1
|
Yilmaz MD, Altves S, Ozcelik AB, Erbas-Cakmak S. Biocompatible Hyaluronic Acid-Stabilized Copper Nanoparticles for the Selective Oxidation of Morin Dye by H 2O 2. ACS OMEGA 2025; 10:14431-14438. [PMID: 40256537 PMCID: PMC12004143 DOI: 10.1021/acsomega.5c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
In this study, we report the synthesis and characterization of biocompatible hyaluronic acid-stabilized copper nanoparticles (HA-CuNPs) and their catalytic evaluation in the oxidation of morin as a model compound. HA-CuNPs have been characterized by several state-of-the-art analytical techniques, such as FESEM, STEM, UV-Vis, DLS, zeta potential, FTIR and XRD analyses. The average particle size and surface zeta potential of HA-CuNPs were determined to be 35 nm and -28 mV, respectively. The catalytic activity of HA-CuNPs was investigated in the oxidative degradation of morin dye in the presence of H2O2. The kinetic data show that the oxidation process follows a pseudo-first-order reaction, and the rate constant is dependent on the concentrations of morin, H2O2, and HA-CuNPs. In addition, HA-CuNPs were employed for the selective oxidation of morin on four important synthetic dyes, i.e., Congo red, methylene blue, zinc-phthalocyanine, and quinizarin. The high selectivity indicates the possible use of HA-CuNPs as low-temperature bleach catalysts for the oxidation of stains such as tea, coffee, and red wine, which contain polyphenolic compounds like morin. Further, cytotoxicity studies demonstrated the low toxicity and high biocompatibility of HA-CuNPs to Caco-2 human colorectal adenocarcinoma cells, MCF-7 human breast cancer cells, and HUVEC normal human umbilical vein endothelial cells. Combining biocompatibility with high catalytic activity could boost the potential of this eco-friendly nanocatalyst in various applications, such as wastewater treatment, laundry, textile, and wood pulp bleaching.
Collapse
Affiliation(s)
- M. Deniz Yilmaz
- Department
of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42140, Türkiye
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
| | - Safaa Altves
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
| | - Aliye Beyza Ozcelik
- Department
of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye
| | - Sundus Erbas-Cakmak
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
- Department
of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye
| |
Collapse
|
2
|
Chen X, Deng Z, Zhang C, Zheng S, Pan Y, Wang H, Li H. WITHDRAWN: Is antioxidant activity of flavonoids mainly through the hydrogen-atom transfer mechanism? Food Res Int 2024; 196:108081. [PMID: 39614461 DOI: 10.1016/j.foodres.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Chengyue Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Yao Pan
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China.
| |
Collapse
|
3
|
Wang N, Zang ZH, Sun BB, Li B, Tian JL. Recent advances in computational prediction of molecular properties in food chemistry. Food Res Int 2024; 192:114776. [PMID: 39147479 DOI: 10.1016/j.foodres.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The combination of food chemistry and computational simulation has brought many impacts to food research, moving from experimental chemistry to computer chemistry. This paper will systematically review in detail the important role played by computational simulations in the development of the molecular structure of food, mainly from the atomic, molecular, and multicomponent dimension. It will also discuss how different computational chemistry models can be constructed and analyzed to obtain reliable conclusions. From the calculation principle to case analysis, this paper focuses on the selection and application of quantum mechanics, molecular mechanics and coarse-grained molecular dynamics in food chemistry research. Finally, experiments and computations of food chemistry are compared and summarized to obtain the best balance between them. The above review and outlook will provide an important reference for the intersection of food chemistry and computational chemistry, and is expected to provide innovative thinking for structural research in food chemistry.
Collapse
Affiliation(s)
- Nuo Wang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bing-Bing Sun
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China.
| |
Collapse
|
4
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Miličević A. Flavonoid Oxidation Potentials and Antioxidant Activities-Theoretical Models Based on Oxidation Mechanisms and Related Changes in Electronic Structure. Int J Mol Sci 2024; 25:5011. [PMID: 38732228 PMCID: PMC11084570 DOI: 10.3390/ijms25095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA for a flavonoid of interest, help us explain the relationship between Ep1, AA and electronic structure. The model development went forward with enlarging the set of flavonoids and, that way, we had to learn how to deal with the structural peculiarities of some of the 35 flavonoids from the final calibration set, for which the Ep1 measurements were all made in our laboratory. The developed models were simple quadratic models based either on atomic spin densities or differences in the atomic charges of the species involved in any of the three main oxidation mechanisms. The best model takes into account all three mechanisms of oxidation, single electron transfer-proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), yielding excellent statistics (R2 = 0.970, S.E. = 0.043).
Collapse
Affiliation(s)
- Ante Miličević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Alipour B, Kassaee MZ. Comparison of Cu 3, Cu 5, and Cu 7 clusters as potential antioxidants: A theoretical quest. J Mol Model 2024; 30:132. [PMID: 38625549 DOI: 10.1007/s00894-024-05933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Herein, we compare and contrast the dual roles of Cun clusters (n = 3, 5, and 7 atoms) in scavenging or generating RO• free radicals from ROH at the theoretical levels (where R = H, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). This investigation is performed in water media to mimic the actual environment in the biological system. In the presence of the Cun clusters, bond dissociation energy (BDE) of RO-H and R-OH is reduced. This is clear evidence for the increased possibility of both the RO-H and R-OH bonds breakage and scavenging of RO• radicals. The nature of anchoring bonds responsible for the interaction of Cun clusters with ROH and RO• are interpreted using the quantum theory of atoms in molecules (QTAIM) and the natural bond orbital (NBO) analysis. The DFT results indicate that the O•⋅⋅⋅•Cu bond is stronger and has more covalent character in RO•⋅⋅⋅•Cun radical complexes than in ROH⋅⋅⋅•Cun. Therefore, the interactions of Cun clusters with RO• radicals (antioxidant) are more pronounced than their interactions with ROH non-radicals (pro-oxidant). METHODS The GAMESS software package was utilized in this paper. The B3LYP and M06 functions with the 6-311 + + G(d,p), and LANL2DZ/SDD basis sets was used to perform the important geometrical parameters of RO•⋅⋅⋅•Cun and ROH⋅⋅⋅•Cun, binding energy (Eb), and bond dissociation energy (BDE).
Collapse
Affiliation(s)
- Batoul Alipour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mohamad Zaman Kassaee
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Sunoqrot S, Alkurdi M, Al Bawab AQ, Hammad AM, Tayyem R, Abu Obeed A, Abufara M. Encapsulation of morin in lipid core/PLGA shell nanoparticles significantly enhances its anti-inflammatory activity and oral bioavailability. Saudi Pharm J 2023; 31:845-853. [PMID: 37228320 PMCID: PMC10203777 DOI: 10.1016/j.jsps.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/07/2023] [Indexed: 05/27/2023] Open
Abstract
Morin (3,5,7,2',4'-pentahydroxyflavone; MR) is a bioactive plant polyphenol whose therapeutic efficacy is hindered by its poor biopharmaceutical properties. The purpose of this study was to develop a nanoparticle (NP) formulation to enhance the bioactivity and oral bioavailability of MR. The nanoprecipitation technique was employed to encapsulate MR in lipid-cored poly(lactide-co-glycolide) (PLGA) NPs. The optimal NPs were about 200 nm in size with an almost neutral surface charge and a loading efficiency of 82%. The NPs exhibited sustained release of MR within 24 h. In vitro antioxidant assays showed that MR encapsulation did not affect its antioxidant activity. On the other hand, anti-inflammatory assays in lipopolysaccharide-stimulated macrophages revealed a superior anti-inflammatory activity of MR NPs compared to free MR. Furthermore, oral administration of MR NPs to mice at a single dose of 20 mg/kg MR achieved a 5.6-fold enhancement in bioavailability and a prolongation of plasma half-life from 0.13 to 0.98 h. The results of this study present a promising NP formulation for MR which can enhance its oral bioavailability and bioactivity for the treatment of different diseases such as inflammation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malak Alkurdi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | | | |
Collapse
|
8
|
Kamel EM, Bin-Ammar A, El-Bassuony AA, Alanazi MM, Altharawi A, Ahmeda AF, Alanazi AS, Lamsabhi AM, Mahmoud AM. Molecular modeling and DFT studies on the antioxidant activity of Centaurea scoparia flavonoids and molecular dynamics simulation of their interaction with β-lactoglobulin. RSC Adv 2023; 13:12361-12374. [PMID: 37091601 PMCID: PMC10116863 DOI: 10.1039/d3ra01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Plants of the genus Centaurea have been widely used as natural therapeutics in different countries. This study investigated the antioxidant-structure activity relationship of eight flavonoids isolated from Centaurea scoparia using DFT studies and in vitro radical scavenging and xanthine oxidase (XO) inhibition assays, and to correlate the theoretical values with the experimental findings. Docking analysis was carried out to explore the binding modes of the isolated phytochemicals with XO and bovine β-lactoglobulin (BLG). Interactions of the isolated compounds with BLG were studied using molecular dynamics (MD) simulations which revealed the involvement of hydrogen bonding. The root-mean-square deviation (RMSD) of BLG and BLG-flavonoid complexes reached equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration (Rg) and solvent accessible surface area (SASA) revealed that various systems were stabilized at approximately 2500 ps. In addition, the RMS fluctuations profile indicated that the ligand's active site exerted rigidity behavior during the simulation. The hydrogen atom transfer (HAT) and the energies of hydrogen abstractions were estimated by calculating the bond dissociation enthalpy (BDE) of O-H in gas phase and water. The isolated compounds showed radical scavenging and XO inhibitory activities along with binding affinity with XO as revealed in silico. The BDE was linked to the radical scavenging processes occurring in polar solvents. These processes are single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Our calculations indicated the agreement between the calculated results and the experimentally measured antioxidant activity of the flavonoids isolated from C. scoparia.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail Saudi Arabia
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University Ajman 346 United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University Ajman 346 United Arab Emirates
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University Salah Salim St. Beni-Suef 62514 Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK
| |
Collapse
|
9
|
Ragi C, Muraleedharan K. Antioxidant activity of Hibiscetin and Hibiscitrin: insight from DFT, NCI, and QTAIM. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Deng Q, Jiang L, Yu Y, Yang Y. Theoretical exploration of the mechanism of α-pinene hydrogenation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Synthesis of 4-Aminopyrazol-5-ols as Edaravone Analogs and Their Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227722. [PMID: 36431823 PMCID: PMC9699072 DOI: 10.3390/molecules27227722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests. In all tests, 4-Amino-3-pyrazol-5-ols were effective. The lead compound, 4-amino-3-methyl-1-phenylpyrazol-5-ol hydrochloride (APH), showed the following activities: ABTS, 0.93 TEAC; FRAP, 0.98 TE; and ORAC, 4.39 TE. APH and its NH-analog were not cytotoxic against cultured normal human fibroblasts even at 100 μM, in contrast to EDA. According to QM calculations, 4-aminopyrazolols were characterized by lower gaps, IP, and η compared to 4-hydroxyiminopyrazol-5-ones, consistent with their higher antioxidant activities in ABTS and FRAP tests, realized by the SET mechanism. The radical-scavenging action evaluated in the ORAC test occurred by the HAT mechanism through OH bond breaking in all compounds, directly dependent on the dissociation energy of the OH bond. All the studied compounds demonstrated the absence of anticholinesterase activity and moderate inhibition of CES by some 4-aminopyrazolols. Thus, the lead compound APH was found to be a good antioxidant with the potential to be developed as a novel therapeutic drug candidate in the treatment of diseases associated with oxidative stress.
Collapse
|
12
|
Trypsin stabilized copper nanoclusters as a highly sensitive and selective probe for fluorescence sensing of morin and temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Shang C, Zhang Y, Sun C, Wang L. Tactfully improve the antioxidant activity of 2′-hydroxychalcone with the strategy of substituent, solvent and intramolecular hydrogen bond effects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Baruah I, Kashyap C, Guha AK, Borgohain G. Insights into the Interaction between Polyphenols and β-Lactoglobulin through Molecular Docking, MD Simulation, and QM/MM Approaches. ACS OMEGA 2022; 7:23083-23095. [PMID: 35847254 PMCID: PMC9280950 DOI: 10.1021/acsomega.2c00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have explored the interaction of three different polyphenols with the food protein β-lactoglobulin. Antioxidant activities of polyphenols are influenced by complexation with the protein. However, studies have shown that polyphenols after complexation with the protein can be more beneficial due to enhanced antioxidant activities. We have carried out molecular docking, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) studies on the three different protein-polyphenol complexes. We have found from molecular docking studies that apigenin binds in the internal cavity, luteolin binds at the mouth of the cavity, and eriodictyol binds outside the cavity of the protein. Docking studies have also provided binding free energy and inhibition constant values that showed that eriodictyol and apigenin exhibit better binding interactions with the protein than luteolin. For eriodictyol and luteolin, van der Waals, hydrophobic, and hydrogen bonding interactions are the main interacting forces, whereas for apigenin, hydrophobic and van der Waals interactions play major roles. We have calculated the root mean square deviation (RMSD), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), interaction energies, and hydrogen bonds of the protein-polyphenol complexes. Results show that the protein-eriodictyol complex is more stable than the other complexes. We have performed ONIOM calculations to study the antioxidant properties of the polyphenols. We have found that apigenin and luteolin act as better antioxidants than eriodictyol does on complexation with the protein, which is consistent with the results obtained from MD simulations.
Collapse
|
15
|
Synthesis, characterization and bioactivity of novel 8-hydroxyquinoline derivatives: Experimental, molecular docking, DFT and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Li H, Zhang C, Deng Z, Zhang B, Li H. Antioxidant activity of delphinidin and pelargonidin: Theory and practice. J Food Biochem 2022; 46:e14192. [PMID: 35484873 DOI: 10.1111/jfbc.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
The quantum chemical density functional theory and in vitro chemical-based antioxidant assays were used to research the reaction mechanism of delphinidin/pelargonidin with free radicals including superoxide anion radicals (O2 - ∙) and hydroperoxide radicals (OOH∙). The geometric configuration, bond dissociation energy, PCM (polarizable continuum model) solvent model reaction enthalpy changes were studied to explain the transition states, and the reaction enthalpy change value was calculated to determine the active site. From the results of spatial configuration, delphinidin showed a stronger conjugation effect than that of pelargonidin. The dihedral angle between the three rings of delphinidin was almost 180°, and the angle between the B and C rings was only -2.81868°. Both coplanar and antioxidant activity of delphinidin was better than pelargonidin. The consequences of reaction enthalpy change in PCM were consistent with the bond dissociation energy. The phenolic hydroxyl bond dissociation energy of delphinidin was slightly smaller than that of pelargonidin. Moreover, the C4' site of delphinidin and the C3 site of pelargonidin were the active sites for scavenging free radicals. The free radical scavenging ability of delphinidin was marginally higher than that of pelargonidin. On the other hand, in vitro antioxidant results proved the scavenging ability of delphinidin and pelargonidin on superoxide anions, DPPH, and ABTS∙+ free radicals. It was shown that the chemical-based antioxidant activity was consistent with the theoretical calculation results, with delphinidin showing greater antioxidant activity. These results could explain the antioxidant mechanism of delphinidin/pelargonidin in scavenging free radicals from chemical reactions. PRACTICAL APPLICATIONS: This manuscript explained the antioxidant mechanism of delphinidin/pelargonidin in scavenging free radicals through the analysis of the geometric configuration of delphinidin/pelargonidin and the theoretical calculation of the reaction transition state. It could also speculate on the possible reaction sites, and provide a basis for judging how to efficiently select antioxidants with great antioxidant activity.
Collapse
Affiliation(s)
- Hongan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengyue Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Institute for Advanced Study, University of Nanchang, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Palladium Nanoparticle-Modified Carbon Spheres @ Molybdenum Disulfide Core-Shell Composite for Electrochemically Detecting Quercetin. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quercetin (QR), abundant in plants, is used to treat colitis and gastric ulcer and is also a promising anticancer agent. To quantificationally detect QR, a sensitive electrochemical sensor was fabricated by palladium nanoparticles loaded on carbon sphere @ molybdenum disulfide nanosheet core-shell composites (Cs@MoS2-Pd NPs). The Cs@MoS2-Pd NPs worked to remedy the shortcomings of MoS2 and exhibited good catalytic activity to QR. The oxidation reaction of QR on Cs@MoS2-Pd NPs/GCE involved two electrons and two protons. Furthermore, the molecular surface for electrostatic potential, Laplacian bond order, and Gibbs free energy were computationally simulated to speculate the order and site of the oxidation of QR. The results showed that the 4′ O–H and 3′ O–H broke successively during the oxidation reaction. When the concentration of QR was within 0.5 to 12 μM, the fabricated sensor could achieve linear detection, and the detection limit was 0.02 μM (S/N = 3). In addition, the sensor possessed good selectivity, repeatability, and stability, which has a broad prospect in practical application.
Collapse
|
18
|
Dehkordi MM, Asgarshamsi MH, Fassihi A, Zborowski KK. A Comparative DFT Study on the Antioxidant Activity of some Novel 3-hydroxypyridine-4-one Derivatives. Chem Biodivers 2022; 19:e202100703. [PMID: 34997823 DOI: 10.1002/cbdv.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
The current study on the antioxidant activity of Kojic acid and 3-hydroxypyridine-4-one derivatives was performed by implementation of density functional theory calculations with the B3LYP hybrid functional and the 6-311++ G** basis set in Polarizable Continuum Model. Compounds under evaluation were previously synthesized by our research group. The DPPH scavenging effect and IC 50 values of them in mM concentrations were evaluated. Subsequently, various electronic and energetic descriptors such as HOMO and LUMO energy gaps, bonding dissociation enthalpy of OH bond, ionization potential, electron affinity, hardness, and softness, NBOs and spin density of radical and neutral species were used to study antioxidant properties of investigated compounds. The computations detected two compounds, HP3 and HP4 , with significant antioxidant activity. Energetic descriptors indicated that SPLET mechanism is preferred over than other antioxidant mechanism and computational results were in accordance with the experimental results.
Collapse
Affiliation(s)
- Mehrdad M Dehkordi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | - Mohammad H Asgarshamsi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | - Afshin Fassihi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
19
|
Antioxidant activities of Alyssum virgatum plant and its main components. Struct Chem 2021. [DOI: 10.1007/s11224-021-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Asgarshamsi MH, Fassihi A, Hassanzadeh F, Saghaei L, Attar AM, Mohammad-Beigi H. Synthesis, antioxidant activity, and density functional theory study of some novel 4-[(benzo[ d]thiazol-2-ylimino)methyl]phenol derivatives: a comparative approach for the explanation of their radical scavenging activities. Res Pharm Sci 2021; 16:35-47. [PMID: 33953773 PMCID: PMC8074808 DOI: 10.4103/1735-5362.305187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
Background and purpose: Radicals produced by Fenton and Haber-Weiss reactions play detrimental roles in our body. Some oxidized proteins as toxic configurations are identified in amyloid-β deposits. These deposits mostly occur in conditions, such as Alzheimer’s disease. Here, we report the synthesis, evaluation of the antioxidant activity, and implementation of density functional theory (DFT) calculations of some4- [(benzo[d]thiazol-2-ylimino) methyl]phenol derivatives. The aim of this study was to provide a comparative theoretical-experimental approach to explain the antioxidant activities of the compounds. Experimental approach: Compounds were synthesized by the reaction between para hydroxybenzaldehyde and aminobenzothiazole derivatives. The scavenging activity of the compounds was evaluated. Various electronic and energetic descriptors such as high occupied molecular orbital and low unoccupied molecular orbital energy gaps, bonding dissociation enthalpy of OH bond, ionization potential, electron affinity, hardness, softness, and spin density of the radical and neutral species were calculated. DFT calculations with B3LYP hybrid functional and 6-311++ G** basis set in the polarizable continuum model were utilized to obtain these descriptors. Findings/Results: Ascorbic acid showed the best DPPH scavenging activity. However, 4d and 4c showed promising antioxidant activity. The values of EHOMO for 4c and 4d were closer to zero, thus, they showed the best scavenging activities. The computational results were in accordance with the experimental ones. The energetic descriptors indicated that the sequential proton loss-electron transfer mechanism is preferred over other mechanisms. Conclusion and implication: Antioxidant activity of 4-[(Benzo[d]thiazol-2-ylimino) methyl]phenol derivatives confirmed by experimental and theoretical documents proves them as novel antioxidants against amyloid-β based disease.
Collapse
Affiliation(s)
- Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ahmad Movahedian Attar
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Mohammad-Beigi
- The Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Antiradical Activity of Beetroot ( Beta vulgaris L.) Betalains. Molecules 2021; 26:molecules26092439. [PMID: 33922131 PMCID: PMC8122748 DOI: 10.3390/molecules26092439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Flavonoids, phenolic acids, and anthocyanidins are widely studied polyphenolics owing to their antiradical activity. Recently, beetroot dyes have drawn an attention as possible radical scavengers, but scant information can be found on this topic. In this study selected compounds were investigated using computational chemistry methods. Implicit water at physiological pH was chosen as the environment of interest. Betalains' dissociation process and electronic structure were examined, as well as the reactivity in six pathways against some common radicals, such as hydroxyl, hydroperoxide, superoxide, and nitric oxide. The study showed that all carboxyl groups are dissociated in the given conditions. The dissociation process impacts the electronic structure, which has consequences for the overall activity. Highly stabilized conjugated structures favor the electron-accepting type of scavenging reactions, primarily by a radical adduct formation mechanism. Betanidin and indicaxanthin were found to be the most promising of the compounds studied. Nevertheless, the study established the role of betalains as powerful antiradical dietary agents.
Collapse
|
22
|
Khalili A, Baei MT, Ghaboos SHH. Chrysin flavonoid adsorbed on B12N12 nanocage ‐ A novel antioxidant nanomaterial. VIETNAM JOURNAL OF CHEMISTRY 2021; 59:211-220. [DOI: 10.1002/vjch.202000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractAntioxidative activity of chrysin (CYS) on the B12N12 nanocage has been evaluated by density functional theory with B3PW91‐D3 and M06‐2X‐D3 methods. Adsorption behavior and study of topologies demonstrated that the CYS has chemisorbed to the nanocage and shows notable changes in the electronic properties of B12N12. The antioxidant properties of the CYS and CYS/B12N12 systems have been studied in the different environments by the M06‐2X‐D3 method. The findings demonstrated that in the vacuum phase and water, benzene, and ethanol solvents, the BDE (5O‐H), PDE, PA values of CYS/B12N12 are smaller than those of CYS system. The current study implied that B12N12 nanocage can increase the antioxidative properties of the CYS.
Collapse
Affiliation(s)
- Atefeh Khalili
- Department of Food Science and Technology, Azadshahr Branch, Islamic Azad University Azadshahr, Golestan Iran postal code: 49617‐89985
| | - Mohammad T. Baei
- Department of Chemistry, Azadshahr Branch, Islamic Azad University Azadshahr, Golestan Iran
| | - Seyed Hossein Hosseini Ghaboos
- Department of Food Science and Technology, Azadshahr Branch, Islamic Azad University Azadshahr, Golestan Iran postal code: 49617‐89985
| |
Collapse
|
23
|
How the functional group substitution and solvent effects affect the antioxidant activity of (+)-catechin? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Kerbadou RM, Hadjadj Aoul R, Benmaati A, Taleb A, Hacini S, Habib Zahmani H. Identification of new biologically active synthetic molecules: comparative experimental and theoretical studies on the structure-antioxidant activity relationship of cyclic 1,3-ketoamides. J Mol Model 2021; 27:109. [PMID: 33742261 DOI: 10.1007/s00894-021-04705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 10/21/2022]
Abstract
Antioxidant agent is a chemical that prevents the oxidation of other chemical substances. Its use is the most effective means of protecting the organism by neutralizing the harmful effects of free radicals caused by oxidative stress. In the present work, a series of β-ketoamides containing a variety of monosubstituted amide groups were synthesized and tested as antioxidant agents. In order to establish a possible structure-antioxidant activity relationship, we are presenting a systematic theoretical study of these molecules with the aim of clarifying the active sites. In particular, we discuss the selectivity resulting from the choice of a free radical/antioxidant system. The theoretical study of these molecules was carried out using density functional theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory. In order to shed light on the antioxidant properties of β-ketoamides, O-H bond dissociation enthalpies (BDEs), ionization potentials (IPs), electron affinities (EAs), proton affinities (PAs), and electron transfer enthalpies (ETEs) are performed in the gas phase and in ethanol. The results obtained show that the HAT mechanism is thermodynamically more favored in the gas phase, while the SPLET is preferred in the polar solvent.
Collapse
Affiliation(s)
- Riad Mustapha Kerbadou
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Ratiba Hadjadj Aoul
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Aouicha Benmaati
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria.,Ecole Nationale Polytechnique d'Oran Maurice Audin, ENPO-MA, BP-1523-Menouar, 31000, Oran, Algeria
| | - Assya Taleb
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria
| | - Hadjira Habib Zahmani
- Laboratoire de Chimie Fine LCF, Université Oran 1 Ahmed Ben Bella, BP-1524-Menouar, 31000, Oran, Algeria.
| |
Collapse
|
25
|
A physiological examination of the antioxidant ability of super tocopherol derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
The antioxidant capacity of an imidazole alkaloids family through single-electron transfer reactions. J Mol Model 2020; 26:321. [PMID: 33113023 DOI: 10.1007/s00894-020-04583-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The single-electron transfer (SET) reactions from the neutral and mono-anion species of five imidazole alkaloids (lepidines A, B, C, D, and E) against hydroperoxyl radicals have been studied using the density functional theory and the Marcus theory. The deprotonated species of three alkaloids were found to have free radical scavenging activity. The antioxidant activity was studied via single-electron transfer (SET) under physiological conditions. The SET reactions for lepidines B, D, and E were found to have rate constants ranging from 105 to 106 M-1 s-1. Therefore, they are predicted to be able to deactivate hydroperoxyl radicals and therefore the damage caused by them to polyunsaturated fatty acids. It is important to mention that the acid-base equilibrium plays an important role in their free radical scavenging activity. Graphical abstract Lepidines are predicted to be able to deactivate hydroperoxyl radicals and the damage caused by them to polyunsaturated fatty acids.
Collapse
|
27
|
Lipid peroxidation inhibition study: A promising case of 1,3-di([1,1'-biphenyl]-3-yl)urea. Chem Biol Interact 2020; 326:109137. [PMID: 32442417 DOI: 10.1016/j.cbi.2020.109137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
In the present study eighteen inhibitors of the hydrolytic enzymes of the endocannabinoid system were investigated for antioxidant activity using lipid peroxidation (LP) method. Among the assayed compounds ten belong to carbamates with phenyl [1,1'-biphenyl]-3-ylcarbamate (6), reported for the first time, and eight are retro-amide derivatives of palmitamine. Interestingly, results indicated that most of the tested compounds have good antioxidant properties. In particular, 1,3-di([1,1'-biphenyl]-3-yl)urea (3) shows IC50 = 26 ± 6 μM comparable to ones obtained for standard antioxidants trolox and quercetin (IC50 = 22 ± 6 μM and 23 ± 6 μM, respectively). Compound 3 was investigated further by means of DFT calculations, to clarify a possible mechanism of the antioxidant action. In order to estimate the capability of 3 to act as radical scavenger the structure was optimized at B3LYP/6-311++G** level and the respective bond dissociation enthalpies were calculated. The calculations in non-polar medium predicted as favorable mechanism a donation of a hydrogen atom to the free radical and formation of N-centered radical, while in polar solvents the mechanism of free radical scavenging by SPLET dominates over HAT H-abstraction. The possible radical scavenging mechanisms of another compound with potent antioxidant properties (IC50 = 53 ± 12 μM), the retro-amide derivative of palmitamine (compound 18), was estimated computationally based on the reaction enthalpies of a model compound (structural analogue to 18). The computations indicated that the most favorable mechanisms are hydrogen atom transfer from the hydroxyl group in meta-position of the benzamide fragment in nonpolar medium, and proton transfer from the hydroxyl group in ortho-position of the benzamide fragment in polar medium.
Collapse
|
28
|
Arriagada F, Günther G, Morales J. Nanoantioxidant-Based Silica Particles as Flavonoid Carrier for Drug Delivery Applications. Pharmaceutics 2020; 12:E302. [PMID: 32224905 PMCID: PMC7238062 DOI: 10.3390/pharmaceutics12040302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Nanosystems used in pharmaceutical formulations have shown promising results in enhancing the administration of drugs of difficult formulations. In particular, porous silica nanoparticles have demonstrated excellent properties for application in biological systems; however, there are still several challenges related to the development of more effective and biocompatible materials. An interesting approach to enhance these nanomaterials has been the development of nanoantioxidant carriers. In this work, a hybrid nanoantioxidant carrier based on porous silica nanoplatform with rosmarinic acid antioxidant immobilized on its surface were developed and characterized. Techniques such as dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), N2 adsorption-desorption measurements, differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH●) assay were used to characterize and evaluate the antioxidant activity of nanocarriers. In addition, drug release profile was evaluated using two biorelevant media. The antioxidant activity of rosmarinic acid was maintained, suggesting the correct disposition of the moiety. Kinetic studies reveal that more morin is released in the simulated intestinal fluid than in the gastric one, while an anomalous non-Fickian release mechanism was observed. These results suggest a promising antioxidant nanocarrier suitable for future application in drug delivery.
Collapse
Affiliation(s)
- Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5110033 Valdivia, Chile
| | - Germán Günther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile;
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile;
| |
Collapse
|
29
|
Khalili A, Baei MT, Hossein Hosseini Ghaboos S. Improvement of Antioxidative Activity of Apigenin by B
12
N
12
Nanocluster: Antioxidative Mechanism Analysis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Atefeh Khalili
- Department of Food Science and Technology, Azadshahr Branch Islamic Azad University Azadshahr, Golestan Iran
| | - Mohammad T. Baei
- Department of Chemistry, Azadshahr Branch Islamic Azad University Azadshahr, Golestan Iran
| | | |
Collapse
|
30
|
Miličević A, Miletić G, Novak Jovanović I. Electrochemical oxidation of flavonoids: PM6 and DFT for elucidating electronic changes and modelling oxidation potential (part II). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Propolis Extract as Antioxidant to Improve Oxidative Stability of Fresh Patties during Refrigerated Storage. Foods 2019; 8:foods8120614. [PMID: 31771302 PMCID: PMC6963608 DOI: 10.3390/foods8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
The effect of propolis ethanol extract (PEE), butylated hydroxytoluene (BHT), and ascorbic acid (Asc) against lipid (Lox) and protein oxidation (Pox), color deterioration, and the antioxidant stabilizer of raw beef and pork patties during chilled storage (9 days at 2 °C/under darkness) was investigated. Total phenolic content (TPC), reducing power ability (RPA), DPPH● radical scavenging activity (FRSA) of the PEE was evaluated. Meat samples were evaluated for pH, Lox (TBARS), Pox (Carbonyls), color (L*, a*, b*, C*, and h*), metmyoglobin formation (MMb), TPC, RPA, and FRSA. Results indicated that PEE is rich in phenolic content and antioxidant activity, and their incorporation in beef and pork patties reduced (p < 0.05) Lox and Pox (TBARS-88.7 and 80% inhibition; Pox-47.3 and 30.6% inhibition, respectively), as well as loss of color and increased the oxidative stability throughout storage.
Collapse
|
32
|
Thong NM, Vo QV, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS OMEGA 2019; 4:14996-15003. [PMID: 31552341 PMCID: PMC6751718 DOI: 10.1021/acsomega.9b01780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
Radical-scavenging activity of isorhamnetin (1) and its diglycosides, named isorhamnetin-3,5'-O-β-D-diglucoside (2) and isorhamnetin-3,7-O-β-D-diglucoside (3) extracted from Anoectochilus roxburghii, has been studied through three main antioxidant pathways: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer, and sequential proton loss electron transfer (SPLET). All thermodynamic parameters related to these radical-scavenging mechanisms were computed at the B3LYP/6-311G(d,p) level of theory both in the gas phase and in solution. The results suggest that HAT is the predominant mechanism in the gas phase, while SPLET is supported in an aqueous environment. In addition, the stability of radicals has also been explored by electron spin density and intramolecular hydrogen bonding. The potential energy profiles and kinetic calculations for the reactions between the selected compounds and the CH3OO• radical were calculated at 298.15 K. Among all investigated, compound 2 has the highest antioxidant activity with the lowest Gibbs free energy (-4.05 kcal/mol) and the highest hydrogen atom transfer rate constant (3.61 × 105 M-1 s-1). Substitution of the OH and OMe groups by two glucoses at the 3 and 5' sites of isorhamnetin has a significant impact on its antioxidant activity.
Collapse
Affiliation(s)
- Nguyen Minh Thong
- The
University of Danang, Campus in Kon Tum, 704 Phan Dinh Phung, Kon Tum 580000, Vietnam
| | - Quan V. Vo
- Quang Tri Teachers
Training College, Quang Tri 520000, Vietnam
| | - Trinh Le Huyen
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 30010, Taiwan
| | - Mai Van Bay
- Department
of Chemistry, The University of Danang,
University of Science and Education, 459 Ton Duc Thang, Da Nang 550000, Vietnam
| | - Dinh Tuan
- Department
of Chemistry, Hue University’s College
of Sciences, 77 Nguyen
Hue, Hue 530000, Vietnam
| | - Pham Cam Nam
- Department of Chemistry, The University of Danang,
University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam
| |
Collapse
|
33
|
Thermodynamics of primary antioxidant action of flavonols in polar solvents. ACTA CHIMICA SLOVACA 2019. [DOI: 10.2478/acs-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Very recently, a report on the antioxidant activity of flavonoids has appeared, where authors concluded that Hydrogen Atom Transfer mechanism represents the thermodynamically preferred mechanism in polar media (https://doi.org/10.1016/j.foodres.2018.11.018). Unfortunately, serious errors in the theoretical part of the paper led to incorrect conclusions. For six flavonols (galangin, kaempferol, quercetin, morin, myricetin, and fisetin), reaction enthalpies related to three mechanisms of the primary antioxidant action were computed. Based on the obtained results, the role of intramolecular hydrogen bonds (IHB) in the thermodynamics of the antioxidant effect is presented. Calculations and the role of solvation enthalpies of proton and electron in the determination of thermodynamically preferred mechanism is also briefly explained and discussed. The obtained results are in accordance with published works considering the Sequential Proton-Loss Electron-Transfer thermodynamically preferred reaction pathway.
Collapse
|
34
|
Miličević A, Miletić G, Novak Jovanović I. Electrochemical oxidation of flavonoids: PM6 and DFT for elucidating electronic changes and modelling oxidation potential. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. PHYTOCHEMISTRY 2019; 160:19-24. [PMID: 30669059 DOI: 10.1016/j.phytochem.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Flavonoids widely found in natural foods are characterized by acting as antioxidants compounds. There are close relationship between the antiradical activities and structural properties of flavonoids. In this work, density functional theory (DFT) methods were applied to investigate the influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton-loss electron-transfer (SPLET). The thermodynamic properties: bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) related with these mechanisms were calculated to elucidate the antiradical activity. The results showed that the 5-OH group is most influenced and its antiradical capacity was weakened by the H5⋯OC4 IHB. In the gas, benzene and chloroform phases, H5⋯OC4 IHB would reduce the antiradical activity of flavonoid via increasing the bond dissociation enthalpy. While, in the DMSO and H2O phases, the opposite result occurs by lowering the proton affinity.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
36
|
DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3. Int J Mol Sci 2019; 20:ijms20061450. [PMID: 30909377 PMCID: PMC6470621 DOI: 10.3390/ijms20061450] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023] Open
Abstract
The radical scavenging activity of a flavonoid is largely influenced by its structure. The effects of the substituents at C3 position on the antioxidant activity of naringenin were carried out using the density functional theory (DFT) method. The reaction enthalpies related with the three well-established mechanisms were analyzed. Excellent correlations were found between the reaction enthalpies and Hammett sigma constants. Equations obtained from the linear regression can be helpful in the selection of suitable candidates for the synthesis of novel naringenin derivatives with enhanced antioxidant properties. In the gas and benzene phases, the antioxidant activity of naringenin was enhanced by the electron-donating substituents via weakening the bond dissociation enthalpy (BDE). In the water phase, it was strengthened by electron-withdrawing groups—via lowering the proton affinity (PA). The electronic effect of the substituent on the BDE of naringenin is mainly governed by the resonance effect, while that on the ionization potential (IP) and PA of naringenin is mainly controlled by the field/inductive effect.
Collapse
|
37
|
Kashyap C, Mazumder LJ, Rohman SS, Ullah SS, Guha AK. Re-visiting the Antioxidant Activity of Se- and Te- Carbohydrates: A Theoretical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201803814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chayanika Kashyap
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | | | - Shahnaz S. Rohman
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | - Sabnam S. Ullah
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | - Ankur Kanti Guha
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| |
Collapse
|
38
|
Zheng YZ, Deng G, Chen DF, Guo R, Lai RC. The influence of C2C3 double bond on the antiradical activity of flavonoid: Different mechanisms analysis. PHYTOCHEMISTRY 2019; 157:1-7. [PMID: 30342314 DOI: 10.1016/j.phytochem.2018.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Flavonoids widely found in bee products are excellent antioxidants. The structural features are important in evaluating the antiradical activity of flavonoid. In this work, the density functional theory (DFT) methods were applied to investigate the influence of C2C3 double bond on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms from the thermodynamic aspect. It is found that the hydroxyl groups in different rings are affected variously by the C2C3 double bond and the 3OH group is most influenced. For the compounds that only differ with the C2C3 double bond, the antiradical activity of flavone or flavonol (possessing C2C3 double bond) is not always stronger than that of flavanone: in the weak polarity phases, only the antiradical activities of chrysin, galangin and morin are stronger than those of pinocembrin, pinobanksin and dihydro-morin, respectively. In polar phases, the C2C3 double bond would weaken the antiradical activity of flavonoid via enlarging the proton affinity and the antiradical activity of flavone or flavonol is weaker than that of flavanone.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Rong-Cai Lai
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
39
|
Adhikari A, Darbar S, Chatterjee T, Das M, Polley N, Bhattacharyya M, Bhattacharya S, Pal D, Pal SK. Spectroscopic Studies on Dual Role of Natural Flavonoids in Detoxification of Lead Poisoning: Bench-to-Bedside Preclinical Trial. ACS OMEGA 2018; 3:15975-15987. [PMID: 30556021 PMCID: PMC6288805 DOI: 10.1021/acsomega.8b02046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 05/30/2023]
Abstract
Ubiquitousness in the target organs and associated oxidative stress are the most common manifestations of heavy-metal poisoning in living bodies. While chelation of toxic heavy metals is important as therapeutic strategy, scavenging of increased reactive oxygen species, reactive nitrogen species and free radicals are equally important. Here, we have studied the lead (Pb) chelating efficacy of a model flavonoid morin using steady-state and picosecond-resolved optical spectroscopy. The efficacy of morin in presence of other flavonoid (naringin) and polyphenol (ellagic acid) leading to synergistic combination has also been confirmed from the spectroscopic studies. Our studies further reveal that antioxidant activity (2,2-diphenyl-1-picrylhydrazyl assay) of the Pb-morin complex is sustainable compared to that of Pb-free morin. The metal-morin chelate is also found to be significantly soluble compared to that of morin in aqueous media. Heavy-metal chelation and sustainable antioxidant activity of the soluble chelate complex are found to accelerate the Pb-detoxification in the chemical bench (in vitro). Considering the synergistic effect of flavonoids in Pb-detoxification and their omnipresence in medicinal plants, we have prepared a mixture (SKP17LIV01) of flavonoids and polyphenols of plant origin. The mixture has been characterized using high-resolution liquid chromatography assisted mass spectrometry. The mixture (SKP17LIV01) containing 34 flavonoids and 76 other polyphenols have been used to investigate the Pb detoxification in mouse model. The biochemical and histopathological studies on the mouse model confirm the dual action in preclinical studies.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department
of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Soumendra Darbar
- Research
& Development Division, Dey’s
Medical Stores (Mfg.) Ltd, 62, Bondel Road, Ballygunge, Kolkata 700019, India
| | - Tanima Chatterjee
- Department
of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Monojit Das
- Department
of Zoology, Uluberia College, University
of Calcutta, Uluberia, Howrah 711315, India
| | - Nabarun Polley
- Department
of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Maitree Bhattacharyya
- Department
of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Siddhartha Bhattacharya
- Department
of Zoology, Uluberia College, University
of Calcutta, Uluberia, Howrah 711315, India
| | - Debasish Pal
- Department
of Zoology, Uluberia College, University
of Calcutta, Uluberia, Howrah 711315, India
| | - Samir Kumar Pal
- Department
of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
- Department
of Zoology, Uluberia College, University
of Calcutta, Uluberia, Howrah 711315, India
| |
Collapse
|
40
|
Chrysin/β-cyclodextrin supramolecular system: a quantum mechanical investigation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1429-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Miličević A, Novak Jovanović I, Miletić G. Changes in electronic structures of flavonoids upon electrochemical oxidation and a theoretical model for the estimation of the first oxidation potential. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Maciel EN, Almeida SKC, da Silva SC, de Souza GLC. Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 2018; 24:218. [DOI: 10.1007/s00894-018-3745-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
43
|
Tyurin DV, Zaitseva SV, Kudrik EV. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418050321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Li Y, Toscano M, Mazzone G, Russo N. Antioxidant properties and free radical scavenging mechanisms of cyclocurcumin. NEW J CHEM 2018. [DOI: 10.1039/c8nj01819g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclocurcumin has a strong ability to scavenge ˙OH by its 4′-OH phenolic hydroxyl via a hydrogen-atom transfer mechanism in a physiological environment.
Collapse
Affiliation(s)
- Yunkui Li
- College of Enology
- Northwest A&F University
- Yangling 712100
- China
- Dipartimento di Chimica e Tecnologie Chimiche
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| |
Collapse
|
45
|
Jeremić S, Amić A, Stanojević-Pirković M, Marković Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org Biomol Chem 2018; 16:1890-1902. [DOI: 10.1039/c8ob00060c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we estimated the scavenger capacity of six selected anthraquinones toward free radicals and their efficacy as inhibitors of P-glycoproteins.
Collapse
Affiliation(s)
- S. Jeremić
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| | - A. Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | | | - Z. Marković
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| |
Collapse
|
46
|
Simijonović D, Petrović ZD, Milovanović VM, Petrović VP, Bogdanović GA. A new efficient domino approach for the synthesis of pyrazolyl-phthalazine-diones. Antiradical activity of novel phenolic products. RSC Adv 2018; 8:16663-16673. [PMID: 35540516 PMCID: PMC9080326 DOI: 10.1039/c8ra02702a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 11/21/2022] Open
Abstract
Pyrazolyl-phthalazine-dione derivatives (PPDs) were synthetized in the ionic liquid catalyzed one-pot multicomponent reaction of acetylacetone, 2,3-dihydrophthalazine-1,4-dione, and different aldehydes in moderate to good yields. Six new PPDs were obtained, and the crystal structure of 2-acetyl-1-(4-fluorophenyl)-3-methyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-4) was determined. The most interesting structural features of the novel PPD-4 is the formation of a rather short intermolecular distance between the F atom of one molecule and the midpoint of the neighbouring six-membered heterocyclic ring. This interaction arranges all molecules into parallel supramolecular chains. UV-Vis spectra of all PPDs were acquired and compared to the simulated ones obtained with TD-DFT. All synthetized compounds were subjected to evaluation of their in vitro antioxidative activity using a stable DPPH radical. It was shown that PPD-7, with a catechol motive, is the most active antioxidant, while PPD-9, with two neighbouring methoxy groups to the phenolic OH, exerted a somewhat lower, but significant antioxidative potential. The results of DFT thermodynamical study are in agreement with experimental findings that PPD-7 and PPD-9 should be considered as powerful radical scavengers. In addition, the obtained theoretical results (bond dissociation and proton abstraction energies) specify SPLET as a prevailing radical scavenging mechanism in polar solvents, and HAT in solvents with lower polarity. On the other hand, the obtained reaction enthalpies for inactivation of free radicals suggest competition between HAT and SPLET mechanisms, except in the case of the ˙OH radical in polar solvents, where HAT is labeled as prefered. An efficient one-pot method for the synthesis of pyrazolyl-phthalazine-diones was developed. New phenolic compounds exerted good to excellent antioxidative activity.![]()
Collapse
Affiliation(s)
- Dušica Simijonović
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Zorica D. Petrović
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Vesna M. Milovanović
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Vladimir P. Petrović
- University of Kragujevac
- Faculty of Science
- Department of Chemistry
- 34000 Kragujevac
- Serbia
| | - Goran A. Bogdanović
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade
- Serbia
| |
Collapse
|
47
|
Petrović ZD, Simijonović D, Đorović J, Milovanović V, Marković Z, Petrović VP. One-Pot Synthesis of Tetrahydropyridine Derivatives: Liquid Salt Catalyst vs Glycolic Acid Promoter. Structure and Antiradical Activity of the New Products. ChemistrySelect 2017. [DOI: 10.1002/slct.201701873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zorica D. Petrović
- University of Kragujevac, Faculty of Science; Department of Chemistry; Radoja Domanovića 12 34000 Kragujevac, Republic of Serbia
| | - Dušica Simijonović
- University of Kragujevac, Faculty of Science; Department of Chemistry; Radoja Domanovića 12 34000 Kragujevac, Republic of Serbia
| | - Jelena Đorović
- University of Kragujevac, Faculty of Science; Department of Chemistry; Radoja Domanovića 12 34000 Kragujevac, Republic of Serbia
- Bioengineering Research; Development Center; Prvoslava Stojanovića 6 Kragujevac, Republic of Serbia
| | - Vesna Milovanović
- University of Kragujevac, Faculty of Science; Department of Chemistry; Radoja Domanovića 12 34000 Kragujevac, Republic of Serbia
| | - Zoran Marković
- Bioengineering Research; Development Center; Prvoslava Stojanovića 6 Kragujevac, Republic of Serbia
- Department of Chemical-Technological Sciences; State University of Novi Pazar; Vuka Karadžića bb 36300 Novi Pazar, Republic of Serbia
| | - Vladimir P. Petrović
- University of Kragujevac, Faculty of Science; Department of Chemistry; Radoja Domanovića 12 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
48
|
Shahin NN, Mohamed MM. Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin. Toxicol Appl Pharmacol 2017; 334:129-141. [PMID: 28844848 DOI: 10.1016/j.taap.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/07/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
This study investigated the effect of short-term oral exposure to nano-sized titanium dioxide (nTiO2) on Wistar rat prostate and testis, and the associating reproductive-related alterations. The study also evaluated the potential ameliorative effect of the natural flavonoid, morin, on nTiO2-induced aberrations. Intragastric administration of nTiO2 (50mg/kg/day for 1, 2 and 3weeks) increased testicular gamma-glutamyltransferase (γ-GT) activity and decreased testicular steroidogenic acute regulatory protein (StAR) and c-kit gene expression, serum testosterone level and sperm count. nTiO2-treated rats also exhibited prostatic and testicular altered glutathione levels, elevated TNF-α levels, up-regulated Fas, Bax and caspase-3 gene expression, down-regulated Bcl-2 gene expression and enhanced prostatic lipid peroxidation. Sperm malformation and elevated testicular acid phosphatase (ACP) activity and malondialdehyde level, serum prostatic acid phosphatase activity, prostate specific antigen (PSA), gonadotrophin and estradiol levels occurred after the 2 and 3week regimens. Morin (30mg/kg/day administered intragastrically for 5weeks) mitigated nTiO2-induced prostatic and testicular injury as evidenced by lowering serum PSA level, testicular γ-GT and ACP activities and TNF-α level, along with hampering both intrinsic and extrinsic apoptotic pathways. Moreover, morin alleviated prostatic lipid peroxidation, raised prostatic glutathione level, and relieved testicular reductive stress. Additionally, morin increased testicular StAR and c-kit mRNA expression, raised the sperm count, reduced sperm deformities and modified the altered hormone profile. Histopathological evaluation supported the biochemical findings. In conclusion, morin could ameliorate nTiO2-induced prostatic and testicular injury and the corresponding reproductive-related aberrations via redox regulatory, anti-inflammatory and anti-apoptotic mechanisms, promoting steroidogenesis and spermatogenesis, and improving sperm count and morphology.
Collapse
Affiliation(s)
- Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha M Mohamed
- Department of Home Economics, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
The Correlation between Chemical Structures and Antioxidant, Prooxidant, and Antitrypanosomatid Properties of Flavonoids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3789856. [PMID: 28751930 PMCID: PMC5511661 DOI: 10.1155/2017/3789856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023]
Abstract
Flavonoids have demonstrated in vivo and in vitro leishmanicidal, trypanocidal, antioxidant, and prooxidant properties. The chemotherapy of trypanosomiasis and leishmaniasis lacks efficacy, presents high toxicity, and is related to the development of drug resistance. Thus, a series of 40 flavonoids were investigated with the purpose of correlating these properties via structure and activity analyses based on integrated networks and QSAR models. The classical groups for the antioxidant activity of flavonoids were combined in order to explain the influence of antioxidant and prooxidant activities on the antiparasitic properties. These analyses become useful for the development of efficient treatments for leishmaniasis and trypanosomiasis. Finally, the dual activity of flavonoids presenting both anti- and prooxidant activities revealed that the existence of a balance between these two features could be important to the development of adequate therapeutic strategies.
Collapse
|
50
|
Jiang Q, Li X, Tian Y, Lin Q, Xie H, Lu W, Chi Y, Chen D. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH-treated damage: bioassay and antioxidant mechanism. Altern Ther Health Med 2017; 17:242. [PMID: 28464859 PMCID: PMC5414230 DOI: 10.1186/s12906-017-1730-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/06/2017] [Indexed: 11/15/2022]
Abstract
Background Mori Fructus and Mori Ramulus are two traditional Chinese herbal medicines from mulberries. The present work explores their beneficial effects on •OH–treated mesenchymal stem cells (MSCs) and discusses possible mechanisms. Methods Lyophilized aqueous extracts of Mori Fructus (LAMF) and Mori Ramulus (LAMR) were prepared and analyzed using HPLC. LAMF and LAMR (along with morin) were further investigated for their effects on •OH-treated MSCs using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The direct antioxidation mechanisms were studied using 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO•)-scavenging, 2,2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS+•)-scavenging and 1,1-diphenyl-2-picryl-hydrazl (DPPH•)-scavenging, as well as Cu2+-reducing and Fe3+-reducing antioxidant power. Finally, the indirect antioxidant mechanism was investigated based on the UV-vis spectra of Fe2+-chelation. Results In each LAMF and LAMR, seven phytophenols were successfully measured by HPLC, including five flavonoids (morin, rutin, astragalin, isoquercitrin and luteolin) and two non-flavonoids (chlorogenic acid and maclurin). MTT assays revealed that LAMF, LAMR and morin could effectively increase the survival of •OH-treated MSCs at 10–100 μg/mL, and could effectively scavenge PTIO• (IC 50 6609.7 ± 756.6, 4286.9 ± 84.9 and 103.4 ± 0.9 μg/mL, respectively), DPPH• (IC 50 208.7 ± 3.0, 97.3 ± 3.1 and 8.2 ± 0.7 μg/mL, respectively) and ABTS+• (IC 50 73.5 ± 5.8, 34.4 ± 0.1 and 4.2 ± 0.2 μg/mL, respectively), and reduce Cu2+ (IC 50 212.5 ± 7.0, 123.2 ± 0.9 and 14.1 ± 0.04 μg/mL, respectively) & Fe3+ (IC 50 277.0 ± 3.1, 191.9 ± 5.2 and 5.0 ± 0.2 μg/mL, respectively). In the Fe2+-chelating assay, the five flavonoids produced much stronger shoulder-peaks than the two non-flavonoids within 420–850 nm. Conclusion Mori Fructus and Mori Ramulus, can protect MSCs from •OH-induced damage. Such beneficial effects can mainly be attributed to the antioxidant action of phytophenols, which occurs via direct (ROS-scavenging) and indirect mechanism (Fe2+-chelating). The ROS-scavenging mechanism, however, include at least a H+-transfer and an electron-transfer (ET), and possibly includes a hydrogen-atom-transfer (HAT). In the Fe2+-chelating, flavonoids are more effective than non-flavonoids. This can be attributed to several adjacent planar chelating-sites between the 3-OH and 4-C = O, between the 4-C = O and 5-OH, or between the 3′-OH and 4′-OH in flavonoids. Such multiple-Fe2+-chelating reactions cause overlap in the UV-vis absorptions to deepen the complex color, enhance the peak strength, and form shoulder-peaks. By comparison, two non-flavonoids with catechol moiety produce only a weak single peak. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1730-3) contains supplementary material, which is available to authorized users.
Collapse
|