1
|
Hamed YS, Hassan KR, Ahsan HM, Hussain M, Abdullah, Wang J, Zou XG, Bu T, Rayan AM, Yang K. Development of chitosan-based edible film incorporated with purified flavonoids from Moringa oleifera: Structural, thermal, antibacterial activity and application. Food Chem 2024; 457:140059. [PMID: 38905835 DOI: 10.1016/j.foodchem.2024.140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Purified flavonoids (PF) from Moringa oleifera leaves were incorporated in chitosan (CS) polymer at different concentrations (0.5-4%) to produce a novel edible film. The physical, structure, mechanical, and bio-functional characterizations of the film were evaluated. The incorporation of PF significantly (p < 0.05) improved the thickness, solubility, swelling, and color of CS-films. Incorporating 4% of Moringa oleifera purified flavonoids (MOPF) improved the water vapor permeability from 8.85 to 2.47 g-1 s-1 Pa-1, and increased the film surface heterogeneity observed by SEM. Results also indicated that PF enhanced the mechanical properties and thermal stability of CS-films. The FTIR results indicated alterations in the CS-MOPF composite films' characteristics. Additionally, the incorporation of MOPF increased the antioxidation capacity. Furthermore, 4% of MOPF inhibited the activity of pathogenic bacteria in packed beef burgers. These results suggest that CS-MOPF composite films with enhanced technological and bio-functional properties could be industrially applied to increase the shelf-life of packaged foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Khloud R Hassan
- Agricultural Economics Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China.
| |
Collapse
|
2
|
Jiang Y, Sun Y, Wei C, Li X, Deng W, Wu S, Kong F, Sheng L. Development and characterization of curcumin-loaded chitosan/egg yolk freshness-keeping edible films for chilled fresh pork packaging application. Int J Biol Macromol 2024; 276:133907. [PMID: 39019376 DOI: 10.1016/j.ijbiomac.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
In this study, a novel fresh-keeping edible film was prepared using egg yolk (EY) and chitosan (CS) with varying concentrations of curcumin (Cur) for food packaging. The addition of Cur notably enhanced tensile strength, elongation at break, and water resistance from 15.70 MPa to 24.24 MPa, 43.79 % to 63.69 %, and 1.599 g·mm·(m2·h·kPa)-1 to 1.541 g·mm·(m2·h·kPa)-1, respectively. Cur also impacted moisture content, swelling degree, and film color. SEM revealed a uniform distribution of Cur, creating a smooth and dense film surface. FT-IR analysis suggested that hydrogen bonding facilitated Cur integration into the film network. The films demonstrated excellent UV-blocking and antioxidant properties attributed to Cur's chromogenic and phenolic hydroxyl groups. Consequently, they effectively inhibited lipid oxidation and weight loss in meat, thereby prolonging the shelf-life of chilled pork by at least 2 d. In conclusion, this study provided a simple and cost-effective idea to incorporate actives with EY as a natural emulsifier, presenting an effective solution for developing active packaging materials to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Yiting Jiang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunxin Sun
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfeng Wei
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanqing Deng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sirui Wu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fandi Kong
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Firdaus S, Ahmad F, Zaidi S. Preparation and characterization of biodegradable food packaging films using lemon peel pectin and chitosan incorporated with neem leaf extract and its application on apricot fruit. Int J Biol Macromol 2024; 263:130358. [PMID: 38412939 DOI: 10.1016/j.ijbiomac.2024.130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.
Collapse
Affiliation(s)
- Sadia Firdaus
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| | - Sadaf Zaidi
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| |
Collapse
|
4
|
Koc-Bilican B. Linden-based mucilage biodegradable films: A green perspective on functional and sustainable food packaging. Int J Biol Macromol 2024; 261:129805. [PMID: 38286374 DOI: 10.1016/j.ijbiomac.2024.129805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study focuses on the utilization of linden mucilage, extracted from the linden tree, as a potential natural polymer source for the production of composite films. The films, which incorporating linden water extract, essential oil, and oil, exhibited improved thermal stability, surface morphology, and water resistance. Biodegradability assessments, particularly for films using essential oil and oil, showed promising outcomes by maintaining structural integrity. Antimicrobial assays demonstrated significant resistance against pathogens, indicating potential applications requiring microbial resistance. Mechanical analyses revealed a trade-off between tensile strength and elongation at break with addition of components. Composite films exhibited reduced water vapor permeability which correlate with water solubility and contact angle measurements. Soil biodegradation studies highlighted the films' potential to mitigate environmental impact. Cytotoxicity tests confirmed the safety of these films for potential food applications. Additionally, antioxidant assays showed increased radical scavenging activity in films with added components. In conclusion, linden-based composite films exhibit promising characteristics, suggesting their potential as sustainable and functional materials, particularly for use in food packaging.
Collapse
Affiliation(s)
- Behlul Koc-Bilican
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey; ASUBTAM-Science and Technology Application and Research Center, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
5
|
Bhatia S, Abbas Shah Y, Al-Harrasi A, Jawad M, Koca E, Aydemir LY. Enhancing Tensile Strength, Thermal Stability, and Antioxidant Characteristics of Transparent Kappa Carrageenan Films Using Grapefruit Essential Oil for Food Packaging Applications. ACS OMEGA 2024; 9:9003-9012. [PMID: 38434887 PMCID: PMC10905581 DOI: 10.1021/acsomega.3c07366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School
of Health Science, University of Petroleum
and Energy Studies, Dehradun 248007, India
- Saveetha
Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Yasir Abbas Shah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Muhammad Jawad
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Esra Koca
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
6
|
Sun P, Li X, Kong B, Zhu YA, Wang M, Wang H, Liu Q. Fabrication and characterization of microwave-assisted synthesis of carbon dots crosslinked sodium alginate hydrogel films. Int J Biol Macromol 2023; 253:127130. [PMID: 37776925 DOI: 10.1016/j.ijbiomac.2023.127130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In this study, potassium-incorporated carbon dots (K-CDs) and nitrogen-incorporated carbon dots (N-CDs) were composted using the microwave-assisted method, in which the carbon source is citric acid. Subsequently, the prepared CDs were added into sodium alginate (NaAlg)/CaCO3 to form a hydrogel film. The Ca2+ in the system is tend to be released in the presence of acidic CDs to promote the cross-linking of NaAlg. This study presents a NaAlg hydrogel film preparation process that requires no additional acid and is natural and environmentally friendly. Moreover, it gives the NaAlg hydrogel film excellent antioxidant and antimicrobial properties and also improves its mechanical properties and gel strength. The release behaviors of the CDs in the hydrogel films were also explored. The prepared CD-incorporated NaAlg hydrogel films have potential applications in medical, biological engineering, food preservation, and other fields owing to their functional properties.
Collapse
Affiliation(s)
- Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meihui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Naitzel TDC, Garcia VADS, Lourenço CAM, Vanin FM, Yoshida CMP, Carvalho RAD. Properties of Paperboard Coated with Natural Polymers and Polymer Blends: Effect of the Number of Coating Layers. Foods 2023; 12:2745. [PMID: 37509837 PMCID: PMC10379446 DOI: 10.3390/foods12142745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Paper is one of the packaging materials that presents a biodegradable character, being used in several areas; however, its barrier properties (gases and fat) and mechanics are reduced, which limits its application. Coating papers with synthetic polymers improve these properties, reducing their biodegradability and recyclability. The objective of this work was to develop and characterize coated paperboard, using the tape casting technique, with different ratios of film form agar-agar/chitosan (AA:CHI, 100:0, 50:50, and 0:100) and different numbers of coating layers (operating times for application of 14.25 min and 28.5 min for one and two layers, respectively). A significant reduction in water absorption capacity was found by applying a 0:100 coating (approximately 15%). Considering all coating formulations, the water vapor permeability reduced by 10 to 60% compared to uncoated paperboard, except for two layers coated with 0:100. The tensile index (independent of AA:CHI) was higher in the machine direction (22.59 to 24.99 MPa) than in the cross-section (11.87-13.01 MPa). Paperboard coated only with chitosan showed superior properties compared to the other formulation coatings evaluated.
Collapse
Affiliation(s)
- Thaís de Cássia Naitzel
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Vitor Augusto Dos Santos Garcia
- Faculty of Agricultural Sciences, UNESP-São Paulo State University, Street José Barbosa de Barros 1780, Botucatu 19082-080, Brazil
| | - Carla Alves Monaco Lourenço
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Fernanda Maria Vanin
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemical and Pharmaceutical Sciences, UNIFESP-Federal University of São Paulo, Rua São Nicolau 210, Diadema 09913-030, Brazil
| | - Rosemary Aparecida de Carvalho
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| |
Collapse
|
8
|
Román-Hidalgo C, López-Pérez G, Villar-Navarro M, Martín-Valero MJ. Green electromembrane extraction procedure based on biodegradable chitosan films for determination of polyphenolic compounds in food samples: Greenness assessment of the sample preparation approach. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sutharsan J, Boyer CA, Zhao J. Physicochemical properties of chitosan edible films incorporated with different classes of flavonoids. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Rincón E, Bautista JM, Espinosa E, Serrano L. Biopolymer‐based sachets enriched with acorn shell extracts produced by ultrasound‐assisted extraction for active packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.53102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Rincón
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Juana M. Bautista
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Eduardo Espinosa
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Luis Serrano
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| |
Collapse
|
11
|
Roque-Borda C, Antunes BF, Toledo Borgues AB, Costa de Pontes JT, Meneguin A, Chorilli M, Trovatti E, Teixeira SR, Pavan FR, Vicente EF. Conjugation of Ctx(Ile 21)-Ha Antimicrobial Peptides to Chitosan Ultrathin Films by N-Acetylcysteine Improves Peptide Physicochemical Properties and Enhances Biological Activity. ACS OMEGA 2022; 7:28238-28247. [PMID: 35990469 PMCID: PMC9386805 DOI: 10.1021/acsomega.2c02570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 05/08/2023]
Abstract
The importance of obtaining new compounds with improved antimicrobial activity is a current trend and challenge. Some polymers such as chitosan have shown promising bactericidal properties when they are structurally modified, which is due to the binding versatility provided by their free amines. Likewise, antimicrobial peptides (AMPs) have received attention in recent years because of their bactericidal activity that is similar to or even better than that of conventional drugs, and they exhibit a low induction rate of antimicrobial resistance. Herein, the modified AMP Ctx(Ile21)-Ha-Ahx-Cys was conjugated to chitosan using N-acetylcysteine as an intermediate by the carbodiimide method. Films were prepared using protonated chitosan in 1% acetic acid and Ctx(Ile21)-Ha-Ahx-Cys AMP dissolved in N-acetylcysteine-chitosan; 1.6 mmol of ethylcarbodiimide hydrochloride, 1.2 mmol of N-hydroxysulfosucchimide, and 0.1 mol L -1of N-morpholino)ethanesulfonic acid buffer at pH 6.5 by continuous stirring at 100 × g for 10 min at 37 °C. Physicochemical properties were evaluated by Fourier-transform infrared spectroscopy, differential scanning calorimetry/thermogravimetric analysis, and X-ray diffraction to determine the mechanical properties, solubility, morphology, and thickness. Furthermore, the antimicrobial activities of chitosan-based conjugated films were evaluated againstStaphylococcus aureus,Pseudomonas aeruginosa,SalmonellaTyphimurium, andEscherichia coli. The results showed that the conjugation of a potent AMP could further increase its antibacterial activity and maintain its stable physicochemical properties. Therefore, the developed peptide-chitosan conjugate could be applied as an additive in surgical procedures to prevent and combat bacterial infection.
Collapse
Affiliation(s)
- Cesar
Augusto Roque-Borda
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
- Vicerrectorado
de Investigación, Universidad Católica
de Santa María (UCSM), Arequipa 04013, Peru
| | - Bruna Fernandes Antunes
- School
of Biotechnology in Regenerative Medicine and Medicinal Chemistry, University of Araraquara (UNIARA), Araraquara 14801-320, São Paulo, Brazil
| | - Anna Beatriz Toledo Borgues
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | | | - Andréia
Bagliotti Meneguin
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Marlus Chorilli
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Eliane Trovatti
- School
of Biotechnology in Regenerative Medicine and Medicinal Chemistry, University of Araraquara (UNIARA), Araraquara 14801-320, São Paulo, Brazil
| | - Silvio Rainho Teixeira
- School
of Technology and Sciences, São Paulo
State University (Unesp), Presidente
Prudente 19034-589, São
Paulo, Brazil
| | - Fernando Rogério Pavan
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School
of Sciences and Engineering, São
Paulo State University (Unesp), Tupã 17602-496, São Paulo, Brazil
- . Phone: +551434044262
| |
Collapse
|
12
|
Newly crosslinked chitosan- and chitosan-pectin-based hydrogels with high antioxidant and potential anticancer activity. Carbohydr Polym 2022; 290:119486. [DOI: 10.1016/j.carbpol.2022.119486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
|
13
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
14
|
Preparation and characterization of chitosan films incorporating epigallocatechin gallate: Microstructure, physicochemical, and bioactive properties. Int J Biol Macromol 2022; 211:729-740. [PMID: 35523362 DOI: 10.1016/j.ijbiomac.2022.04.226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/02/2023]
Abstract
Novel chitosan films incorporating epigallocatechin gallate (EGCG) were prepared and demonstrated the ideal physical and mechanical properties required of candidate food packaging materials alongside desirable antioxidant and antibacterial activity. Compared with traditional chitosan films, chitosan films incorporated with EGCG were thicker, had higher tensile strength and water solubility, and had lower elongation at break, moisture content, degree of swelling, and water contact angles. Although EGCG-containing films were slightly darker in color than pure chitosan films, they exhibited a greater inhibitory effect on light-induced oxidation with obviously improved UV-vis barrier capability and opacity. Scanning electron microscopy results suggested that EGCG-incorporated samples had a rougher surface structure. This was further confirmed by atomic force microscopy and indicated that the addition of EGCG facilitated the formation of protective barriers through the interaction between the film and food surface. FTIR spectroscopy confirmed that EGCG interacted with chitosan by intermolecular hydrogen bonding and effectively improved the thermal stability of chitosan films. Notably, the incorporation of EGCG significantly enhanced the antioxidant and antibacterial activity of chitosan films. Hence, chitosan films incorporating EGCG have potential applications in the food industry as a novel active packaging material, especially in preventing food oxidation and spoilage in perishable foods.
Collapse
|
15
|
Erken İ, Şahin S, Karkar B, Akça B, Özakın C. Chitosan Based Edible Film Incorporating Different
Prunella
L. Extracts, Characterization and Their Antioxidant Properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- İlker Erken
- University of Bursa Uludag Faculty of Science and Arts, Department of Chemistry Bursa Turkey
| | - Saliha Şahin
- University of Bursa Uludag Faculty of Science and Arts, Department of Chemistry Bursa Turkey
| | - Büşra Karkar
- University of Bursa Uludag Faculty of Science and Arts, Department of Chemistry Bursa Turkey
| | - Bekir Akça
- University of Bursa Uludag Medical School, Department of Medical Microbiology Bursa Turkey
| | - Cüneyt Özakın
- University of Bursa Uludag Medical School, Department of Medical Microbiology Bursa Turkey
| |
Collapse
|
16
|
Stanicka K, Dobrucka R, Woźniak M, Sip A, Majka J, Kozak W, Ratajczak I. The Effect of Chitosan Type on Biological and Physicochemical Properties of Films with Propolis Extract. Polymers (Basel) 2021; 13:polym13223888. [PMID: 34833186 PMCID: PMC8625764 DOI: 10.3390/polym13223888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the research was to determine the influence of chitosan type and propolis extract concentration on biological and physicochemical properties of chitosan-propolis films in terms of their applicability in food packaging. The films were prepared using three types of chitosan: from crab shells, medium and high molecular weight and propolis concentration in the range of 0.75-5.0%. The prepared polysaccharide films were tested for antimicrobial properties, oxygen transmission rate (OTR) and water vapor transmission rate (WVTR). Moreover, sorption tests and structural analysis were carried out. Microbiological tests indicated the best antimicrobial activity for the film consisting of high molecular weight chitosan and 5.0% propolis extract. Both the type of chitosan and propolis concentration affected transmission parameters-OTR and WVTR. The best barrier properties were recorded for the film composed of high molecular weight chitosan and 5.0% propolis extract. The results of sorption experiments showed a slight influence of chitosan type and a significant effect of propolis extract concentration on equilibrium moisture content of tested films. Moreover, propolis extract concentration affected monolayer water capacity (Mm) estimated using the Guggenheim, Anderson and de Boer (GAB) sorption model. The obtained results indicate that chitosan films with an addition of propolis extract are promising materials for food packaging applications, including food containing probiotic microorganisms.
Collapse
Affiliation(s)
- Karolina Stanicka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland; (R.D.); (W.K.)
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland;
| | - Jerzy Majka
- Department of Wood Science and Thermal Technics, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60627 Poznań, Poland;
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland; (R.D.); (W.K.)
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
- Correspondence:
| |
Collapse
|
17
|
Cellulose Nanocrystals Reinforced Zein/Catechin/β-Cyclodextrin Inclusion Complex Nanoparticles Nanocomposite Film for Active Food Packaging. Polymers (Basel) 2021; 13:polym13162759. [PMID: 34451300 PMCID: PMC8400103 DOI: 10.3390/polym13162759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, following the green, environmentally friendly and sustainable development strategy, cellulose nanocrystals (CNCs) were prepared through a solvent-free esterification reaction between microcrystalline cellulose and maleic anhydride, combined with subsequent ultrasonic treatment, and maleic-anhydride-modified CNC-reinforced zein/catechin/β-cyclodextrin inclusion complex nanoparticles nanocomposite films were prepared by a facile solution casting. The amount of CNCs in the film matrix was 0–8 wt%, and their effect on structural, physicochemical and functional properties of the resulting films were investigated. SEM images showed that the addition of CNCs made the microstructure of the film more smooth and uniform. The intermolecular hydrogen bonds between CNCs and film matrix were supported by FT-IR. XRD analysis also confirmed the appearance of a crystalline peak due to the existence of CNCs inside the films. The incorporation of CNCs significantly reduced water vapor permeability, water solubility and the swelling degree of the nanocomposite film, and also significantly increased tensile strength and elongation at break from 12.66 to 37.82 MPa and 4.5% to 5.2% (p < 0.05). Moreover, nanocomposite film packaging with CNCs can effectively inhibit the oxidation of soybean oil.
Collapse
|
18
|
Preparation and Characterization of Functional Films Based on Chitosan and Corn Starch Incorporated Tea Polyphenols. COATINGS 2021. [DOI: 10.3390/coatings11070817] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional films based on chitosan and corn starch incorporated tea polyphenols were developed through mixing the chitosan and starch solution and the powder of tea polyphenols by the casting method. The objective of this research was to investigate the effect of different concentrations of tea polyphenols on the functional properties of the films. Attenuated total reflectance Fourier transform infrared spectrometry and X-ray diffraction were used to investigate the potential interactions among chitosan, corn starch and tea polyphenols in the blend films. Physical properties of the blend films, including density, moisture content, opacity, color, water solubility and water swelling, as well as morphological characteristics, were measured. The results demonstrated that the incorporation of tea polyphenols caused the blend films to lead to a darker appearance. The water solubility of the blend film increased with the increase of tea polyphenol concentrations, while moisture content and swelling degree decreased. The hydrogen bonding between chitosan, starch and tea polyphenols restricted the movement of molecular chains and was helpful to the stability of the blend films. The results suggested that these biodegradable blend films could potentially be used as packaging films for the food and drug industries to extend the shelf life to maintain their quality and safety.
Collapse
|
19
|
Hashemi SMB, Khodaei D. Basil seed gum edible films incorporated with
Artemisia sieberi
and
Achillea santolina
essential oils: Physical, antibacterial, and antioxidant properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Diako Khodaei
- Department of Food Quality and Sensory Science Teagasc Food Research Centre Ashtown Ireland
| |
Collapse
|
20
|
Kumar N, Pratibha, Trajkovska Petkoska A, Khojah E, Sami R, Al-Mushhin AAM. Chitosan Edible Films Enhanced with Pomegranate Peel Extract: Study on Physical, Biological, Thermal, and Barrier Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3305. [PMID: 34203852 PMCID: PMC8232757 DOI: 10.3390/ma14123305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
In the present study, pomegranate peel extract was used as a reinforcing agent in developing chitosan-based edible film. Different concentrations (0.2 g/mL, 0.4 g/mL, 0.6 g/mL, 0.8 g/mL, and 1.0 g/mL) of pomegranate peel extract were incorporated in chitosan-based edible film. A neat chitosan film was used as a control. This work covers the effect of pomegranate peel extract on the physical, biological, mechanical, thermal, and barrier properties of enriched chitosan-based edible film. The results showed that the thickness (0.142-0.159 mm), tensile strength (32.45-35.23 MPa), moisture (11.23-15.28%), opacity (0.039-0.061%), water (1.32-1.60 g·mm/m2), gas barrier properties (93.81-103.45 meq/kg), phenolic content (5.75-32.41 mg/g), and antioxidant activity (23.13-76.54%) of the films increased with increasing volume fraction of pomegranate peel extract. A higher concentration of incorporated pomegranate peel extracts significantly (p < 0.05) reduced the thermal stability of the film, along with its transparency, solubility, swelling, and color. This work revealed that the incorporation of a higher portion of pomegranate peel extract in chitosan film holds significant (p < 0.05) potential for the increase in biological activities of such films in terms of antioxidant and antimicrobial behavior. The properties of pomegranate peel extract-enriched chitosan films could be an excellent cure for free radicals, whereas they could also inhibit the growth of the foodborne pathogens during the processing and preservation of the food. Further studies are needed for the application of pomegranate peel extract-enriched edible films on food products such as fruits and vegetables in order to extend their storage life and improve the quality and safety of preserved food products.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Agricultural and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Kundli 131028, India
| | - Pratibha
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Kundli 131028, India;
- Department of Humanities and Social Sciences, National Institute of Technology, Kurukshetra 136119, India
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Kliment Ohridski University-Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia;
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia;
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| |
Collapse
|
21
|
Jiang L, Jia F, Han Y, Meng X, Xiao Y, Bai S. Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr Polym 2021; 261:117877. [PMID: 33766364 DOI: 10.1016/j.carbpol.2021.117877] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Zein films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles (CINPs) were developed, and the structure, physicochemical, antioxidant and release properties of the films were characterized. FT-IR results indicated that intermolecular hydrogen bonds were formed between the CINPs and zein. XRD analysis showed that the addition of CINPs did not change the crystal structure of zein film. SEM images observed that the addition of NPs made zein film surface more smooth and dense. Since the nanoparticles occupy the pores of the film matrix, the swelling degree and water vapor barrier property were improved. CINPs addition significantly increased tensile strength, from 2.28 to 12.49 MPa, and increased elongation at break, from 1.52 % to 4.5 % (p < 0.05). The nanocomposite film still maintains strong antioxidant activity after storage. The release behavior of catechin from zein film was controlled. Therefore, zein composites can be used as a potential antioxidant food packaging film-forming material.
Collapse
Affiliation(s)
- Longwei Jiang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fuguo Jia
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yanlong Han
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyi Meng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yawen Xiao
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Shigang Bai
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
22
|
Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11060646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.
Collapse
|
23
|
Zhang Y, Wang B, Lu F, Wang L, Ding Y, Kang X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1237-1248. [PMID: 33979271 DOI: 10.1080/19440049.2021.1885745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nowadays, the food industry is focused on improving the shelf life of products by controlling lipid oxidation using natural antioxidants. The study of natural antioxidants is a field that attracts great interest because of their greater safety compared to synthetic ones. Plant-derived antioxidants being eco-friendly and effective are increasingly playing an important role in food preservation. When incorporated into active packaging, plant-derived antioxidants have no direct contact with foods, and will not change the colour or taste of the foods. They will, however, inhibit the development of rancidity, retard formation of toxic oxidation products, maintain nutritional quality, and prolong the shelf life of products. This review summarises research on the development of plant-derived antioxidants in food packaging. Antioxidants are found in plants such as green tea, olive leaves, ginkgo leaves, rosemary, Indian gooseberry, cinnamon, savoury, bay leaves, mango leaves, sage and clove etc. Antioxidants can scavenge free radicals and inhibit the activity of polyphenol oxidase. Therefore, they can inhibit lipid oxidation and browning of fruit and vegetables. These active substances can be obtained through extracting the plants using solvents with different polarities. The oxidation resistance of active substances can be determined by DPPH radical scavenging capacity, oxygen radical absorbance capacity, PPO enzyme inhibition capacity and other methods. In recent years, research on the preparation of food packaging with plant-derived antioxidants has also made significant progress. One development is to encapsulate plant-derived antioxidants such as tea polyphenols with capsules containing inorganic components. Thus, they can be blended with polyethylene granules and processed into active packaging film by industrial production methods such as melting, extrusion and blowing film. This research promotes the commercial application of active packaging incorporated with plant-derived antioxidants.
Collapse
Affiliation(s)
- Yan Zhang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Baoying Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Fangfang Lu
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lin Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Yanhong Ding
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Xinya Kang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| |
Collapse
|
24
|
Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res Int 2021; 145:110402. [PMID: 34112405 DOI: 10.1016/j.foodres.2021.110402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.
Collapse
|
25
|
Development and characterization of chitosan films carrying Artemisia campestris antioxidants for potential use as active food packaging materials. Int J Biol Macromol 2021; 183:254-266. [PMID: 33892038 DOI: 10.1016/j.ijbiomac.2021.04.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Active food packaging films based on chitosan and enriched with Artemisia campestris hydroalcoholic extract (ACHE), aqueous extract (ACAE) and essential oil (ACEO) were developed. The effects of incorporating A. campestris were investigated on the physical, mechanical, thermal and antioxidant characteristics of the films. The structural properties of the films were evaluated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that adding ACHE and ACEO improved the water resistance of chitosan films. The FTIR spectroscopy analysis revealed covalent interaction and hydrogen bonding between chitosan and ACHE. The XRD and SEM analyses indicated that interactions occurred between the film matrix and A. campestris active compounds, which could be reflected by the physical and mechanical properties of composite films. Incorporating ACHE and ACAE in the chitosan matrix decreased the tensile strength. The film extensibility was reduced when ACHE and ACEO were added. All films exhibited great thermal stability as the degradation occurred above 300 °C. The addition of A. campestris active compounds, particularly extracts, to chitosan films notably increased the antioxidant and UV-Vis barrier properties. Chitosan films enriched with the A. campestris antioxidant compounds could be applied as food packaging alternatives.
Collapse
|
26
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
27
|
Traditional Sensory Evaluation and Bionic Electronic Nose as Innovative Tools for the Packaging Performance Evaluation of Chitosan Film. Polymers (Basel) 2020; 12:polym12102310. [PMID: 33050192 PMCID: PMC7601426 DOI: 10.3390/polym12102310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022] Open
Abstract
Inspired by the natural epidermis of animals and plants with antioxidant and antibacterial properties, the aim of this research was to characterize and analyze the effects of the chitosan concentrations on properties of glycerol plasticized chitosan (GPC) film and to investigate the suitability of sensory evaluation and bionic electronic nose (b-electronic nose) detection to assess the freshness of ground beef packaged in the GPC film. The increase in chitosan concentration resulted in an increase in solubility value, total color differences and color intensity of chitosan films. The water vapor permeability (WVP) of the GPC films decreased with the increasing of the chitosan concentration and then increased at higher chitosan concentrations. Longer storage time led to poorer freshness of the ground beef and the GPC film could keep beef samples fresher and delay the deterioration of the beef. Both the traditional sensory evaluation and b-electronic nose technology were fit for evaluating the quality and shelf-life of ground beef, which could advantageously be applied in the future for analyzing other bionic food packaging materials.
Collapse
|
28
|
Koc B, Akyuz L, Cakmak YS, Sargin I, Salaberria AM, Labidi J, Ilk S, Cekic FO, Akata I, Kaya M. Production and characterization of chitosan-fungal extract films. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100545] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Campa-Siqueiros PI, Vargas-Arispuro I, Quintana-Owen P, Freile-Pelegrín Y, Azamar-Barrios JA, Madera-Santana TJ. Physicochemical and transport properties of biodegradable agar films impregnated with natural semiochemical based-on hydroalcoholic garlic extract. Int J Biol Macromol 2020; 151:27-35. [DOI: 10.1016/j.ijbiomac.2020.02.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 11/12/2022]
|
30
|
Han H, Song KB. Antioxidant activities of mandarin (
Citrus unshiu
) peel pectin films containing sage (
Salvia officinalis
) leaf extract. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hee‐Seon Han
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| |
Collapse
|
31
|
Zhang X, Lian H, Shi J, Meng W, Peng Y. Plant extracts such as pine nut shell, peanut shell and jujube leaf improved the antioxidant ability and gas permeability of chitosan films. Int J Biol Macromol 2020; 148:1242-1250. [DOI: 10.1016/j.ijbiomac.2019.11.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
|
32
|
PENG Y, WANG Q, SHI J, CHEN Y, ZHANG X. Optimization and release evaluation for tea polyphenols and chitosan composite films with regulation of glycerol and Tween. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.34718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yong PENG
- Shandong Agricultural University, China; Key Laboratory of Food Processing Technology and Quality Control, China; Grain Process Technology and Engineering Technology Center, China
| | - Qingguo WANG
- Shandong Agricultural University, China; Key Laboratory of Food Processing Technology and Quality Control, China
| | - Jingying SHI
- Shandong Agricultural University, China; Key Laboratory of Food Processing Technology and Quality Control, China
| | - Yilun CHEN
- Shandong Agricultural University, China; Key Laboratory of Food Processing Technology and Quality Control, China
| | - Xiaoyan ZHANG
- Shandong Agricultural University, China; Key Laboratory of Food Processing Technology and Quality Control, China
| |
Collapse
|
33
|
Zhao H, Wang L, Belwal T, Jiang Y, Li D, Xu Y, Luo Z, Li L. Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydr Polym 2020; 235:115973. [PMID: 32122505 DOI: 10.1016/j.carbpol.2020.115973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
This work was designed to develop the chitosan-based melatonin layer-by-layer assembly (CMLLA) via the inclusion method. The structural characterizations and interaction present in CMLLA were investigated by the scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier Transform-Infrared spectroscopy (FTIR). The ratio of chitosan (CH) to carboxymethylcellulose (CMC) greatly influenced the mechanical properties, including the tensile strength, moisture content and color performance. Results showed that both antioxidant and antimicrobial properties of CMLLA were enhanced with the addition of melatonin (MLT). Furthermore, it was demonstrated that the CMLLA with 1.2 % (w/v) CH, 0.8 % (w/v) CMC and 50 mg/L MLT better contributed to the delay of chlorophyll degradation and the maintenance of shelf-life quality. Results from this study might open up new insights into the approaches of quality improvement of postharvest fresh products by incorporating the natural antioxidant compounds into natural polymers.
Collapse
Affiliation(s)
- Hangyue Zhao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Wang
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yunhong Jiang
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK.
| | - Dong Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yanqun Xu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Zisheng Luo
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
34
|
Munteanu SB, Vasile C. Vegetable Additives in Food Packaging Polymeric Materials. Polymers (Basel) 2019; 12:E28. [PMID: 31877858 PMCID: PMC7023556 DOI: 10.3390/polym12010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Plants are the most abundant bioresources, providing valuable materials that can be used as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare, pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric materials improves their properties to make them suitable for multiple applications. Efforts are made to incorporate into the raw polymers various natural biobased and biodegradable additives with a low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices and in the second part various applications of plant extracts as active ingredients in food packaging materials based on polysaccharide matrices (chitosan/starch/alginate).
Collapse
Affiliation(s)
| | - Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
35
|
Chitosan–Starch Films Modified with Natural Extracts to Remove Heavy Oil from Water. WATER 2019. [DOI: 10.3390/w12010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitosan films were used to remove heavy oil from connate water, deionized water, and seawater. In this research, chitosan–starch films were modified with natural extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and grape. These biodegradable, low-cost, eco-friendly materials show an important oil sorption capacity from different water conditions. It was observed that the sorption capacity has a clear correlation with the extract type, quantity, and water pH. In order to understand the physical and chemical properties of the films, they were analyzed according to their apparent density, water content, solubility, and swelling degree by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), gas chromatography–mass spectroscopy (GC–MS), and the determination of surface area using the Brunauer Emmett Teller (BET) method. The results indicate that chitosan–starch films modified with natural extracts can be successfully applied for environmental issues such as oil spill remedy.
Collapse
|
36
|
Kumar N, Neeraj, Ojha A, Singh R. Preparation and characterization of chitosan - pullulan blended edible films enrich with pomegranate peel extract. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Effects of Herba Lophatheri extract on the physicochemical properties and biological activities of the chitosan film. Int J Biol Macromol 2019; 133:51-57. [DOI: 10.1016/j.ijbiomac.2019.04.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022]
|
38
|
Prateepchanachai S, Thakhiew W, Devahastin S, Soponronnarit S. Improvement of mechanical and heat-sealing properties of edible chitosan films via addition of gelatin and CO2 treatment of film-forming solutions. Int J Biol Macromol 2019; 131:589-600. [DOI: 10.1016/j.ijbiomac.2019.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
|
39
|
Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F. Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydr Polym 2019; 212:150-159. [DOI: 10.1016/j.carbpol.2019.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
|
40
|
Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1457-1474. [PMID: 30206947 DOI: 10.1002/jsfa.9357] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The growing demand for natural food preservatives in the last decade has promoted investigations on their application for preserving perishable foods. In this context, the present review is focused on discussing the prospective application of plant extracts containing phenolics or isolated plant phenolics as natural antimicrobials in foods. Plant essential oils are outside the scope of this review since utilization of their antimicrobial activity for food preservation has been extensively reviewed. RESULTS Although the exact antimicrobial mechanisms of action of phenolic compounds are not yet fully understood, it is commonly acknowledged that they have diverse sites of action at the cellular level. Antimicrobial phenolics can be added directly to the formulation of perishable food products or incorporated into food-contact materials to release them in the immediate zone of perishable foods. Edible coatings or active food packaging materials can thus be used as carriers of plant bioactive compounds. CONCLUSION These materials could be an interesting delivery system to improve the stability of phenolics in foods and to improve the shelf life of perishable foods. This review will thus provide an overview of current knowledge of the antimicrobial activity of phenolic-rich plant extracts and of the promises and limits of their exploitation for the preservation of perishable foods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lynda Bouarab Chibane
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | | | - Jalloul Bouajila
- Faculté de Pharmacie de Toulouse, Laboratoire de Génie Chimique, UMR CNRS 5503, Université Paul Sabatier, Toulouse, France
| | - Nadia Oulahal
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| |
Collapse
|
41
|
Sogut E, Seydim AC. The effects of Chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Mir SA, Dar B, Wani AA, Shah MA. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Physicochemical, biological and release studies of chitosan membranes incorporated with Euphorbia umbellata fraction. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Sehrawat R, Nema PK, Kaur BP. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Halász K, Csóka L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.03.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Dhumal CV, Pal K, Sarkar P. Characterization of Tri-Phasic Edible Films from Chitosan, Guar Gum, and Whey Protein Isolate Loaded with Plant-Based Antimicrobial Compounds. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chanda Vilas Dhumal
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
48
|
Riaz A, Lei S, Akhtar HMS, Wan P, Chen D, Jabbar S, Abid M, Hashim MM, Zeng X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 2018; 114:547-555. [PMID: 29578019 DOI: 10.1016/j.ijbiomac.2018.03.126] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022]
Abstract
In the present study, apple peel polyphenols (APP) were incorporated into chitosan (CS) to develop a novel functional film. Scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analyses were performed to study the structure, potential interaction and thermal stability of the prepared films. Physical properties including moisture content, density, color, opacity, water solubility, swelling ration and water vapor permeability were measured. The results revealed that addition of APP into CS significantly improved the physical properties of the film by increasing its thickness, density, solubility, opacity and swelling ratio whereas moisture content and water vapor permeability were decreased. Tensile strength and elongation at break of the CS-APP film with 1% APP was 16.48MPa and 13.33%, respectively, significantly lower than those for CS control film. Thermal stability of the prepared films was decreased while antioxidant and antimicrobial activities of the CS-based APP film were significantly increased. CS-APP film with 0.50% APP concentration exhibited good mechanical and antimicrobial properties, indicating that it could be developed as bio-composite food packaging material for the food industry.
Collapse
Affiliation(s)
- Asad Riaz
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shicheng Lei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Saqib Jabbar
- Food Science and Product Development Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Muhammad Abid
- Department of Food Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Malik Muhammad Hashim
- Department of Food Science and Technology, Gomal University, Dera Ismail Khan, Pakistan
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Nisar T, Wang ZC, Yang X, Tian Y, Iqbal M, Guo Y. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 2018; 106:670-680. [DOI: 10.1016/j.ijbiomac.2017.08.068] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/17/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
|
50
|
Kaya M, Khadem S, Cakmak YS, Mujtaba M, Ilk S, Akyuz L, Salaberria A, Labidi J, Abdulqadir AH, Deligöz E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 2018. [DOI: 10.1039/c7ra12070b] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging.
Collapse
|