1
|
de Oliveira Garcia S, Comunello AFV, Pinheiro DFA, Marimón-Sibaja KV, Nogueira WV, Garda-Buffon J. Simultaneous mitigation of ochratoxin A and zearalenone by Amano lipase A: conditions and application. Braz J Microbiol 2025:10.1007/s42770-025-01679-w. [PMID: 40287600 DOI: 10.1007/s42770-025-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Mycotoxins such as ochratoxin A (OTA) and zearalenone (ZEA) are secondary metabolites produced by fungi that exhibit high toxicity and are frequently detected in food and beverages, including beer, the third most consumed beverage worldwide, posing a significant public health concern. The mitigation of these contaminants has become an increasingly urgent priority, particularly in the face of climate change, which is expected to exacerbate their prevalence and concentration throughout the food supply chain. In this context, the development of effective, safe, and food-compatible strategies for reducing mycotoxin levels in complex food matrices is essential to ensure both food quality and consumer safety. Accordingly, this study aimed to evaluate the action of the enzyme Amano lipase A (ALA) in the simultaneous mitigation of OTA and ZEA in model solution and Pilsen type beer. The reaction and kinetic parameters (KM and Vmax) were optimized for this. The application of the enzyme (0.3 U mL-1) in the mitigation of OTA and ZEA in beer was evaluated. Under optimal reaction conditions to ALA in model solution, consisting of 50 mM pH 7 phosphate buffer, 40 ºC and 22 h of incubation, it simultaneously degraded OTA and ZEA by up to 100.0 and 30.6%, respectively. The kinetic parameters KM and Vmax of ALA in the mitigation of OTA and ZEA were 0.03 and 3.14 µM and 6.56 × 10-05 and 19.57 × 10-03 μM min-1, respectively. The enzyme degraded 89.5% OTA and 6.5% ZEA. The enzyme ALA presents as an alternative for controlling these contaminants in beer or food.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Ana Flávia Vendramin Comunello
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Karen Vanessa Marimón-Sibaja
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Wesclen Vilar Nogueira
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química E Alimentos, Universidade Federal Do Rio Grande (FURG), Avenida Itália Km 8, Campus Carreiros, 96203 - 900, Rio Grande, Rio Grande Do Sul, Brazil.
| |
Collapse
|
2
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
3
|
Pérez-Lucas G, Navarro G, Navarro S. Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods 2024; 13:1709. [PMID: 38890939 PMCID: PMC11171931 DOI: 10.3390/foods13111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
In this study, a critical review was carried out using the Web of ScienceTM Core Collection database to analyse the scientific literature published to date to identify lines of research and future perspectives on the presence of chemical pollutants in beer brewing. Beer is one of the world's most popular drinks and the most consumed alcoholic beverage. However, a widespread challenge with potential implications for human and animal health is the presence of physical, chemical, and/or microbiological contaminants in beer. Biogenic amines, heavy metals, mycotoxins, nitrosamines, pesticides, acrylamide, phthalates, bisphenols, microplastics, and, to a lesser extent, hydrocarbons (aliphatic chlorinated and polycyclic aromatic), carbonyls, furan-derivatives, polychlorinated biphenyls, and trihalomethanes are the main chemical pollutants found during the beer brewing process. Pollution sources include raw materials, technological process steps, the brewery environment, and packaging materials. Different chemical pollutants have been found during the beer brewing process, from barley to beer. Brewing steps such as steeping, kilning, mashing, boiling, fermentation, and clarification are critical in reducing the levels of many of these pollutants. As a result, their residual levels are usually below the maximum levels allowed by international regulations. Therefore, this work was aimed at assessing how chemical pollutants appear and evolve in the brewing process, according to research developed in the last few decades.
Collapse
Affiliation(s)
| | | | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain; (G.P.-L.); (G.N.)
| |
Collapse
|
4
|
Ren Y, Tian R, Wang T, Cao J, Li J, Deng A. An Extremely Highly Sensitive ELISA in pg mL -1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules 2023; 28:5743. [PMID: 37570711 PMCID: PMC10420233 DOI: 10.3390/molecules28155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, an extremely highly sensitive enzyme-linked immunosorbent assay (ELISA) based on a newly produced monoclonal antibody (mAb) for the detection of ochratoxin A (OTA) in food samples was developed. OTA-Bovine serum albumin (BSA) conjugate was prepared and used as the immunogen for the production of the mAb. Among four hybridoma clones (8B10, 5C2, 9B7, and 5E11), the antibody from 8B10 displayed the highest affinity recognition for OTA. Based on the mAb (8B10), the IC50 and LOD of the ELISA for OTA were 34.8 pg mL-1 and 1.5 pg mL-1, respectively, which was 1.53~147 times lower than those in published ELISAs, indicating the ultra-sensitivity of our assay. There was no cross-reactivity of the mAb with the other four mycotoxins (AFB1, ZEN, DON, and T-2). Due to the high similarity in molecular structures among OTA, ochratoxin B (OTB), and ochratoxin C (OTC), the CR values of the mAb with OTB and OTC were 96.67% and 22.02%, respectively. Taking this advantage, the ELISA may be able to evaluate total ochratoxin levels in food samples. The recoveries of the ELISA for OTA in spiked samples (corn, wheat, and feed) were 96.5-110.8%, 89.5-94.4%, and 91.8-113.3%; and the RSDs were 5.2-13.6%, 8.2-13.0%, and 7.7-13.7% (n = 3), respectively. The spiked food samples (corn) were measured by ELISA and HPLC-FLD simultaneously. A good correlation between ELISA (x) and HPLC-FLD (y) with the linear regression equation of y = 0.918x - 0.034 (R2 = 0.985, n = 5) was obtained. These results demonstrated that the newly produced mAb-based ELISA was a feasible and ultra-sensitive analytical method for the detection of OTA in food samples.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| |
Collapse
|
5
|
Martiník J, Boško R, Svoboda Z, Běláková S, Benešová K, Pernica M. Determination of mycotoxins and their dietary exposure assessment in pale lager beers using immunoaffinity columns and UPLC-MS/MS. Mycotoxin Res 2023:10.1007/s12550-023-00492-4. [PMID: 37332076 DOI: 10.1007/s12550-023-00492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
The use of contaminated raw materials can lead to the transfer of mycotoxins into the final product, including beer. This study describes the use of the commercially available immunoaffinity column 11+Myco MS-PREP® and UPLC-MS/MS for the determination of mycotoxins in pale lager-type beers brewed in Czech Republic and other European countries. The additional aim of the work was to develop, optimize and validate this analytical method. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy were tested. The calibration curves were linear with correlation coefficients (R2 > 0.99) for all mycotoxins under investigation. The LOD ranged from 0.1 to 50 ng/L and LOQ from 0.4 to 167 ng/L. Recoveries of the selected analytes ranged from 72.2 to 101.1%, and the relative standard deviation under conditions repeatability (RSDr) did not exceed 16.3% for any mycotoxin. The validated procedure was successfully applied for the analysis of mycotoxins in a total of 89 beers from the retail network. The results were also processed using advanced chemometric techniques and compared with similar published studies. The toxicological impact was taken into account.
Collapse
Affiliation(s)
- Jan Martiník
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5 166 28, Prague 6, Czech Republic
| | - Rastislav Boško
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Zdeněk Svoboda
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Sylvie Běláková
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Karolína Benešová
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic
| | - Marek Pernica
- Research Institute of Brewing and Malting. Mostecká 7, 614 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Benešová K, Boško R, Běláková S, Pluháčková H, Křápek M, Pernica M, Svoboda Z. Natural contamination of Czech malting barley with mycotoxins in connection with climate variability. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Schabo DC, Alvarenga VO, Schaffner DW, Magnani M. A worldwide systematic review, meta-analysis, and health risk assessment study of mycotoxins in beers. Compr Rev Food Sci Food Saf 2021; 20:5742-5764. [PMID: 34668294 DOI: 10.1111/1541-4337.12856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/21/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
Mycotoxins, including aflatoxins (AFs), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FBs), and zearalenone (ZEN), have been reported as beer contaminants. This systematic review and meta-analysis provide the prevalence and concentration of mycotoxins in beers and their worldwide distribution. Mycotoxin's exposure and cancer risk through beer consumption were determined. The overall pooled prevalence of mycotoxins in beers was 31% (95% confidence interval [CI] = 28%-35%; I2 = 90%, p = .00). The most prevalent mycotoxins in beers were DON and its derivatives (53%), OTA (52%), FBs (47%), followed by AFs (12%). Iran (99%), Hungary (95%), Denmark (92%), Armenia (83%), and Cyprus (83%) had the highest mycotoxin prevalence in beers. The global mycotoxins average concentration in beers was 12.52 μg/L (95% CI = 10.70-14.75 μg/L; I2 = 100%, p = .00). DON and its derivatives showed the highest concentration (26.91 μg/L), followed by FBs (23.19 μg/L), ZEN and its derivatives (20.25 μg/L), and AFs (15.65 μg/L). African region had the highest mycotoxins concentration (73.95 μg/L) mostly due to the high levels reported in beers from Cameroon (293.02 μg/L), Malawi (132.34 μg/L), and Eastern Cape province (126.12 μg/L). The meta-regression indicated stability (p ≥ .05) of the global pooled concentration of mycotoxins in beers over the years, whereas FBs concentration increased. The intake of DON and its derivatives, FBs, ZEN and its derivatives, and OTA through beers is of concern in African countries. OTA is also of concern in Brazil and Belgium. Results show high mycotoxins concentration in beers worldwide and highlight the health risks through contaminated beer consumption.
Collapse
Affiliation(s)
- Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.,Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
8
|
Schabo DC, Freire L, Sant'Ana AS, Schaffner DW, Magnani M. Mycotoxins in artisanal beers: An overview of relevant aspects of the raw material, manufacturing steps and regulatory issues involved. Food Res Int 2021; 141:110114. [PMID: 33641981 DOI: 10.1016/j.foodres.2021.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The consumption of artisanal beer has increased worldwide. Artisanal beers can include malted or unmalted wheat, maize, rice and sorghum, in addition to the basic ingredients. These grains can be infected by toxigenic fungi in the field or during storage and mycotoxins can be produced if they find favorable conditions. Mycotoxins may not be eliminated throughout the beer brewing and be detected in the final product. In addition, modified mycotoxins may also be formed during beer brewing. This review compiles relevant information about mycotoxins produced by Aspergillus, Fusarium and Penicillium in raw material of artisanal beer, as well as updates information about the production and fate of mycotoxins during the beer brewing process. Findings highlight that malting conditions favor the production of mycotoxins by the fungi contaminating cereals. Therefore, good agricultural and postharvest mitigation strategies are the most effective options for preventing the growth of toxigenic fungi and the production of mycotoxins in cereals. However, the final concentration of mycotoxin in artisanal beer is difficult to predict as it depends on the initial concentration contained in the raw material and the processing conditions. The current lack of limits of mycotoxins in artisanal beer underestimates possible risks to human health. In addition, modified mycotoxins, not detected by conventional methods, may be formed in artisanal beers. Maximum tolerated limits for these contaminants must be urgently established based on scientific data about transfer of mycotoxins throughout the artisanal beer brewery process.
Collapse
Affiliation(s)
- Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado do Oeste, RO 76993-000, Brazil; Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | - Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
9
|
Ochratoxin A in Beers Marketed in Portugal: Occurrence and Human Risk Assessment. Toxins (Basel) 2020; 12:toxins12040249. [PMID: 32290581 PMCID: PMC7232135 DOI: 10.3390/toxins12040249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) is produced by fungi present in several agricultural products with much relevance to food safety. Since this mycotoxin is widely found in cereals, beer has a potential contamination risk. Therefore, it was deemed essential to quantify, for the first time, the levels of OTA in beer, a cereal-based product that is marketed in Portugal, as well as to calculate the human estimated weekly intake (EWI) and risk assessment. A total of 85 samples were analyzed through immunoaffinity clean-up, followed by liquid chromatography-fluorescence detection (LC-FD). This analytical methodology allowed a limit of quantification (LOQ) of 0.43 µg/L. The results showed that 10.6% were contaminated at levels ranging between <LOQ and 11.25 µg/L, with an average of 3.14 ± 4.09 µg/L. Samples of industrial production presented lower incidence and contamination levels than homemade and craft beers. On what concerns human risk, the calculated EWI was significantly lower than the tolerable weekly intake (TWI). However, in the worst case scenario, based on a high concentration, the rate EWI/TWI was 138.01%.
Collapse
|
10
|
Rapid detection of mycotoxins on foods and beverages with enzyme-linked immunosorbent assay. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas2019.654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lulamba TE, Stafford RA, Njobeh PB. The relative effectiveness of two filter aids in removing ochratoxin A during beer filtration. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, Cnr Siemert and Beit Streets, 2028 Johannesburg-New Doornfontein Johannesburg South Africa
| | - Robert A. Stafford
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, Cnr Siemert and Beit Streets, 2028 Johannesburg-New Doornfontein Johannesburg South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, Cnr Siemert and Beit Streets, 2028 Johannesburg-New Doornfontein Johannesburg South Africa
| |
Collapse
|
12
|
Öncü Kaya EM, Korkmaz OT, Yeniceli Uğur D, Şener E, Tunçel AN, Tunçel M. Determination of Ochratoxin-A in the brain microdialysates and plasma of awake, freely moving rats using ultra high performance liquid chromatography fluorescence detection method. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121700. [DOI: 10.1016/j.jchromb.2019.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022]
|
13
|
Nora NS, Feltrin ACP, Sibaja KVM, Furlong EB, Garda-Buffon J. Ochratoxin A reduction by peroxidase in a model system and grape juice. Braz J Microbiol 2019; 50:1075-1082. [PMID: 31338707 DOI: 10.1007/s42770-019-00112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023] Open
Abstract
This study aimed at evaluating the potential of the peroxidase (PO) enzyme to reduce ochratoxin A (OTA) levels and its application to grape juice. Both commercial PO and PO extracted from rice bran were evaluated, respectively, regarding their activity towards OTA in a model system. The affinity between PO and OTA was verified by the Michaelis-Menton constant and the maximum velocity parameters, resulting in 0.27 μM and 0.015 μM min-1 for the commercial enzyme, and 6.5 μM and 0.031 μM min-1 for PO extracted from rice bran, respectively. The lowest residual OTA levels occurred when 0.063 U mL-1 of the enzyme was applied. Under these conditions, the OTA reduction was 41% in 5 h for the commercial enzyme, and 59% in 24 h, for PO extracted from rice bran. When the extracted PO, with the activity of 0.063 U mL-1, was applied to whole grape juice, the OTA levels decreased to 17%, at 24 h. The capacity shown by PO for reducing OTA levels was confirmed in whole white grape juice, as a model system. This study may assist the wine industry to offer healthier products and add value to rice bran. Graphical abstract.
Collapse
Affiliation(s)
- Náthali Saião Nora
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Ana Carla Penteado Feltrin
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Karen Vanessa Marimón Sibaja
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
14
|
Fusarium Mycotoxins Stability during the Malting and Brewing Processes. Toxins (Basel) 2019; 11:toxins11050257. [PMID: 31067836 PMCID: PMC6563223 DOI: 10.3390/toxins11050257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/04/2023] Open
Abstract
Mycotoxins are widely studied by many research groups in all aspects, but the stability of these compounds needs further research for clarification. The objective of this study is to evaluate deoxynivalenol and zearalenone stability during all steps of the malting and brewing processes. The levels of these compounds decreased significantly during the production process (barley to beer). During the malting process, the DON levels decreased significantly in the steeping, germination, and malting steps (62%, 51.5%, and 68%, respectively). Considering ZEN, when the levels were compared between barley and the last step of the process, a significant decrease was observed. Most of the mycotoxins produced were transferred to the rootlets and spent grains, which is advantageous considering the final product. Furthermore, the mycotoxin dietary intake estimation was included in this study. The results proved that if the concentrations of target mycotoxins in raw material are under the limits established by the regulations, the levels decrease during the malting and brewing processes and make the beer secure for consumers. The quality of the five commodities involved in the beer process plays a decisive role in the creation of a safe final product.
Collapse
|
15
|
Mariño-Repizo L, Goicoechea H, Raba J, Cerutti S. A simple, rapid and novel method based on salting-out assisted liquid-liquid extraction for ochratoxin A determination in beer samples prior to ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1622-1632. [PMID: 29877757 DOI: 10.1080/19440049.2018.1486045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A novel, simple, easy and cheap sample treatment strategy based on salting-out assisted liquid-liquid extraction for ochratoxin A (OTA) ultra-trace analysis in beer samples using ultra-high-performance liquid chromatography-tandem mass spectrometry determination was developed. The factors involved in the efficiency of pre-treatment were studied employing factorial design in the screening phase and the optimal conditions of the significant variables on the analytical response were evaluated using a central composite face-centred design. Consequently, the amount of salt ((NH4)2SO4), together with the volumes of sample, hydrophilic (acetone) and nonpolar (toluene) solvents, and times of vortexing and centrifugation were optimised. Under optimised conditions, the limits of detection and quantification were 0.02 µg l-1 and 0.08 µg l-1 respectively. OTA extraction recovery by SALLE was approximately 90% (0.2 µg l-1). Furthermore, the methodology was in agreement with EU Directive requirements and was successfully applied for analysis of beer samples.
Collapse
Affiliation(s)
- Leonardo Mariño-Repizo
- a Instituto de Química de San Luis (CONICET - Facultad de Química, Bioquímica y Farmacia) , UNSL , San Luis , Argentina.,c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Hector Goicoechea
- b Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas , Universidad Nacional del Litoral , Santa Fe , Argentina.,c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Julio Raba
- a Instituto de Química de San Luis (CONICET - Facultad de Química, Bioquímica y Farmacia) , UNSL , San Luis , Argentina.,c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Soledad Cerutti
- a Instituto de Química de San Luis (CONICET - Facultad de Química, Bioquímica y Farmacia) , UNSL , San Luis , Argentina.,c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
16
|
Lv L, Jin Y, Kang X, Zhao Y, Cui C, Guo Z. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Food Chem 2018; 249:45-50. [PMID: 29407930 DOI: 10.1016/j.foodchem.2017.12.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023]
Abstract
This paper describes an aptamer/gold nanoparticle-based assay for ochratoxin A (OTA) detection. This assay is based on the use of an aptamer labeled with carboxyfluorescein (FAM) at its 5'-end and gold nanoparticles (AuNPs) that act as quenchers of fluorescence. When OTA is absent in the system, the fluorescently labeled aptamers are adsorbed on the surface of AuNPs. The fluorescence signal of the fluorescein-labeled OTA aptamer generated is quenched by the fluorescence resonance energy transfer effect of AuNPs. When OTA is present in the system, the fluorescently labeled aptamer binds to OTA and forms a folded structure, which can resist the adsorption of AuNPs. Thus, the fluorescent signal can be retained. The detection limit of this sensing platform is 5 nM, and the linear detection range is 10-1000 nM (R2 = 0.994). The procedure was validated by the quantitation of OTA in spiked ginger powder samples and were found to be free of interference by the sample matrix. The recoveries and the relative standard deviation varied from 89.0% to 117.8% and from 1.9% to 6.3%, respectively.
Collapse
Affiliation(s)
- Lei Lv
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Ministry of Education, Yanji 133002, China
| | - Yongdong Jin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaojiao Kang
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Yangyang Zhao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chengbi Cui
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Ministry of Education, Yanji 133002, China
| | - Zhijun Guo
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Ministry of Education, Yanji 133002, China.
| |
Collapse
|
17
|
|
18
|
Pagkali V, Petrou PS, Salapatas A, Makarona E, Peters J, Haasnoot W, Jobst G, Economou A, Misiakos K, Raptis I, Kakabakos SE. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:75-83. [PMID: 26988901 DOI: 10.1016/j.jhazmat.2016.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2). The chip was transformed to biosensor by functionalizing the MZIs sensing arms with an OTA-ovalbumin conjugate. OTA determination was performed by pumping over the chip mixtures of calibrators or samples with anti-OTA antibody following a competitive immunoassay format. An external miniaturized spectrometer was employed to continuously record the transmission spectra of each interferometer. Spectral shifts obtained due to immunoreaction were transformed to phase shifts through Discrete Fourier Transform. The assay had a detection limit of 2.0ng/ml and a dynamic range 4.0-100ng/ml in beer samples, recoveries ranging from 90.6 to 116%, and intra- and inter-assay coefficients of variation of 9% and 14%, respectively. The results obtained with the sensor using OTA-spiked beer samples spiked were in good agreement with those obtained by an ELISA developed using the same antibody. The good analytical performance of the biosensor and the small size of the proposed chip provide for the development of a portable instrument for point-of-need determinations.
Collapse
Affiliation(s)
- Varvara Pagkali
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece; Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Alexandros Salapatas
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Eleni Makarona
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Jeroen Peters
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Willem Haasnoot
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | | | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Greece
| | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Ioannis Raptis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15310, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi 15310, Greece.
| |
Collapse
|
19
|
Lv L, Li D, Cui C, Zhao Y, Guo Z. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens Bioelectron 2016; 87:136-141. [PMID: 27542086 DOI: 10.1016/j.bios.2016.08.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Ochratoxin A (OTA), a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins worldwide. OTA mainly exerts nephrotoxicity, immunotoxicity, mutagenicity, carcinogenicity, teratogenicity, and neurotoxicity. This paper describes a simple and sensitive aptamer/single-walled carbon nanohorn (SWCNH)-based assay for OTA detection. SWCNHs can protect DNA from DNase I cleavage. However, aptamers can be detached from the surface of SWCNHs through specific target binding, exposing them to enzymatic cleavage and releases the target for a new cycle. Cycling of targets leads to significant signal amplification and low limit of detection (LOD), resulting in a nearly 20-fold reduction in LOD for OTA assay compared with non-target recycling under the same experimental parameters. This technique responded specifically to OTA without interference from other analogues (Ochratoxin B, Ochratoxin C, warfarin, and N-acetyl-l-phenylalanine). Moreover, the application of this technique in real sample has been verified using red wine samples spiked with a series of OTA concentrations. This aptasensor offers a great practical importance in food safety and can be widely extended for detection of other toxins by replacing the sequence of the recognition aptamer.
Collapse
Affiliation(s)
- Lei Lv
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, YanJi 133002, China; Department of Food Science and Engineering, Yanbian University, YanJi 133002, China
| | - Donghao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, YanJi 133002, China
| | - Chengbi Cui
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, YanJi 133002, China; Department of Food Science and Engineering, Yanbian University, YanJi 133002, China
| | - Yangyang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhijun Guo
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, YanJi 133002, China; Department of Food Science and Engineering, Yanbian University, YanJi 133002, China.
| |
Collapse
|
20
|
A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE–HPLC for determination of ochratoxin A and citrinin in lager beers. Anal Bioanal Chem 2016; 408:3319-29. [DOI: 10.1007/s00216-016-9402-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
21
|
Waters DM, Mauch A, Coffey A, Arendt EK, Zannini E. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit Rev Food Sci Nutr 2016; 55:503-20. [PMID: 24915367 DOI: 10.1080/10408398.2012.660251] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this review, we aim to describe the mechanisms by which LAB can fulfil the novel role of efficient cell factory for the production of functional biomolecules and food ingredients to enhance the quality of cereal-based beverages. LAB fermentation is a safe, economical, and traditional method of food preservation foremost, as well as having the additional benefits of flavor, texture, and nutrition amelioration. Additionally, LAB fermentation in known to render cereal-based foods and beverages safe, in a chemical-free, consumer-friendly manner, from an antinutrient and toxigenic perspective. Huge market opportunities and potential exist for food manufacturers who can provide the ideal functional beverage fulfilling consumer needs. Newly developed fermented cereal-based beverages must address markets globally including, high-nutrition markets (developing countries), lifestyle choice consumers (vegetarian, vegan, low-fat, low-salt, low-calorie), food-related non-communicable disease sufferers (cardiovascular disease, diabetes), and green label consumers (Western countries). To fulfil these recommendations, a suitable LAB starter culture and cereal-based raw materials must be developed. These strains would be suitable for the biopreservation of cereal beverages and, ideally, would be highly antifungal, anti-mycotoxigenic, mycotoxin-binding and proteolytic (neutralize toxic peptides and release flavor-contributing amino acids) with an ability to ferment cereals, whilst synthesizing oligosaccharides, thus presenting a major opportunity for the development of safe cereal-based prebiotic functional beverages to compete with and replace the existing dairy versions.
Collapse
Affiliation(s)
- Deborah M Waters
- a School of Food and Nutritional Sciences , University College Cork , Ireland
| | | | | | | | | |
Collapse
|
22
|
Dou X, Chu X, Kong W, Luo J, Yang M. An indirect competitive fluorescence assay for ochratoxin A based on molecular beacon. RSC Adv 2016. [DOI: 10.1039/c5ra23966d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel, simple and efficient method based on molecular beacon probe was developed to detect ochratoxin A.
Collapse
Affiliation(s)
- Xiaowen Dou
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Xianfeng Chu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Weijun Kong
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Jiaoyang Luo
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Meihua Yang
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
- Hainan Branch Institute of Medicinal Plant Development
| |
Collapse
|
23
|
Ostry V, Malir F, Dofkova M, Skarkova J, Pfohl-Leszkowicz A, Ruprich J. Ochratoxin A Dietary Exposure of Ten Population Groups in the Czech Republic: Comparison with Data over the World. Toxins (Basel) 2015; 7:3608-35. [PMID: 26378578 PMCID: PMC4591665 DOI: 10.3390/toxins7093608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups.
Collapse
Affiliation(s)
- Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Marcela Dofkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Jarmila Skarkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jiri Ruprich
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| |
Collapse
|
24
|
An immunochemical method for the determination of Ochratoxine A in the wine and its applications. KVASNY PRUMYSL 2014. [DOI: 10.18832/kp2014021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Bellver Soto J, Fernández-Franzón M, Ruiz MJ, Juan-García A. Presence of ochratoxin A (OTA) mycotoxin in alcoholic drinks from southern European countries: wine and beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7643-7651. [PMID: 25039256 DOI: 10.1021/jf501737h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The main filamentous fungi producers of mycotoxins are Aspergillus spp., Penicillium spp., and Fusarium spp. Their effect can provoke a broad range of toxic properties including carcinogenicity and neurotoxicity, as well as reproductive and developmental toxicities. Ochratoxin A (OTA) is produced by Aspergillus and Penicillium spp. The purpose of this review was to evaluate the risk assessment of OTA in alcoholic drinks (beer and wine) by compiling the results obtained from studies and reviews related to the presence of OTA in these two drinks from southern European countries in the period 2005-2013 and comparing those results with the legislation available in the European Union.
Collapse
|
26
|
Běláková S, Benešová K, Čáslavský J, Svoboda Z, Mikulíková R. The occurrence of the selected fusarium mycotoxins in Czech malting barley. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Mashhadizadeh MH, Amoli-Diva M, Pourghazi K. Magnetic nanoparticles solid phase extraction for determination of ochratoxin A in cereals using high-performance liquid chromatography with fluorescence detection. J Chromatogr A 2013; 1320:17-26. [DOI: 10.1016/j.chroma.2013.10.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/13/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
|
28
|
Li X, Li P, Zhang Q, Zhang Z, Li R, Zhang W, Ding X, Chen X, Tang X. A Sensitive Immunoaffinity Column-Linked Indirect Competitive ELISA for Ochratoxin A in Cereal and Oil Products Based on a New Monoclonal Antibody. FOOD ANAL METHOD 2013; 6:1433-1440. [DOI: 10.1007/s12161-013-9561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Deetae P, Perello MC, de Revel G. Occurrence of ochratoxin A and biogenic amines in Asian beers sold in French markets. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pawinee Deetae
- Food Technology Program; Mahidol University; Kanchanaburi Campus, Saiyok; Kanchanaburi; 71150; Thailand
| | - Marie-Claire Perello
- UMR 1219 Œnologie, INRA/Université de Bordeaux, ISVV; 210 chemin de Leysotte, CS 50008; 33882; Villenave d'Ornon Cedex; France
| | - Gilles de Revel
- UMR 1219 Œnologie, INRA/Université de Bordeaux, ISVV; 210 chemin de Leysotte, CS 50008; 33882; Villenave d'Ornon Cedex; France
| |
Collapse
|
30
|
Guo Z, Wang J, Wang E. Signal-amplification detection of small molecules by use of Mg2+-dependent DNAzyme. Anal Bioanal Chem 2013; 405:4051-7. [PMID: 23407810 DOI: 10.1007/s00216-013-6788-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/24/2013] [Indexed: 01/29/2023]
Abstract
Because small molecules can be beneficial or toxic in biology and the environment, specific and sensitive detection of small molecules is one of the most important objectives of the scientific community. In this study, new signal amplification assays for detection of small molecules based on Mg(2+)-dependent DNAzyme were developed. A cleavable DNA substrate containing a ribonucleotide, the ends of which were labeled with black hole quencher (BHQ) and 6-carboxyfluorescein (FAM), was used for fluorescence detection. When the small molecule of interest is added to the assay solution, the Mg(2+)-dependent DNAzyme is activated, facilitating hybridization between the Mg(2+)-dependent DNAzyme and the DNA substrate. Binding of the substrate to the DNAzyme structure results in hydrolytic cleavage of the substrate in the presence of Mg(2+) ions. The fluorescence signal was amplified by continuous cleavage of the enzyme substrate. Ochratoxin A (OTA) and adenosine triphosphate (ATP) were used as model analytes in these experiments. This method can detect OTA specifically with a detection limit as low as 140 pmol L(-1) and detect ATP specifically with a detection limit as low as 13 nmol L(-1). Moreover, this method is potentially extendable to detection of other small molecules which are able to dissociate the aptamer from the DNAzyme, leading to activation of the DNAzyme.
Collapse
Affiliation(s)
- Zhijun Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | | | | |
Collapse
|
31
|
Study of ochratoxin A content in South Moravian and foreign wines by the UPLC method with fluorescence detection. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Sub-2?m porous silica materials for enhanced separation performance in liquid chromatography. J Chromatogr A 2012; 1228:99-109. [DOI: 10.1016/j.chroma.2011.08.085] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/28/2011] [Accepted: 08/29/2011] [Indexed: 11/20/2022]
|
33
|
New trends in liquid chromatography and their utilization in analysis of beer and brewery raw materials. Part 1. Theoretical introduction. KVASNY PRUMYSL 2012. [DOI: 10.18832/kp2012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|