sulfur, sour, sweet, fresh, sauce, gasoline, and roasted odors.
Collapse
Affiliation(s)
- Ping Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| | - Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| | - Lijin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| | - Hao Jing
- College of Food Science and Nutritional Engineering , China Agricultural University (CAU) , Beijing 100083 , P. R. China
| |
Collapse
|
34
|
Paravisini L, Sneddon KA, Peterson DG. Comparison of the Aroma Profiles of Intermediate Wheatgrass and Wheat Bread Crusts. Molecules 2019; 24:molecules24132484. [PMID: 31284563 PMCID: PMC6651719 DOI: 10.3390/molecules24132484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
The aroma profiles of bread crusts made from intermediate wheatgrass (Thinopyrum intermedium) and whole wheat (Triticum aestivum) flours were compared. Based on gas chromatography/mass spectrometry/olfactometry analysis, twenty-four odorants were identified and further quantified. The concentrations of seventeen compounds were significantly different between intermediate wheatgrass and whole wheat bread crusts, of which sixteen compounds were higher in the whole wheat sample. The aroma profiles of the bread samples were subsequently characterized using sensory descriptive analysis (DA) and indicated that the roasted attribute was perceived at a significantly higher intensity in the whole wheat sample due to a greater amount of Maillard reaction compounds. Alternatively, bran and green notes were perceived at higher intensities in the intermediate wheatgrass sample, however they were not attributed to the presence of specific compounds but rather to a change in the aroma composition. Aroma recombination DA of the whole wheat and intermediate wheatgrass aroma models was similar to the original aroma profiles of the bread samples, demonstrating the sensory relevance of the identified odorants.
Collapse
Affiliation(s)
- Laurianne Paravisini
- Department of Food Science and Technology, 2015 Fyffe Road, The Ohio State University, Columbus, OH 43210, USA
| | - Kelsey A Sneddon
- Department of Food Science and Nutrition, 145 Food Science and Nutrition Building, 1334 Eckles Avenue, University of Minnesota, St. Paul, MN 55108, USA
| | - Devin G Peterson
- Department of Food Science and Technology, 2015 Fyffe Road, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Validated micellar electrokinetic capillary chromatography (MECC) method for determination of 5-hydroxymethylfurfural in honey and comparison with HPLC. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00770-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Zhang W, Liu S. Pretreatment of palm kernels with proteases modified the volatile flavor compounds of palm kernel oil. J Food Biochem 2018. [DOI: 10.1111/jfbc.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wencan Zhang
- Food Science and Technology Programme; Department of Chemistry; National University of Singapore; Science Drive 3 Singapore 117543 Singapore
| | - Shaoquan Liu
- Food Science and Technology Programme; Department of Chemistry; National University of Singapore; Science Drive 3 Singapore 117543 Singapore
- National University of Singapore (Suzhou) Research Institute; No. 377 Linquan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
37
|
Silva P, Silva CL, Perestrelo R, Nunes FM, Câmara JS. Fingerprint targeted compounds in authenticity of sugarcane honey - An approach based on chromatographic and statistical data. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Pasias I, Kiriakou I, Kaitatzis A, Koutelidakis A, Proestos C. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 2018; 242:513-518. [DOI: 10.1016/j.foodchem.2017.09.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/26/2022]
|
39
|
Zhang W, Leong SM, Zhao F, Zhao F, Yang T, Liu S. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting. Food Res Int 2018; 107:172-181. [PMID: 29580475 DOI: 10.1016/j.foodres.2018.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction.
Collapse
Affiliation(s)
- Wencan Zhang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543, Singapore
| | - Siew Mun Leong
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543, Singapore
| | - Feifei Zhao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, No. 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Fangju Zhao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, No. 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Tiankui Yang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, No. 118 Gaodong Road, Pudong New District, Shanghai 200137, China
| | - Shaoquan Liu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
40
|
Miguel MG, Antunes MD, Faleiro ML. Honey as a Complementary Medicine. INTEGRATIVE MEDICINE INSIGHTS 2017; 12:1178633717702869. [PMID: 28469409 PMCID: PMC5406168 DOI: 10.1177/1178633717702869] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/19/2017] [Indexed: 12/13/2022]
Abstract
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.
Collapse
Affiliation(s)
- MG Miguel
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - MD Antunes
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEOT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - ML Faleiro
- CBMR, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
41
|
Pasias IN, Kiriakou IK, Proestos C. HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chem 2017; 229:425-431. [PMID: 28372195 DOI: 10.1016/j.foodchem.2017.02.084] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/17/2016] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
Abstract
A fully validated approach for the determination of diastase activity and hydroxymethylfurfural content in honeys were presented in accordance with the official methods. Methods were performed in real honey sample analysis and due to the vast number of collected data sets reliable conclusions about the correlation between the composition and the quality criteria were exported. The limits of detection and quantification were calculated. Accuracy, precision and uncertainty were estimated for the first time in the kinetic and spectrometric techniques using the certified reference material and the determined values were in good accordance with the certified values. PCA and cluster analysis were performed in order to examine the correlation among the artificial feeding of honeybees with carbohydrate supplements and the chemical composition and properties of the honey. Diastase activity, sucrose content and hydroxymethylfurfural content were easily differentiated and these parameters were used for indication of the adulteration of the honey.
Collapse
Affiliation(s)
- Ioannis N Pasias
- Chemical Laboratory of Lamia, Karaiskaki 85, Lamia 35100, Greece
| | | | - Charalampos Proestos
- National and Kapodistrian University of Athens, Department of Chemistry, Food Chemistry Laboratory, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
42
|
Qin XW, Lai JX, Tan LH, Hao CY, Li FP, He SZ, Song YH. Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-Wei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Jian-Xiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| | - Le-He Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Chao-Yun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Fu-Peng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| | - Shu-Zhen He
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Ying-Hui Song
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| |
Collapse
|
43
|
Biller E, Boselli E, Obiedziński M, Karpiński P, Waszkiewicz-Robak B. The profile of volatile compounds in the outer and inner parts of broiled pork neck is strongly influenced by the acetic-acid marination conditions. Meat Sci 2016; 121:292-301. [DOI: 10.1016/j.meatsci.2016.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
|
44
|
Honey: Chemical composition, stability and authenticity. Food Chem 2015; 196:309-23. [PMID: 26593496 DOI: 10.1016/j.foodchem.2015.09.051] [Citation(s) in RCA: 611] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023]
Abstract
The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius.
Collapse
|
45
|
Experimental determination and correlation of the solubility of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (DMHF) in binary (ethanol+water) solvent mixtures. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Zeng X, Liu C, Zheng R, Cai X, Luo J, Zou J, Wang C. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour. FRONTIERS IN PLANT SCIENCE 2015; 6:1232. [PMID: 26793212 PMCID: PMC4709469 DOI: 10.3389/fpls.2015.01232] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/19/2015] [Indexed: 05/22/2023]
Abstract
Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.
Collapse
Affiliation(s)
- Xiangling Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Cai Liu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Xuan Cai
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jingjing Zou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and TechnologyXianning, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Caiyun Wang,
| |
Collapse
|
47
|
Newton AE, Fairbanks AJ, Golding M, Andrewes P, Gerrard JA. The role of the Maillard reaction in the formation of flavour compounds in dairy products--not only a deleterious reaction but also a rich source of flavour compounds. Food Funct 2013; 3:1231-41. [PMID: 22948260 DOI: 10.1039/c2fo30089c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dairy products are heated both during processing and by consumers during food preparation; consumers place a high level of importance on flavour when assessing product acceptability. Of particular importance to the flavour of heated dairy products is the highly complex network of Maillard reactions. Much focus has been placed on the undesirable flavours generated through the Maillard reaction and how to minimise the formation of these flavours. However, beneficial flavours can also be formed by the Maillard reaction; dairy products, such as ghee, are formed by heating and are characterised by the unique flavour generated by this chemistry. This review looks at the Maillard reaction as a source of beneficial flavours for cooked dairy products and the application of models to the study of flavour formation in food systems. Models are typically used to study complex reactions in a simplified way; however, they are not always applicable to food systems.
Collapse
Affiliation(s)
- Angela E Newton
- Biomolecular Interaction Centre, University of Canterbury, PB 4800, Christchurch, 8140, New Zealand
| | | | | | | | | |
Collapse
|
48
|
ZHANG XIUMEI, SHEN YIXIAO, PRINYAWIWATKUL WITOON, XU ZHIMIN. Volatile Compounds in Fresh-Cut Pineapple Heated at Different Temperatures. J FOOD PROCESS PRES 2012. [DOI: 10.1111/jfpp.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- XIUMEI ZHANG
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture; The South Subtropical Crop Research Institute; Chinese Academy of Tropical Agricultural Science; Zhanjiang China
- Department of Food Science; Louisiana State University Agricultural Center; Baton Rouge LA 70803
| | - YIXIAO SHEN
- Department of Food Science; Louisiana State University Agricultural Center; Baton Rouge LA 70803
| | - WITOON PRINYAWIWATKUL
- Department of Food Science; Louisiana State University Agricultural Center; Baton Rouge LA 70803
| | - ZHIMIN XU
- Department of Food Science; Louisiana State University Agricultural Center; Baton Rouge LA 70803
| |
Collapse
|
49
|
Yu X, Zhao M, Hu J, Zeng S. Formation and antioxidant activity of volatile compounds produced by heating glucose with tyrosine/histidine in water-ethanol and water-glycerol media. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Yu X, Zhao M, Hu J, Zeng S, Bai X. Influence of pH on the formation and radical scavenging activity of volatile compounds produced by heating glucose with histidine/tyrosine. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1644-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|