1
|
Wang Z, Song W, Song H, Huang W, Li Y, Feng J. Effects of extraction methods on the physicochemical properties and functionalities of pectic polysaccharides from burdock (Arctium lappa L.). Int J Biol Macromol 2024; 257:128684. [PMID: 38086431 DOI: 10.1016/j.ijbiomac.2023.128684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
In this work, the effects of four different extraction methods, acid (HCl), alkali (NaOH), enzymes (cellulase/pectinase), and buffer (pH 7.0) on the physicochemical properties and functionalities of burdock pectin were systematically investigated and compared. Buffer extraction gave a low yield (2.8 %) and is therefore limited in its application. The acid treatment hydrolyzed the neutral sidechains and gave a homogalacturonan content of 72.6 %. By contrast, alkali and enzymes preserved the sidechains while degrading the polygalacturonan backbone, creating a rhamnogalacturonan-I dominant structure. The branched structure, low molecular weight, and high degree of methylation (42.3 %) contributed to the interfacial adsorption, emulsifying capacity, and cellular antioxidant activity of the enzyme-extracted product. For the acid-extracted product, the strong intramolecular electrostatic repulsion restricted the formation of a contact interface to prevent coalescence of the emulsion. In addition, they did not have sufficient reducing ends to scavenge free radicals. Although a high branching size (5.0) was adopted, the low degree of methylation (19.5 %) affected the emulsifying capacity of the alkali-extracted products. These results provide useful information for pectic polysaccharides production with tailored properties.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Wancheng Song
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
2
|
Kleijn AF, Mutter M, Akingbasote JA, Meetro J, Simon RR, Muntendam P, Frommhagen M, Schols HA. Toxicological evaluation of a pumpkin-derived pectin preparation: in vitro genotoxicity studies and a 13-week oral toxicity study in Sprague-Dawley rats. Toxicol Res (Camb) 2024; 13:tfae004. [PMID: 38274036 PMCID: PMC10807847 DOI: 10.1093/toxres/tfae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The safety of a rhamnogalacturonan-I-enriched pectin extract (G3P-01) from pumpkin (Cucurbita moschata var. Dickinson) was evaluated for use as an ingredient in food and dietary supplements. G3P-01 was tested in a battery of genetic toxicity studies including reverse mutagenicity and in vitro micronucleus assay. In addition, Sprague-Dawley rats were randomized and orally dosed with G3P-01 incorporated in animal diet at concentrations of 0, 9000, 18,000, and 36,000 ppm daily for 13-weeks (n=10/sex/group) in line with OECD guidelines (TG 408). The results of the in vitro bacterial reverse mutation assay and micronucleus assay in TK6 cells demonstrated a lack of genotoxicity. The 13-week oral toxicity study in Sprague-Dawley rats demonstrated that the test article, G3P-01 was well tolerated; there were no mortalities and no adverse effects on clinical, gross pathology, hematology, blood chemistry, and histological evaluation of the essential organs of the animals. The present study demonstrates that G3P-01 is non-genotoxic and is safe when ingested in diet at concentrations up to 36, 000 ppm. The subchronic no-observed-adverse-effect level (NOAEL) for G3P-01 was concluded to be 36,000 ppm, equivalent to 1,899 and 2,361 mg/kg/day for male and female rats respectively.
Collapse
Affiliation(s)
- Anne F Kleijn
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen, WG 6708, The Netherlands
| | - Margien Mutter
- G3P Inc., 20 Mall Road Suite 220, Burlington, MA 01803, United States
| | - James A Akingbasote
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Jwar Meetro
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Ryan R Simon
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Pieter Muntendam
- G3P Inc., 20 Mall Road Suite 220, Burlington, MA 01803, United States
| | - Matthias Frommhagen
- Société des Produits Nestlé SA, Nestlé Research, Route du Jorat 57, CH-1000, Lausanne 26, Switzerland
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen, WG 6708, The Netherlands
| |
Collapse
|
3
|
Saba B, Bharathidasan AK, Ezeji TC, Cornish K. Characterization and potential valorization of industrial food processing wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161550. [PMID: 36652966 DOI: 10.1016/j.scitotenv.2023.161550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Valorization and utilization of industrial food processing waste as value added products, platform chemicals and biofuels, are needed to improve sustainability and reduce waste management costs. Various industrial food waste stream samples were characterized with respect to their physico-chemical characteristics and elemental composition. A subset of starchy food wastes and milk dust powder were evaluated in batch fermentation to acetone, a useful platform chemical. Production levels were similar to acetone produced from glucose but were achieved more quickly. Lactose concentration negatively affected fermentation and led to 50 % lower acetone concentration from milk dust powder than from starchy wastes. Uncooked starch waste can produce 20 % more acetone than cooked and modified starch waste. Fatty waste and mineral waste can be digested anaerobically generating biogas. Calorific value of soybean waste was 40 MJ/kg sufficiently high for biodiesel production. Low C/N ratios of wastewater and solids from food processing waste makes them unsuitable for anaerobic digestion but these waste types can be converted thermochemically to hydrochar and used as soil amendments. Low calorific content (10-15 MJ/kg) vegetable wastes also are not ideal for energy production, but are rich in flavonoids, antioxidants and pigments which can be extracted as valuable products. A model mapping food waste characteristics to best valorization pathway was developed to guide waste management and future cost and environmental impact analyses. These findings will help advance food industry knowledge and improve sustainable food production through valorized processing waste management.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| | - Ashok K Bharathidasan
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| | - Thaddeus C Ezeji
- Department of Animal Science, Ohio Agricultural Research and Development Center, CFAES Wooster Campus, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Katrina Cornish
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA; Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
4
|
A mini-review on the plant sources and methods for extraction of rhamnogalacturonan I. Food Chem 2023; 403:134378. [DOI: 10.1016/j.foodchem.2022.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
5
|
Arzami AN, de Carvalho DM, Vilaplana F, Stoddard FL, Mikkonen KS. Narrow-leafed lupin (Lupinus angustifolius L.): Characterization of emulsification and fibre properties. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Taghian Dinani S, van der Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr 2022; 63:7749-7771. [PMID: 35275755 DOI: 10.1080/10408398.2022.2049692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Every year, huge amounts of fruit and vegetable by-products in the food processing factories are produced. These by-products have great potential to be used for different targets especially the extraction of value-added ingredients. The target of this study is to review the challenges of extraction of value-added ingredients from fruit and vegetable by-products on the industrial scale and to describe current trends in solving these problems. In addition, some strategies such as multi-component extraction as well as application of fermentation before or after the extraction process, and production of biofuel, organic fertilizers, animal feeds, etc. on final residues after extraction of value-added ingredients are discussed in this review paper. In fact, simultaneous extraction of different value-added ingredients from fruit and vegetable by-products can increase the extraction efficiency and reduce the cost of value-added ingredients as well as the final volume of these by-products. After extraction of value-added ingredients, the residues can be used to produce biofuels, or they can be used to produce organic fertilizers, animal feeds, etc. Therefore, the application of several appropriate strategies to treat the fruit and vegetable by-products can increase their application, protect the environment, and improve the food economy.
Collapse
Affiliation(s)
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
7
|
Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants (Basel) 2021; 10:antiox10101630. [PMID: 34679764 PMCID: PMC8533085 DOI: 10.3390/antiox10101630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, the potato is one of the most cultivated and consumed food crops in the world and, in recent years, its production has experienced a sharp increase. Its industrial processing generates several by-products that are wasted and cause economic and environmental problems. Among them, potato peel stands out, representing up to 10% of the total potato residues obtained in the processing. On the other hand, these wastes, in addition to presenting antioxidant compounds, are rich in interesting chemical compounds of great value in a biorefinery model. This review summarizes the main compounds present in potato skins as well as the most used and innovative extraction methods employed for their isolation, with special emphasis on the fractions with biological activities. In addition, a sustainable biorefinery proposal focused on obtaining high added-value products with potential applications in the pharmaceutical, food, nutraceutical, or cosmetic industries is included.
Collapse
|
8
|
Ramirez CSV, Temelli F, Saldaña MD. Carboxylic acid-catalyzed hydrolysis of rhamnogalacturonan in subcritical water media. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Hameed M, Ahmad SW, Ahmad S, Qutab HG, Dasih M, Imran M. Enzymatic extraction of potato starch: A parametric optimization study using response surface methodology. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020; 22:48-54. [DOI: 10.2478/pjct-2020-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Optimized, effective and efficient methodology has been determined in this research work for the recovery of starch from potatoes. Potato starch extraction experimental results have been utilized for the parametric optimization study by using different statistical techniques. In this research work, starch extraction was conducted by employing cellulase enzyme. Response surface methodology (RSM) was put to use to perform statistical analysis to get optimum results. Five-level central composite design (CCD) consisting of three parameters was implemented to investigate the effect of enzyme concentration, contact time and broth dilution. Experiment results revealed that increment in enzyme concentration and contact time enhanced the starch recovery while dilution showed the inverse relation on the recovery of starch. Optimum starch recovery was achieved upto 89% when enzyme concentration (0.5 g/100 g) of potato meal was diluted with 10 mL of water and mixed for 4 h at 45°C.
Collapse
Affiliation(s)
- Madsar Hameed
- Department of chemical engineering , UET Lahore, Fsd Campus Pakistan
| | - Syed W. Ahmad
- Department of chemical engineering , UET Lahore, Fsd Campus Pakistan
| | - Sajjad Ahmad
- Department of Natural Sciences and Humanities , UET Lahore, FSD Campus , Pakistan
| | - Haji G. Qutab
- Department of chemical engineering , UET Lahore, Fsd Campus Pakistan
| | - Muhammad Dasih
- Department of chemical engineering , UET Lahore, Fsd Campus Pakistan
| | - Muhammad Imran
- Department of chemical engineering , UET Lahore, Fsd Campus Pakistan
| |
Collapse
|
11
|
Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. SUSTAINABILITY 2020. [DOI: 10.3390/su12135401] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agri-food industries generate enormous amounts of fruit and vegetable processing wastes, which opens up an important research area aimed towards minimizing and managing them efficiently to support zero wastes and/or circular economy concept. These wastes remain underutilized owing to a lack of appropriate processing technologies vital for their efficient valorization, especially for recovery of health beneficial bioactives like dietary fibers. Dietary fiber finds wide applications in food and pharmaceutical industries and holds high promise as a potential food additive and/or as a functional food ingredient to meet the techno-functional purposes important for developing health-promoting value-added products. Based on this, the present review has been designed to support ‘zero waste’ and ‘waste to wealth’ concepts. In addition, the focus revolves around providing updated information on various sustainability challenges incurred towards valorization of fruit and vegetable wastes for extraction of health promoting dietary fibers.
Collapse
|
12
|
Hamidon NH, Abang Zaidel DN, Mohd Jusoh YM. Optimization of Pectin Extraction from Sweet Potato Peels Using Citric Acid and its Emulsifying Properties. Recent Pat Food Nutr Agric 2020; 11:202-210. [PMID: 32031081 DOI: 10.2174/2212798411666200207102051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pectin is a natural polysaccharide that has been used widely as a stabilizer in food emulsion system. OBJECTIVE This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying properties. METHODS Response surface methodology (RSM) has been utilized to investigate the pectin extracted from sweet potato peels using citric acid as the extracting solvent. Investigation of the effect of different extraction conditions namely temperature (°C), time (min) and solution pH on pectin yield (%) were conducted. A Box-Benhken design with three levels of variation was used to optimize the extraction conditions. RESULTS The optimal conditions determined were temperature 76°C, time 64 min and pH 1.2 with 65.2% yield of pectin. The degree of esterification (DE) of the sweet potato pectin was determined using Fourier Transform Infrared (FTIR) Spectroscopy. The pectin is high-methoxyl pectin with DE of 58.5%. Emulsifying properties of sweet potato pectin were investigated by measuring the zeta-potential, particle size and creaming index with addition of 0.4 and 1.0 wt % pectin to the emulsion. CONCLUSION Extraction using citric acid could improve the pectin yield. Improved emulsion stability was observed with the addition of the sweet potato pectin.
Collapse
Affiliation(s)
- Nurul Hazirah Hamidon
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Dayang Norulfairuz Abang Zaidel
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Yanti Maslina Mohd Jusoh
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
13
|
Mao Y, Lei R, Ryan J, Arrutia Rodriguez F, Rastall B, Chatzifragkou A, Winkworth-Smith C, Harding SE, Ibbett R, Binner E. Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I "hairy" pectin from sugar beet pulp. FOOD CHEMISTRY-X 2019; 2:100026. [PMID: 31423484 PMCID: PMC6690420 DOI: 10.1016/j.fochx.2019.100026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Conventional and microwave-assisted extraction of “hairy” pectin from sugar beet. Determined effect of heating method, temperature, time & pH on yield & composition. No difference between microwave and conventional extraction under conditions tested. Strong alkaline is favoured in rhamnogalacturonan-I “hairy” pectin extraction. Hydrothermal water extraction can be an alternative to strong alkaline extraction.
Sugar beet pectin is rich in rhamnogalacturonan-I (RG-I) region, which is a potential source of prebiotics. RG-I pectin cannot be extracted the same way as commercial homogalacturan-rich pectin using hot acid. Therefore, this study has explored several alternative methods, including microwave-assisted extraction (MAE) and conventional-solvent extraction (CSE) at atmospheric pressure using different solvents, and microwave-assisted hydrothermal extraction (MAHE) under pressure using water. No conclusive differences in microwave and conventional heating were found with heating rate controlled. The optimum treatment times of both MAE and CSE at 90 °C atmospheric pressure and regardless of the solvents used were 120 min; however, MAHE at 130 °C under pressure can dramatically reduce the time to 10 min. Alcohol-insoluble solids (AIS) extracted using pH13 solvent by MAE had both the highest RG-I yield at 25.3% and purity at 260.2 mg/g AIS, followed by AIS extracts using water by MAHE with 7.5% and 166.7 mg/g AIS respectively.
Collapse
Affiliation(s)
- Yujie Mao
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Rui Lei
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - John Ryan
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Fatima Arrutia Rodriguez
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Bob Rastall
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Charles Winkworth-Smith
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Eleanor Binner
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| |
Collapse
|
14
|
Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr Rev Food Sci Food Saf 2018; 17:512-531. [PMID: 33350136 DOI: 10.1111/1541-4337.12330] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Dept. of Agriculture and Environmental Sciences, Natl. Inst. of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Sunil Pareek
- Dept. of Agriculture and Environmental Sciences, Natl. Inst. of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Sunil Sharma
- Dept. of Agriculture and Environmental Sciences, Natl. Inst. of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131 028, India
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, 76230, Querétaro, México
| | - Maria Gloria Lobo
- Instituto Canario de Investigaciones Agrarias, La laguna-Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
15
|
Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Sci Rep 2017; 7:45341. [PMID: 28358137 PMCID: PMC5371791 DOI: 10.1038/srep45341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.
Collapse
|
16
|
Svagan AJ, Kusic A, De Gobba C, Larsen FH, Sassene P, Zhou Q, van de Weert M, Mullertz A, Jørgensen B, Ulvskov P. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release. PLoS One 2016; 11:e0168050. [PMID: 27992455 PMCID: PMC5167381 DOI: 10.1371/journal.pone.0168050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023] Open
Abstract
Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.
Collapse
Affiliation(s)
- Anna J. Svagan
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Anja Kusic
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Flemming H. Larsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip Sassene
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Qi Zhou
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Anette Mullertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Bindon KA, Li S, Kassara S, Smith PA. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8406-8419. [PMID: 27616021 DOI: 10.1021/acs.jafc.6b02900] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For better understanding of the factors that impact proanthocyanidin (PA) adsorption by insoluble cell walls or interaction with soluble cell wall-derived components, application of a commercial polygalacturonase enzyme preparation was investigated to modify grape cell wall structure. Soluble and insoluble cell wall material was isolated from the skin and mesocarp components of Vitis vinifera Shiraz grapes. It was observed that significant depolymerization of the insoluble grape cell wall occurred following enzyme application to both grape cell wall fractions, with increased solubilization of rhamnogalacturonan-enriched, low molecular weight polysaccharides. However, in the case of grape mesocarp, the solubilization of protein from cell walls (in buffer) was significant and increased only slightly by the enzyme treatment. Enzyme treatment significantly reduced the adsorption of PA by insoluble cell walls, but this effect was observed only when material solubilized from grape cell walls had been removed. The loss of PA through interaction with the soluble cell wall fraction was observed to be greater for mesocarp than skin cell walls. Subsequent experiments on the soluble mesocarp cell wall fraction confirmed a role for protein in the precipitation of PA. This identified a potential mechanism by which extracted grape PA may be lost from wine during vinification, as a precipitate with solubilized grape mesocarp proteins. Although protein was a minor component in terms of total concentration, losses of PA via precipitation with proteins were in the order of 50% of available PA. PA-induced precipitation could proceed until all protein was removed from solution and may account for the very low levels of residual protein observed in red wines. The results point to a dynamic interaction of grape insoluble and soluble components in modulating PA retention in wine.
Collapse
Affiliation(s)
- Keren A Bindon
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Sijing Li
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, School of Agriculture, Food, and Wine, The University of Adelaide , PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Stella Kassara
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Paul A Smith
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
18
|
Karboune S, Khodaei N. Structures, isolation and health-promoting properties of pectic polysaccharides from cell wall-rich food by-products: a source of functional ingredients. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Gurzawska K, Dirscherl K, Jørgensen B, Berglundh T, Jørgensen NR, Gotfredsen K. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits. Clin Oral Implants Res 2016; 28:298-307. [DOI: 10.1111/clr.12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Katarzyna Gurzawska
- Institute of Odontology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | | | - Bodil Jørgensen
- Department of Plant and Environmental Sciences; Faculty of Life Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Tord Berglundh
- Department of Periodontolgy; Institute of Odontology; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
- Institute of Clinical Medicine; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| | - Niklas Rye Jørgensen
- Research Center for Ageing and Osteoporosis; Departments of Diagnostics and Medicine and Clinical Biochemistry; Copenhagen University Hospital Glostrup; Glostrup Denmark
| | - Klaus Gotfredsen
- Institute of Odontology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
20
|
|
21
|
Khodaei N, Karboune S, Orsat V. Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J. Advances in the Functional Characterization and Extraction Processes of Dietary Fiber. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9134-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Babbar N, Dejonghe W, Gatti M, Sforza S, Elst K. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol 2015; 36:594-606. [DOI: 10.3109/07388551.2014.996732] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Neha Babbar
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Winnie Dejonghe
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
| | - Monica Gatti
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Stefano Sforza
- Department of Food Science, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Kathy Elst
- Separation & Conversion Technology, VITO-Flemish Institute for Technological Research, Boeretang, Mol, Belgium and
| |
Collapse
|
24
|
Time of harvest affects the yield of soluble polysaccharides extracted enzymatically from potato pulp. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2013.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Gurzawska K, Svava R, Yihua Y, Haugshøj KB, Dirscherl K, Levery SB, Byg I, Damager I, Nielsen MW, Jørgensen B, Jørgensen NR, Gotfredsen K. Osteoblastic response to pectin nanocoating on titanium surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:117-25. [PMID: 25175196 DOI: 10.1016/j.msec.2014.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Gurzawska
- Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup, Denmark; Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N, Denmark.
| | - Rikke Svava
- Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yu Yihua
- Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup, Denmark
| | - Kenneth Brian Haugshøj
- Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup, Denmark
| | - Kai Dirscherl
- Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby, Denmark
| | - Steven B Levery
- Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Inge Byg
- Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iben Damager
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Martin W Nielsen
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800, Denmark
| | - Bodil Jørgensen
- Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Niklas Rye Jørgensen
- Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup, Denmark
| | - Klaus Gotfredsen
- Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N, Denmark
| |
Collapse
|
27
|
Khodaei N, Karboune S. Enzymatic extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
|