1
|
Yu Z, Liu H, Li D, Chen X, Ao M, Jin W, Yu L. N-(3-Methozybenzyl)-(9 Z,12 Z,15 Z)-octadecatrienamide from maca ( Lepidium meyenii Walp.) ameliorates corticosterone-induced testicular toxicity in rats. Food Funct 2021; 11:7762-7774. [PMID: 32797129 DOI: 10.1039/d0fo00890g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study investigated the protective effects of maca ethanol extract (EEM) and N-(3-methozybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (M 18:3) on corticosterone (CORT)-induced testicular toxicity. Male Wistar rats were divided into 5 groups. Except for the control group, CORT (40 mg per kg·bw) was injected subcutaneously for 21 consecutive days to induce testicular toxicity. 1 h before CORT injection, the rats were treated with EEM (400 mg per kg·bw) and M 18:3 (5 mg per kg·bw, 25 mg per kg·bw) by gavage, except for the control group and model group. Epididymal sperm and biochemical, and histological parameters were evaluated for the protective effects of the drugs. EEM (400 mg per kg·bw) and M 18:3 (5 mg per kg·bw, 25 mg per kg·bw) increased the sperm concentration and sperm motility, decreased the production of abnormal sperms, and increased the number of spermatogonia and primary spermatocytes in the seminiferous tubules of CORT-induced rats. Moreover, EEM and M 18:3 decreased the MDA levels and the positive expression rates of TUNEL, whereas they increased the activities of SOD, CAT, GSH-Px, and GST, and the contents of GSH in the testicles of CORT-induced rats. Furthermore, EEM and M 18:3 alleviated CORT-induced reduction in the positive expression rates of PCNA and Ki67 in the testicles of rats. Besides, EEM and M 18:3 reduced the expression levels of Keap-1 and increased the expression levels of Nrf2, HO-1, γ-GCS, and NQO1 in the testicles of CORT-induced rats. In summary, the protective effects of EEM and M 18:3 may be attributed to their anti-oxidative and anti-apoptotic properties.
Collapse
Affiliation(s)
- Zejun Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Hao Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Dong Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. and Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
2
|
da Silva Leitão Peres N, Cabrera Parra Bortoluzzi L, Medeiros Marques LL, Formigoni M, Fuchs RHB, Droval AA, Reitz Cardoso FA. Medicinal effects of Peruvian maca (Lepidium meyenii): a review. Food Funct 2020; 11:83-92. [PMID: 31951246 DOI: 10.1039/c9fo02732g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peruvian maca (Lepidium meyenii) is a root native to the Andean region, cultivated for at least 2000 years. Maca is rich in fiber, a large number of essential amino acids, fatty acids, and other nutrients, including vitamin C, copper, iron, and calcium. Besides these essential nutrients, this root contains bioactive compounds responsible for benefits to the human body, which has caused a considerable increase in its consumption in the last 20 years worldwide. This review documents the Peruvian maca composition and the recent findings regarding the medicinal effects of this root in sexual dysfunction regulation, neuroprotective effects, action in memory enhancement, antidepressant, antioxidant, anti-cancer, and anti-inflammatory activities, and skin protection.
Collapse
Affiliation(s)
- Natália da Silva Leitão Peres
- Department of Food Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, Paraná 87301-005, Brazil.
| | | | | | | | | | | | | |
Collapse
|
3
|
Chemical composition and health effects of maca (Lepidium meyenii). Food Chem 2019; 288:422-443. [PMID: 30902313 DOI: 10.1016/j.foodchem.2019.02.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Maca (Lepidium meyenii Walpers) has emerged as a popular functional plant food due to various claimed health effects. This review details the major (i.e., starch, dietary fiber, and protein) and minor constituents (i.e., minerals, non-starch polysaccharides, polyphenols (flavonolignans), macaenes, macamides, glucosinolates, and alkaloids) of maca (root and aerial parts). Diverse health effects of maca are also summarized. Various bioactivities of maca include enhanced reproductive health, antifatigue, antioxidation, neuroprotection, antimicrobial activity, anticancer, hepatoprotection, immunomodulation, and improving skin health and digestive system's function. Plant genetics, botanical parts, processing, extraction, and experimental protocols represent the major factors affecting the chemical composition, physicochemical attributes, and health effects of maca-based products. However, clinical studies to support the claimed health effects of maca and related mechanisms appear to be lacking. Product innovation and diversification in food and non-food utilization of different parts of maca to maximize the value perceptions are suggested.
Collapse
|
4
|
Pupin B, Nahas E. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil. J Appl Microbiol 2014; 116:851-64. [PMID: 24314121 DOI: 10.1111/jam.12413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 11/28/2022]
Abstract
AIM Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. METHODS AND RESULTS Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. CONCLUSION The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. SIGNIFICANCE AND IMPACT OF THE STUDY Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest.
Collapse
Affiliation(s)
- B Pupin
- Program of Agropecuary Microbiology, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | | |
Collapse
|