1
|
Tolou-Ghamari Z. Tacrolimus, Cytochrome P450, Interactions with Food Variables in Organ Transplant Recipients; A Current and Comprehensive Review. Curr Drug Metab 2025; 25:547-553. [PMID: 39757635 DOI: 10.2174/0113892002328742241210102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C0 ) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change C0 after organ transplantation. For example, grapefruit juice could increase tacrolimus C0 due to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as Tmax, Cmax, AUC, and C0 of tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.
Collapse
Affiliation(s)
- Zahra Tolou-Ghamari
- Deputy of Research and Technology, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
3
|
Sugiyama T, Matsushima M, Ohdachi T, Hashimoto N, Hasegawa Y, Yokoi K, Kawabe T. Involvement of heme oxygenase-1 in suppression of T cell activation by quercetin. Immunopharmacol Immunotoxicol 2020; 42:295-305. [PMID: 32397768 DOI: 10.1080/08923973.2020.1759623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Acute rejection is still a major problem in transplantation and one of the most important causes of late graft loss. Cyclosporine and tacrolimus are widely used for suppression of T cell function to avoid graft rejection, but long-term use of these compounds is associated with serious toxicities. Quercetin, a flavonoid found in fruits and vegetables, has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO) -1, an enzyme involved in heme catabolism. We hypothesized that quercetin induces HO-1 in T cells and suppresses T cell function via HO-1. In the present study, we showed that quercetin suppressed the A23187-mediated expression of interleukin (IL) -2 in T cells. METHODS Mouse splenocytes, enriched T cells, and EL4 cells, a mouse T cell line, were treated with quercetin, and then stimulated with A23187, a calcium ionophore, concanavalin A, or anti-CD3ε and anti-CD28 antibodies. Cell proliferation, expression of IL-2, calcium mobilization, apoptosis, cell cycle, and phosphorylation of extracellular signal-regulated kinase (ERK) were investigated. RESULTS Quercetin induced HO-1, and this induction of HO-1 was implicated in the suppression of IL-2 production. Furthermore, the induction of HO-1 by quercetin suppressed the influx of calcium ions, a known trigger of IL-2 production. Additionally, quercetin suppressed T cell proliferation through promotion of cell cycle arrest via HO-1 induction, but quercetin did not induce apoptosis. To investigate the role of the signal transduction pathway in quercetin's effect on cell proliferation, we evaluated the phosphorylation of ERK in T cells. Quercetin suppressed the A23187-mediated stimulation of ERK, an effect that was mediated through HO-1. These results suggested that HO-1 is involved in the suppressive effects of quercetin on T cell activation and proliferation. CONCLUSION Our findings indicate that the quercetin may be a promising candidate for inducing HO-1 in T cells, thereby facilitating immunosuppressive effects.
Collapse
Affiliation(s)
- Tomoshi Sugiyama
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Mbikay M, Mayne J, Sirois F, Fedoryak O, Raymond A, Noad J, Chrétien M. Mice Fed a High-Cholesterol Diet Supplemented with Quercetin-3-Glucoside Show Attenuated Hyperlipidemia and Hyperinsulinemia Associated with Differential Regulation of PCSK9 and LDLR in their Liver and Pancreas. Mol Nutr Food Res 2018; 62:e1700729. [PMID: 29396908 DOI: 10.1002/mnfr.201700729] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Indexed: 01/12/2023]
Abstract
SCOPE Hepatic LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) regulate the clearance of plasma LDL-cholesterol (LDL-C): LDLR promotes it, and PCSK9 opposes it. These proteins also express in pancreatic β cells. Using cultured hepatocytes, we previously showed that the plant flavonoid quercetin-3-glucoside (Q3G) inhibits PCSK9 secretion, stimulated LDLR expression, and enhanced LDL-C uptake. Here, we examine whether Q3G supplementation could reverse the hyperlipidemia and hyperinsulinemia of mice fed a high-cholesterol diet, and how it affects hepatic and pancreatic LDLR and PCSK9 expression. METHODS AND RESULTS For 12 weeks, mice are fed a low- (0%) or high- (1%) cholesterol diet (LCD or HCD), supplemented or not with Q3G at 0.05 or 0.1% (w/w). Tissue LDLR and PCSK9 is analyzed by immunoblotting, plasma PCSK9 and insulin by ELISA, and plasma cholesterol and glucose by colorimetry. In LCD-fed mice, Q3G has no effect. In HCD-fed mice, it attenuates the increase in plasma cholesterol and insulin, accentuates the decrease in plasma PCSK9, and increases hepatic and pancreatic LDLR and PCSK9. In cultured pancreatic β cells, however, it stimulates PCSK9 secretion. CONCLUSION In mice, dietary Q3G could counter HCD-induced hyperlipidemia and hyperinsulinemia, in part by oppositely modulating hepatic and pancreatic PCSK9 secretion.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, Montreal, Canada.,Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Francine Sirois
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, Montreal, Canada
| | - Olesya Fedoryak
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, Montreal, Canada
| | - Angela Raymond
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jennifer Noad
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, Montreal, Canada.,Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
5
|
Song R, Li J, Zhang J, Wang L, Tong L, Wang P, Yang H, Wei Q, Cai H, Luo J. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif. Biochimie 2017; 142:158-167. [PMID: 28890387 DOI: 10.1016/j.biochi.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments.
Collapse
Affiliation(s)
- Ruiwen Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huan Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Liu Y, Luo X, Yang C, Yang T, Zhou J, Shi S. Impact of quercetin‑induced changes in drug‑metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats. Mol Med Rep 2016; 14:3073-85. [PMID: 27510982 PMCID: PMC5042751 DOI: 10.3892/mmr.2016.5616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to evaluate whether quercetin (Que) modulates the mRNA and protein expression levels of drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in the small intestine and liver, and thus modifies the pharmacokinetic profile of cyclosporine (CsA) in rats. This two-part study evaluated the pharmacokinetic profiles of CsA in the presence or absence of Que (experiment I) and the involvement of DMEs and DTs (experiment II). In experiment I, 24 rats received single-dose CsA (10 mg/kg) on day 1, single-dose Que (25, 50 and 100 mg/kg/day; eight rats in each group) on days 3–8, and concomitant CsA/Que on day 9. In experiment II, the mRNA and protein expression levels of cytochrome P (CYP)3A1, CYP3A2, UDP glucuronosyltransferase family 1 member A complex locus, organic anion-transporting polypeptide (OATP)2B1, OATP1B2, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the small intestine and liver of rats were analyzed following oral administration of Que at 25, 50 and 100 mg/kg in the presence or absence of CsA (10 mg/kg) for seven consecutive days. Co-administration of Que (25,50 and 100 mg/kg) decreased the maximum serum concentration of CsA by 46, 50 and 47% in a dose-independent manner. In addition, the area under the curve to the last measurable concentration and area under the curve to infinite time were decreased, by 21 and 16%, 30 and 33%, and 33 and 34% (P<0.01), respectively. However, the mRNA and protein expression levels of the above-mentioned DMEs and DTs were inhibited by Que in a dose-dependent manner (P<0.01) to a similar extent in the small intestine and liver. It was demonstrated that Que was able to reduce the bioavailability of CsA following multiple concomitant doses in rats. Overlapping modulation of intestinal and hepatic DMEs and DTs, as well as the DME-DT interplay are potential explanations for these observations.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaomei Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Chen Y, Holstein DM, Aime S, Bollo M, Lechleiter JD. Calcineurin β protects brain after injury by activating the unfolded protein response. Neurobiol Dis 2016; 94:139-56. [PMID: 27334877 PMCID: PMC4983525 DOI: 10.1016/j.nbd.2016.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022] Open
Abstract
The Ca2+-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNβ expression increased after treatment with a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNβ was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNβ with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNβ resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNβ-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNβ. Importantly, the cytoprotective function of CNβ was PERK-dependent both in vitro and in vivo. Loss of CNβ in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNβ-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Sofia Aime
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - James D Lechleiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX, USA.
| |
Collapse
|
8
|
Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, Zou Z, Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur J Pharmacol 2016; 781:60-8. [DOI: 10.1016/j.ejphar.2016.03.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
9
|
Zhao Y, Zhang J, Shi X, Li J, Wang R, Song R, Wei Q, Cai H, Luo J. Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression. Biochimie 2016; 127:50-8. [PMID: 27109380 DOI: 10.1016/j.biochi.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents.
Collapse
Affiliation(s)
- Yane Zhao
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Xiaoyu Shi
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Ruiwen Song
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China.
| |
Collapse
|
10
|
The Therapeutic Effects of the Chinese Herbal Medicine, Lang Chuang Fang Granule, on Lupus-Prone MRL/lpr Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8562528. [PMID: 27034698 PMCID: PMC4789466 DOI: 10.1155/2016/8562528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to severe multiorgan damage. Lang Chuang Fang (LCF) is a Chinese herbal medicine that is clinically prescribed for treating SLE. In this study, we examined the therapeutic effects of LCF granule on lupus-prone MRL/lpr mice. Female mice were randomly separated into six groups, and LCF treatment groups received LCF granule at the dosage of 0.97 g/kg/d, 1.95 g/kg/d, and 3.90 g/kg/d, respectively. Here, we found that, compared to the MRL/lpr mice, both the spleen coefficient and thymus coefficient were reduced in the LCF granule-treated mice. There was a marked downregulation in CRP and anti-dsDNA autoantibody and an evident upregulation of CH50 in LCF granule-treated mice. LCF granule treatment also obviously reduced the proteinuria, BUN, and SCr levels in MRL/lpr mice at the dosage of 0.97 g/kg/d, 1.95 g/kg/d, and 3.90 g/kg/d, indicating that LCF granule alleviated the renal injury of MRL/lpr mice. Furthermore, LCF granule decreased p65 NF-κB levels and increased Sirt1 and Nrf2 levels in the kidney tissues of MRL/lpr mice, which might elucidate the beneficial effects of LCF on lupus nephritis. In conclusion, this study demonstrates that LCF granule has therapeutic effects on lupus-prone MRL/lpr mice.
Collapse
|
11
|
Li W, Li H, Zhang M, Zhong Y, Wang M, Cen J, Wu H, Yang Y, Wei Q. Isogarcinol Extracted from Garcinia mangostana L. Ameliorates Systemic Lupus Erythematosus-like Disease in a Murine Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8452-8459. [PMID: 26330173 DOI: 10.1021/acs.jafc.5b03425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Isogarcinol is a new immunosuppressant that we extracted from Garcinia mangostana L. In the present study, we elucidate its beneficial effect in chronic graft-versus-host disease (cGVHD) in mice -- a model for systemic lupus erythematosus (SLE) in human. The oral administration of 60 mg/kg isogarcinol significantly reduced proteinuria, corrected the abnormal serum biochemical indicator, and decreased the amount of serum antibodies and lowered the renal histopathology score. In addition, isogarcinol alleviated the abnormal activation of CD4 T cells and decreased the expression of inflammatory genes and cytokines in the kidneys and peritoneal macrophages. The mechanism of action of isogarcinol is associated with downregulation of CD4 T cells and inflammatory effects. Therefore, we believe that isogarcinol may be a potential therapeutic drug candidate for future treatment of SLE.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| | - Hu Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| | - Mu Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| | - Youxiu Zhong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| | - Mengqi Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| | - Juren Cen
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Ministry of Education, College of Landscape and Horticulture, Hainan University , Haikou 570228, PR China
| | - Hezhen Wu
- College of Pharmacy, Hubei University of Chinese Medicine , Wuhan 430061, PR China
| | - Yanfang Yang
- College of Pharmacy, Hubei University of Chinese Medicine , Wuhan 430061, PR China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University , Beijing 100875, PR China
| |
Collapse
|
12
|
Fu C, Zhang J, Zheng Y, Xu H, Yu S. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation. Int J Biol Macromol 2015; 79:235-9. [PMID: 25956027 DOI: 10.1016/j.ijbiomac.2015.04.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM) activated serine/threonine phosphatase, and its regulatory region (CNRR) plays a critical role in the coupling of Ca(2+) signals to cellular responses. Ca(2+)/CaM binds to the CNRR, resulting in a conformational change that removes an autoinhibitory domain (CN467-486) from the active site of the phosphatase and activates the enzyme. However, almost the entire regulatory region (CN374-521) is not visible in the electron density maps of reported structures. In this study, we produced separate CN fragments corresponding to the CNRR (CNRR381-521, CN residues 381-521) and determined the binding affinity of CNRR381-521 for Ca(2+)/CaM using isothermal titration calorimetry (ITC). The structural change in CNRR381-521 induced by Ca(2+)/CaM binding was also investigated by Fourier transform infrared spectroscopy (FT-IR). The results indicate that Ca(2+)/CaM binding to CNRR381-521 is an exothermic reaction with a dissociation constant of 2.0×10(-6) M. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation.
Collapse
Affiliation(s)
- Cuiping Fu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Junting Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Ye Zheng
- Shanghai Pinghe Bilingual School, China
| | - Hongbing Xu
- Department of Clinical Pharmacy, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China.
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Cen J, Wang M, Jiang G, Yin Y, Su Z, Tong L, luo J, Ma Y, Gao Y, Wei Q. The new immunosuppressant, isogarcinol, binds directly to its target enzyme calcineurin, unlike cyclosporin A and tacrolimus. Biochimie 2015; 111:119-24. [DOI: 10.1016/j.biochi.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 12/26/2022]
|
14
|
Bartelmess J, Giordani S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1980-98. [PMID: 25383308 PMCID: PMC4222380 DOI: 10.3762/bjnano.5.207] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/10/2014] [Indexed: 05/25/2023]
Abstract
This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs). First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible applications, such as poor solubility in common solvents. Finally, it gives an overview over the fields of application, in which CNO materials were successfully implemented.
Collapse
Affiliation(s)
- Juergen Bartelmess
- Istituto Italiano di Tecnologia, Nano Carbon Materials, Via Morego 30, 16163 Genova, Italy
| | - Silvia Giordani
- Istituto Italiano di Tecnologia, Nano Carbon Materials, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
15
|
Fu Y, Zhou H, Wang M, Cen J, Wei Q. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4127-4134. [PMID: 24738849 DOI: 10.1021/jf405790q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Beijing Normal University , Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Abstract
Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. In this study we used CN as a target enzyme to investigate the immunosuppressive properties of a series of natural compounds from Garcinia mangostana L., and discovered an active compound, isogarcinol. Enzymatic assays showed that isogarcinol inhibited CN in a dose-dependent manner. At concentrations resulting in relatively low cytotoxicity isogarcinol significantly inhibited proliferation of murine spleen T-lymphocytes induced by concanavalin A (ConA) and the mixed lymphocyte reaction (MLR). In addition, it performed much better in acute toxicity tests and via oral administration in mice than cyclosporin A (CsA), with few adverse reactions and low toxicity in experimental animals. Oral administration of isogarcinol in mice resulted in a dose-dependent decrease in delayed type hypersensitivity (DTH) and prolonged graft survival in allogeneic skin transplantation. These findings suggest that isogarcinol could serve as a new oral immunomodulatory drug for preventing transplant rejection, and for long-term medication in autoimmune diseases.
Collapse
|
17
|
Plonska-Brzezinska ME, Brus DM, Breczko J, Echegoyen L. Carbon nano-onions and biocompatible polymers for flavonoid incorporation. Chemistry 2013; 19:5019-24. [PMID: 23468115 DOI: 10.1002/chem.201300009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Indexed: 11/08/2022]
|
18
|
|