1
|
Li Q, Feng J, Jia R, Wei H, Huang T, Zhang J, Xu D, Yang W, Li G. Mechanism of enhanced quality of Acetes chinensis powder-Alaska Pollock surimi: Gel properties, rheological properties, micro-structure. Food Res Int 2025; 205:116009. [PMID: 40032485 DOI: 10.1016/j.foodres.2025.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
To enhance the gel properties of Alaskan pollock surimi, the Acetes chinensis powder (ACP) with different contents (0.5-3 % w/w) was added to the surimi and its mechanisms were investigated. Results showed that adding 1.5 % ACP increased gel strength to 4198.47 g·cm, improved textural properties and storage modulus (G'), as well as reduced free water and drip loss by 49.7 % and 36.7 %, respectively. Moreover, secondary structure analysis showed a 33.5 % increase in β-sheet and a 34.7 % decrease in random coil, reflecting a more organized protein structure. This is associated with a 195.6 % increase in endogenous glutaminase activity and a 14.7 % increase in facilitated cross-linking of MHC heavy chains. ACP also promoted the unfolding of protein and the exposing of more sulfhydryl groups that converted into disulfide bonds (increased by 4.8 %). These resulted in a more compact protein structure, denser microstructure, and homogeneous gel network. In conclusion, 1.5 % ACP effectively improves surimi gel properties, offering valuable insights for optimizing thermal gelation.
Collapse
Affiliation(s)
- Qianqian Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jiehui Feng
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ru Jia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Huamao Wei
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Dalun Xu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Wenge Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| | - Gaoshang Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Zaghbib I, Abdullah JAA, Hassouna M, Romero A. Purification and Characterization of Transglutaminase Isolated from Sardine ( Sardina pilchardus) Flesh Waste. Polymers (Basel) 2025; 17:510. [PMID: 40006172 PMCID: PMC11859087 DOI: 10.3390/polym17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions by creating covalent cross-links between protein molecules and has been used to improve the physical and functional properties of protein-based foods. The objectives of this study were the extraction, purification, and biochemical characterization of TGase from sardine (Sardina pilchardus) flesh in order to provide a suitable TGase enzyme for food industry applications. The results showed a specific activity, yield, and purification fold of 357.14 U/mg protein, 36.74%, and 183.15, respectively. The enzyme exhibited maximal activity at 40 °C and pH 8.0, with a molecular weight of around 57 kDa. The effect of time on TGase thermal stability at 40 °C showed a gradual decrease in its catalytic activity during the incubation time until the enzyme was completely inactivated at 60 min. Additionally, the sardine TGase was found to be calcium-dependent. However, Mg2+ and Ba2+ ions were found to be effective in its activation to some extent and a total inhibition was shown by Zn2+ and Sr2+ ions. The TGase activity was affected markedly by NaCl and EDTA, and lost, respectively, about 80.7% and 36.49% from its activity by increasing the concentration (1.5 M NaCl and 20 mM EDTA). Based on the surface hydrophobicity and solubility results, the cross-linking of natural actomyosin mediated by TGase increased to a greater extent. The results revealed that sardine TGase possessed attractive qualities, making it a potential alternative to other TGase sources for food industry applications.
Collapse
Affiliation(s)
- Imen Zaghbib
- Laboratory of Technological Innovation and Food Security LR22-AGR01, Higher School of Food Industries of Tunisia (ESIAT), University of Carthage, 58 Alain Savary Street, El Khadhra City, Tunis 1003, Tunisia; (I.Z.); (M.H.)
- Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain
| | - Johar Amin Ahmed Abdullah
- Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain
| | - Mnasser Hassouna
- Laboratory of Technological Innovation and Food Security LR22-AGR01, Higher School of Food Industries of Tunisia (ESIAT), University of Carthage, 58 Alain Savary Street, El Khadhra City, Tunis 1003, Tunisia; (I.Z.); (M.H.)
| | - Alberto Romero
- Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
3
|
Liao J, Shi H, Wang J, Xia G, Zhao Y, Yu G, Shen X. Investigation of the Gel Properties and Gelation Mechanism of a Surimi Blend Composed of Skipjack Tuna ( Katsuwonus pelamis) and Purpleback Flying Squid ( Symplectoteuthis oualaniensis). Foods 2025; 14:621. [PMID: 40002064 PMCID: PMC11854482 DOI: 10.3390/foods14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The objective of the present study was to investigate the gel properties and gelation mechanism of a surimi blend consisting of Katsuwonus pelamis and Symplectoteuthis oualaniensis. Superior gel properties, including gel strength, cooking loss and water holding capacity, were observed in mixed surimi. With increasing proportions of K. pelamis in the blend, an increase in hardness, gumminess and chewiness emerged, which compromised the resilience and whiteness of the gels. The detection of apparent viscosity revealed the shear-thinning properties of mixed surimi. The results of the molecular force measurements and differential scanning calorimetry demonstrated that heterogeneous myofibrillar proteins interacted into rigid protein aggregates with the help of enhanced hydrophobic interactions, subsequently increasing the values of G' and G". According to the FTIR spectrum, as the proportion of K. pelamis gradually increased, the protein secondary structure of surimi transitioned from a random coil to a β-sheet, facilitating the formation of a more ordered network structure. A marked improvement in the microstructure was observed via SEM. Therefore, the incorporation of surimi can be employed to optimize gel properties.
Collapse
Affiliation(s)
- Jianwei Liao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (Y.Z.); (G.Y.)
| | - Gang Yu
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (Y.Z.); (G.Y.)
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China;
| |
Collapse
|
4
|
Yuan F, Li G, Li Z, Li M, Yang H, Yu X. Significant enhancement of the thermal stability and catalytic efficiency of transglutaminase in Streptomyces mobaraensis engineered through the novel S. mobaraensis genomic mutant library construction method GHR/Sml. Int J Biol Macromol 2024; 283:137733. [PMID: 39551287 DOI: 10.1016/j.ijbiomac.2024.137733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Herein, we developed a novel Streptomyces mobaraensis genomic mutant library construction method, GHR/Sml, to directly and significantly enhance the thermal stability and catalytic efficiency of TGase in the genome of S. mobaraensis. First, 13 key amino acid residues and their mutations for enhanced thermal stability were identified using error-prone PCR and site-directed mutagenesis. Then, the GHR/Sml method was developed to construct a TGase genomic mutant library with 13 mutations. Positive mutants S23Y/Y24N/S250R, S23Y/Y24N/S303K, S23Y/Y24N/K294L, S23Y/Y24N/S199A/R208L, S23Y/Y24N, and S250R were obtained from 1500 total mutants; their half-life values at 50 °C were increased by 9.3-, 9.5-, 8.7-, 9.0-, 6.9-, and 4.8-fold compared with that of TGLD, respectively. Furthermore, the kcat/Km of mutant S23Y/Y24N/S250R increased by 1.25-fold over that of TGLD. The activity of S23Y/Y24N/S250R reached 65.34 U/mL in a 1000-L fermenter, which was the highest activity reported. This novel GHR/Sml method is of great significance for systematically improving properties of additional enzymes in the genome of S. mobaraensis.
Collapse
Affiliation(s)
- Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Khiari Z. Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy. Mar Drugs 2024; 22:411. [PMID: 39330292 PMCID: PMC11433245 DOI: 10.3390/md22090411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
6
|
Roy VC, Islam MR, Sadia S, Yeasmin M, Park JS, Lee HJ, Chun BS. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar Drugs 2023; 21:485. [PMID: 37755098 PMCID: PMC10532690 DOI: 10.3390/md21090485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries' economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin-chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world.
Collapse
Affiliation(s)
- Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Rakibul Islam
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Sultana Sadia
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Momota Yeasmin
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| |
Collapse
|
7
|
Rana S, Singh A, Surasani VKR, Kapoor S, Desai A, Kumar S. Fish processing waste: a novel source of
non‐conventional
functional proteins. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudha Rana
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Arashdeep Singh
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Vijay Kumar Reddy Surasani
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| | - Swati Kapoor
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Ajay Desai
- College of Fisheries Dr BS Konkan Krishi Vidyapeeth Dapoli Maharashtra 415629 India
| | - Siddhnath Kumar
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| |
Collapse
|
8
|
Khalid W, Arshad MS, Aslam N, Majid Noor M, Siddeeg A, Abdul Rahim M, Zubair Khalid M, Ali A, Maqbool Z. Meat myofibril: Chemical composition, sources and its potential for cardiac layers and strong skeleton muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2044847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Noman Aslam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Majid Noor
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | | | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, HN, China
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Zhan F, Tang X, Sobhy R, Li B, Chen Y. Structural and rheology properties of pea protein isolate‐stabilised emulsion gel: Effect of crosslinking with transglutaminase. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuchao Zhan
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| | - Xiaomin Tang
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
| | - Remah Sobhy
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Egypt
| | - Bin Li
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| | - Yijie Chen
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| |
Collapse
|
10
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Aberoumand A, Baesi F. The Effects of Surimi Process on Amino Acids Profile of Sphyraena jello Fish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1882634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Aberoumand
- Department of Fisheries, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Ferideh Baesi
- MSc in Fisheries Department, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
12
|
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, Ashraf W, Yang F, Karim A, Khaliq A, Xia W. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1828452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sohail Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Fangshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahem Yar Khan, Pakistan
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Han X, Ma C, Qin L, Liu L. Cloning and expression of maize transglutaminase gene in Escherichia coliand its action over dairy proteins. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiue Han
- College of Food Science Northeast Agricultural University Harbin China
| | - Chunli Ma
- College of Food Science Northeast Agricultural University Harbin China
| | - Lanxia Qin
- College of Food Science Northeast Agricultural University Harbin China
| | - Lu Liu
- College of Food Science Northeast Agricultural University Harbin China
| |
Collapse
|
14
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
15
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
16
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|
17
|
Fatima SW, Khare SK. Current insight and futuristic vistas of microbial transglutaminase in nutraceutical industry. Microbiol Res 2018; 215:7-14. [PMID: 30172311 DOI: 10.1016/j.micres.2018.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
Microbial transglutaminase (MTGase) has become a driving force in the food industry cross-linking the food proteins. MTGase-the nature's molecular glue is recognized to reorient food protein's functional properties without affecting its nutritive value. The scope and approach of this review is to have insight on the action mechanism of MTGase and impact of molecular linkage on functional proteins in various protein moieties in development of innovative features in food production for better consumer's choice and satisfaction. The study covers a wide range of published work across food industries involving innovative use of MTGase, an environment friendly production approach for commercial utilization to get better outcome in terms of culinary delight. The intrinsic biochemical properties and structural information by sequence analysis and clustering validates the mode of reaction mechanism of the biological glue enzyme. The review singles out how the MTGase emerged as a prime choice in ever evolving food industry.
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Sirikharin R, Söderhäll I, Söderhäll K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. FISH & SHELLFISH IMMUNOLOGY 2018; 80:546-549. [PMID: 29960064 DOI: 10.1016/j.fsi.2018.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Transglutaminase (TGase) from signal crayfish (Pacifastacus leniusculus) and its activity at low temperatures was studied. TGase is an abundant protein in the hematopoietic (HPT) cells and this tissue was used for TGase enzyme preparation. The optimal temperature and pH for the activity of crayfish TGase were determined. We found that TGase activity at 4 °C showed nearly the same activity as at a temperature of 22 °C. TGase activity from crayfish was compared with guinea pig liver TGase activity at 4 °C and the crayfish TGase displayed a higher activity while guinea pig liver TGase had a very low activity at this low temperature. By comparing kinetic parameters to guinea pig liver TGase, the results showed that a high activity of crayfish TGase was due to a decreasing Km value for pentylamine as a substrate, while it did not affect the kcat value (at 22 °C). The amino acid sequences of a krill and a crayfish TGase, which both are cold adapted, do not give any clue to why these two enzymes are cold-adapted. These results demonstrate that crayfish TGase is adapted to have significant activity at low temperatures and since crayfish are living in quite cold waters this is an interesting adaptation of this enzyme.
Collapse
Affiliation(s)
- Ratchanok Sirikharin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75326, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75326, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75326, Uppsala, Sweden.
| |
Collapse
|
19
|
Separation of transglutaminase using aqueous two-phase systems composed of two pH-response polymers. J Chromatogr A 2018; 1555:106-112. [DOI: 10.1016/j.chroma.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/20/2022]
|
20
|
A cold active transglutaminase from Antarctic krill ( Euphausia superba ): Purification, characterization and application in the modification of cold-set gelatin gel. Food Chem 2017; 232:155-162. [DOI: 10.1016/j.foodchem.2017.03.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022]
|
21
|
Supreetha BU, Shamasundar BA. Setting Ability of Threadfin Bream ( Nemipterus japonicus) Meat as Affected by Freezing and Frozen Storage with Special Reference to Transglutaminase Enzyme Activity and Rheological Properties. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1316332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bellvadi U. Supreetha
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
| | - Bangalore A. Shamasundar
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, India
| |
Collapse
|
22
|
Effects of Micron Fish Bone with Different Particle Size on the Properties of Silver Carp(Hypophthalmichthys molitrix)Surimi Gels. J FOOD QUALITY 2017. [DOI: 10.1155/2017/8078062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Qualities of silver carp surimi (SCS) gels incorporated with micron fish bone of different particle size (22 to 0.12 μm) were evaluated. Textural values, whiteness, and water holding capacity of the SCS gels with setting significantly increased (P<0.05) as the micron fish bone particle size decreased. As the particle size decreased, more calcium ion was apparently released from the fish bone (P<0.05). Consequently the released calcium ion increased the activity of endogenous transglutaminase (TGase) and resulted in the formation of more myosin heavy chain (MHC) cross-links in the SCS gel with setting. Fish bone with particle size below 0.48 μm was steadily trapped in the three-dimensional SCS gel network without disrupting the matrices. Results indicated that size reduction of the incorporated micron fish bone improved qualities of the SCS gel with setting by the means of releasing more calcium ion and maintaining better gel matrices.
Collapse
|
23
|
Venugopal V. Enzymes from Seafood Processing Waste and Their Applications in Seafood Processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:47-69. [PMID: 27452165 DOI: 10.1016/bs.afnr.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commercial fishery processing results in discards up to 50% of the raw material, consisting of scales, shells, frames, backbones, viscera, head, liver, skin, belly flaps, dark muscle, roe, etc. Besides, fishing operations targeted at popular fish and shellfish species also result in landing of sizeable quantity of by-catch, which are not of commercial value because of their poor consumer appeal. Sensitivity to rapid putrefaction of fishery waste has serious adverse impact on the environment, which needs remedial measures. Secondary processing of the wastes has potential to generate a number of valuable by-products such as proteins, enzymes, carotenoids, fat, and minerals, besides addressing environmental hazards. Fishery wastes constitute good sources of enzymes such as proteases, lipases, chitinase, alkaline phosphatase, transglutaminase, hyaluronidase, acetyl glycosaminidase, among others. These enzymes can have diverse applications in the seafood industry, which encompass isolation and modification of proteins and marine oils, production of bioactive peptides, acceleration of traditional fermentation, peeling and deveining of shellfish, scaling of finfish, removal of membranes from fish roe, extraction of flavors, shelf life extension, texture modification, removal of off-odors, and for quality control either directly or as components of biosensors. Enzymes from fish and shellfish from cold habitats are particularly useful since they can function comparatively at lower temperatures thereby saving energy and protecting the food products. Potentials of these applications are briefly discussed.
Collapse
Affiliation(s)
- V Venugopal
- Seafood Technology Section, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
24
|
Li S, Ding Z, Cao X. Separation of transglutaminase by thermo-responsive affinity precipitation using l-thyroxin as ligand. SPRINGERPLUS 2016; 5:37. [PMID: 26835219 PMCID: PMC4713401 DOI: 10.1186/s40064-016-1680-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/10/2023]
Abstract
Transglutaminase (TGase) is widely used in the food industry. In this study, TGase was purified by affinity precipitation using l-thyroxin, coupled to a thermo-responsive polymer (PNBN), as an affinity ligand. The lower critical solution temperature and recovery of the affinity polymer were 31.0 °C and 99.6 %, respectively. The optimal adsorption condition was 0.02 mol/L phosphate buffer (pH 5.0). The recoveries 99.01 % (protein) and 98.85 % (activity) were obtained by 0.2 mol/L Gly-NaOH buffer (pH 10.0) as the elution agent. Circular dichroism spectroscopy and FortéBio Octet system were used to explore the interactions between l-thyroxin and TGase. The results show that l-thyroxin is suitable for affinity precipitation of TGase. The purity of the final product was verified using sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Sipeng Li
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Zhaoyang Ding
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
25
|
Yin T, Park JW. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates. Food Chem 2015; 180:42-47. [DOI: 10.1016/j.foodchem.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
|
26
|
Monteiro MLG, Mársico ET, Lázaro CA, da Silva Canto ACVC, Lima BRCDC, da Cruz AG, Conte-Júnior CA. Effect of transglutaminase on quality characteristics of a value-added product tilapia wastes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:2598-609. [PMID: 25892758 PMCID: PMC4397336 DOI: 10.1007/s13197-014-1327-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
The aim of this work was to evaluate the physico-chemical, instrumental color and texture, and sensory qualities of restructured tilapia steaks elaborated with small sized (non-commercial) tilapia fillets and different levels of microbial transglutaminase (MTG). Four concentrations of MTG were used: CON (0 % MTG), T1 (0.1 % MTG), T2 (0.5 % MTG), and T3 (0.8 % MTG). In addition, bacterial content and pH shifts were also evaluated during 90 days of frozen storage. The different levels of MTG did not affect (P > 0.05) either the proximate composition of the restructured tilapia steaks or the bacterial growth during the frozen storage. MTG improved (P < 0.05) cooking yield and instrumental hardness and chewiness as well as sensory (salty taste, succulence and tenderness) attributes; strongly contributing to greater overall acceptance. Therefore, restructured tilapia steaks manufactured with MTG are potentially valued-added products with good consumer acceptance and better purchase-intention than steaks formulated with 0 % MTG.
Collapse
Affiliation(s)
- Maria Lúcia Guerra Monteiro
- />Department of Food Technology, Faculty of Veterinary Medicine, University Federal Fluminense, Vital Brazil Filho 64, 24230-340 Niterói, Rio de Janeiro Brazil
| | - Eliane Teixeira Mársico
- />Department of Food Technology, Faculty of Veterinary Medicine, University Federal Fluminense, Vital Brazil Filho 64, 24230-340 Niterói, Rio de Janeiro Brazil
| | - César Aquiles Lázaro
- />College of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación Cdra. 28 s/n, P.O. Box 03-5137, San Borja, Lima Peru
| | | | - Bruno Reis Carneiro da Costa Lima
- />Department of Food Technology, Faculty of Veterinary Medicine, University Federal Fluminense, Vital Brazil Filho 64, 24230-340 Niterói, Rio de Janeiro Brazil
| | - Adriano Gomes da Cruz
- />Federal Institute of Education, Science and Technology of Rio de Janeiro, Rua Senador Furtado Maracanã, 20270-021 Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Júnior
- />Department of Food Technology, Faculty of Veterinary Medicine, University Federal Fluminense, Vital Brazil Filho 64, 24230-340 Niterói, Rio de Janeiro Brazil
| |
Collapse
|
27
|
Alfaro ADT, Balbinot E, Weber CI, Tonial IB, Machado-Lunkes A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9096-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Cardoso C, Mendes R. The effect of linseed and psyllium fibre on the gelling properties of unwashed mince from farmed meagre ( Argyrosomus regius). Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Cardoso
- Portuguese Institute for the Sea and Atmosphere (IPMA); Av. Brasília; 1449-006; Lisbon; Portugal
| | - Rogério Mendes
- Portuguese Institute for the Sea and Atmosphere (IPMA); Av. Brasília; 1449-006; Lisbon; Portugal
| |
Collapse
|