1
|
Adachi K, Azakami H, Yamauchi M, Koshoji M, Yamamoto A, Tanaka S. Cyclodextrin-Assisted Surface-Enhanced Photochromic Phenomena of Tungsten(VI) Oxide Nanoparticles for Label-Free Colorimetric Detection of Phenylalanine. ACS OMEGA 2024; 9:18957-18972. [PMID: 38708261 PMCID: PMC11064177 DOI: 10.1021/acsomega.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024]
Abstract
Herein are presented the results of experiments designed to evaluate the effectiveness of host-guest interactions in improving the sensitivity of colorimetric detection based on surface-enhanced photochromic phenomena of tungsten(VI) oxide (WO3) nanocolloid particles. The UV-induced photochromic coloration of WO3 nanocolloid particles in the presence of aromatic α-amino acid (AA), l-phenylalanine (Phe) or l-2-phenylglycine (Phg), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCDx) in an aqueous system was investigated using UV-vis absorption spectrometry. The characteristics of the adsorption modes and configurations of AAs on the WO3 surface have also been identified by using a combination of adsorption isotherm analysis and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). A distinct linear relationship was observed between the concentration of AAs adsorbed on the WO3 nanocolloid particles and the initial photochromic coloration rate in the corresponding UV-irradiated colloidal WO3 in aqueous media, indicating that a simple and sensitive quantification of AAs can be achieved from UV-induced WO3 photochromic coloration without any complicated preprocessing. The proposed colorimetric assay in the Phe/TMβCDx/WO3 ternary aqueous system had a linear range of 1 × 10-8 to 1 × 10-4 mol dm-3 for Phe detection, with a limit of detection of 8.3 × 10-9 mol dm-3. The combined results from UV-vis absorption, ATR-FTIR, and adsorption isotherm experiments conclusively indicated that the TMβCDx-complexed Phe molecules in the Phe/TMβCDx/WO3 ternary aqueous system are preferentially and strongly inner-sphere adsorbed on the WO3 surface, resulting in a more significant surface-enhanced photochromic phenomenon. The findings in this study provided intriguing insights into the design and development of the "label-free" colorimetric assay system based on the surface-enhanced photochromic phenomenon of the WO3 nanocolloid probe.
Collapse
Affiliation(s)
- Kenta Adachi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hiro Azakami
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Miyuki Yamauchi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Moeka Koshoji
- Department
of Chemistry, Faculty of Science, Yamaguchi
University, Yamaguchi 753-8512, Japan
| | - Asami Yamamoto
- Department
of Environmental Science & Engineering, Graduate School of Science
& Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shohei Tanaka
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
2
|
Xiang J, Zhang J, Li S, Yuan R, Xiang Y. Aptamer-based and sensitive label-free colorimetric sensing of phenylalanine via cascaded signal amplifications. Anal Chim Acta 2022; 1230:340393. [DOI: 10.1016/j.aca.2022.340393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
|
3
|
Melman Y, Katz E, Smutok O. Phenylalanine biosensor based on a nanostructured fiberglass paper support and fluorescent output signal readable with a smartphone. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
|
5
|
Dinu A, Apetrei C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int J Mol Sci 2022; 23:1218. [PMID: 35163145 PMCID: PMC8835779 DOI: 10.3390/ijms23031218] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, RO-800008 Galati, Romania;
| |
Collapse
|
6
|
Ren Z, Zhou X, Gao X, Tan Y, Chen H, Tan S, Liu W, Tong Y, Chen C. Rapid detection of carbamate pesticide residues using microchip electrophoresis combining amperometric detection. Anal Bioanal Chem 2021; 413:3017-3026. [PMID: 33635387 DOI: 10.1007/s00216-021-03237-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
The long-term consumption of food with pesticide residues has harmful effects on human health and the demand for pesticide detection technology tends to be miniaturized and instant. To this end, we demonstrated the first application of indirectly detecting two carbamate pesticides, metolcarb and carbaryl, by gold nanoparticle-modified indium tin oxide electrode in dual-channel microchip electrophoresis and amperometric detection (ME-AD) system. m-Cresol and α-naphthol were obtained after pesticide hydrolysis in alkaline solution, and then separated and detected by ME-AD. Parameters including the detection potential and running buffer concentration and pH were optimized to improve the detection sensitivity and separation efficiency. Under the optimal conditions, the two analytes were completely separated within 80 s. m-Cresol and α-naphthol presented a wide linear range from 1 to 100 μM, with limits of detection of 0.16 μM and 0.34 μM, respectively (S/N = 3). Moreover, the reliability of this system was demonstrated by analyzing metolcarb and carbaryl in spiked vegetable samples.
Collapse
Affiliation(s)
- Zixuan Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xingxing Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yaonan Tong
- College of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Çimen D, Bereli N, Denizli A. Surface Plasmon Resonance Based on Molecularly Imprinted Polymeric Film for l-Phenylalanine Detection. BIOSENSORS 2021; 11:21. [PMID: 33467753 PMCID: PMC7830203 DOI: 10.3390/bios11010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0-400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (D.Ç.); (N.B.)
| |
Collapse
|
8
|
Xu L, Xu Z, Wang X, Wang B, Liao X. The application of pseudotargeted metabolomics method for fruit juices discrimination. Food Chem 2020; 316:126278. [DOI: 10.1016/j.foodchem.2020.126278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
9
|
A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. SENSORS 2020; 20:s20092496. [PMID: 32354070 PMCID: PMC7249663 DOI: 10.3390/s20092496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Phenylalanine is an amino acid found in breast milk and in many foods, being an essential nutrient. This amino acid is very important for the human body because it is transformed into tyrosine and, subsequently, into catecholamine neurotransmitters. However, there are individuals who were born with a genetic disorder called phenylketonuria. The accumulation of phenylalanine and of some metabolites in the body is dangerous and may cause convulsions, brain damage and mental retardation. Determining the concentration of phenylalanine in different biologic fluids is very important because it can provide information about the health status of the individuals envisaged. Since such determinations may be made by using electrochemical sensors and biosensors, numerous researchers have developed such sensors for phenylalanine detection and different sensitive materials were used in order to improve the selectivity, sensitivity and detection limit. The present review aims at presenting the design and performance of some electrochemical bio (sensors) traditionally used for phenylalanine detection as reported in a series of relevant scientific papers published in the last decade.
Collapse
|
10
|
Al Mughairy B, Al-Lawati HA. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115802] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Huo JZ, Li XS, An JD, Zhang LX, Li Y, Du GX, Wu XX, Liu YY, Ding B. Photo-luminescent chiral carbon-dot@Eu(D-cam) nanocomposites for selectively luminescence sensing of l-phenylalanine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Ou X, Chen P, Huang X, Li S, Liu B. Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 2019; 43:258-270. [DOI: 10.1002/jssc.201900758] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsCollege of Chemistry and Life ScienceHubei University of Education Wuhan P. R. China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Xizhi Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
13
|
Xu B, Guo J, Fu Y, Chen X, Guo J. A review on microfluidics in the detection of food pesticide residues. Electrophoresis 2019; 41:821-832. [PMID: 31525822 DOI: 10.1002/elps.201900209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022]
Abstract
This paper briefly explains the food safety problems related to pesticide residues and introduces microfluidics technology as a pesticide residue detection method. Three mainstream microfluidic detection devices are detailed: one driven by liquid surface tension, one by motor siphon drive, and one by centrifugal force. The advantages and disadvantages of each are considered in an analysis of future trends in microfluidic technology for pesticide detection.
Collapse
Affiliation(s)
- Bangbang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xinyu Chen
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
14
|
Ganesh K, Balraj C, Satheshkumar A, Elango KP. Spectroscopic studies on the formation of charge transfer complexes of l-phenylalanine with 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones in aqueous medium. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Zhou L, Hu Q, Kang Q, Fang M, Yu L. Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of l-Phenylalanine Based on Alkaline Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:461-467. [PMID: 30576146 DOI: 10.1021/acs.langmuir.8b03682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive, selective, and label-free detection of l-Phe was reported at the first time. We devised a strategy to fabricate the sodium monododecyl phosphate (SMP)-decorated LC sensing platform with the appearance of dark. Then, a dark to bright (D-B) optical images alteration of LCs was observed after transferring alkaline phosphatase (ALP) to the interface, owing to cleavage of SMP induced by ALP. LCs remained dark images after the SMP-decorated interface in contact with the pre-incubated ALP and l-Phe. Such optical appearance resulted from the inhibition of ALP by l-Phe, which was further verified by the isothermal titration calorimetry (ITC). The strategy was applied to sensing l-Phe, which have been proven to allow for sensitively and selectively differentiation of l-Phe from interfering compounds with similar aromatic groups, as well as seven other essential amino acids. More importantly, the detection limit of l-Phe reached 1 pg/mL in urine samples, further demonstrating its value in the practical applications. Results obtained in this study clearly demonstrated the superiority of LCs toward the l-Phe detection, which can pave a way for the development of high performance and robust probes for l-Phe detection in clinical applications.
Collapse
Affiliation(s)
- Lele Zhou
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| | - Qiongzheng Hu
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ming Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| |
Collapse
|
16
|
Lin C, Jair YC, Chou YC, Chen PS, Yeh YC. Transcription factor-based biosensor for detection of phenylalanine and tyrosine in urine for diagnosis of phenylketonuria. Anal Chim Acta 2018; 1041:108-113. [DOI: 10.1016/j.aca.2018.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/01/2022]
|
17
|
Preparation of molecularly imprinted electrochemical sensor for l-phenylalanine detection and its application. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Masawat P, Harfield A, Srihirun N, Namwong A. Green Determination of Total Iron in Water by Digital Image Colorimetry. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1174869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Thiessen G, Robinson R, De Los Reyes K, Monnat RJ, Fu E. Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings. Analyst 2015; 140:609-15. [PMID: 25427275 DOI: 10.1039/c4an01627k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Laboratory-based testing does not reach many individuals in lower-resource settings who could benefit from access to appropriate tests for diagnosis and therapy. A critical issue is laboratory-based testing often requires an environment with a high level of resources and supporting infrastructure that is not available in many areas of the world. The current report describes the conversion of a laboratory-based test for phenylalanine detection to a simple paper-based test appropriate for use in low-resource settings. The paper-based test is easy to operate, with all reagents stored dry on the card, is compatible with visible detection for clinically relevant concentrations of phenylalanine, and has a time to result of 10 minutes. Next steps for test development are discussed in the context of the potential for the paper-based Phe test to be used as a newborn PKU screening test in settings that are not well served by existing screening approaches.
Collapse
Affiliation(s)
- Gregory Thiessen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
21
|
Mishra DR, Darjee SM, Bhatt KD, Modi KM, Jain VK. Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0509-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Monošík R, Angnes L. Utilisation of micro- and nanoscaled materials in microfluidic analytical devices. Microchem J 2015. [DOI: 10.1016/j.microc.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
YOUNGVISES N, THANURAK P, CHAIDA T, JUKMUNEE J, ALSUHAIMI A. Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry. ANAL SCI 2015; 31:365-70. [DOI: 10.2116/analsci.31.365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Napaporn YOUNGVISES
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Porapichcha THANURAK
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Thanatcha CHAIDA
- Center of Scientific Equipment for Advanced Research, Thammasat University
- Innovative Green Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Thammasat University
| | - Jaroon JUKMUNEE
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University
| | - Awadh ALSUHAIMI
- Department of Chemistry, Faculty of Science, Taibah University
| |
Collapse
|
24
|
Zhang AL, Zha Y. The breakup of digital microfluids on a piezoelectric substrate using surface acoustic waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:2098-105. [PMID: 25474784 DOI: 10.1109/tuffc.2013.005997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method for the breakup of a digital microfluid (a discrete droplet) is presented and a device for splitting the digital microfluid is fabricated on a 128° yx-LiNbO3 piezoelectric substrate using microelectronic technology. Together with the surface tension of the digital microfluid, the inertia of acoustic streaming caused by the sudden disappearance of the electric signal for generating the surface acoustic wave breaks up the digital microfluid. The escape angle of the daughter digital microfluids is calculated. A sound-absorption film is coated on the acoustic path to prevent the further breakup of the daughter digital microfluids. Droplet breakups are demonstrated using red dye solution digital microfluids. Results show that digital microfluids can be broken up by suddenly decreasing the power of the electrical signal from 12.3 dBm to -3.98 dBm, and the average escape angle of daughter digital microfluids is 68.5° for 4 μL of initial digital microfluid. The results also show that the escape angle is affected by the initial volume of the digital microfluid.
Collapse
|
25
|
Mirasoli M, Guardigli M, Michelini E, Roda A. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 2014; 87:36-52. [DOI: 10.1016/j.jpba.2013.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023]
|
26
|
Ganesh K, El-Mossalamy EH, Satheshkumar A, Balraj C, Elango KP. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:301-310. [PMID: 23973571 DOI: 10.1016/j.saa.2013.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | | | |
Collapse
|
27
|
Lewis DJ, Dore V, Rogers NJ, Mole TK, Nash GB, Angeli P, Pikramenou Z. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14701-14708. [PMID: 24164285 DOI: 10.1021/la403172m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.
Collapse
Affiliation(s)
- David J Lewis
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Oliveira R, Bento F, Sella C, Thouin L, Amatore C. Direct Electroanalytical Method for Alternative Assessment of Global Antioxidant Capacity Using Microchannel Electrodes. Anal Chem 2013; 85:9057-63. [DOI: 10.1021/ac401566w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Raquel Oliveira
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fátima Bento
- Centro
de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catherine Sella
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Laurent Thouin
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Christian Amatore
- Département
de Chimie, Ecole Normale Supérieure, UMR CNRS-ENS-UPMC 8640
PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
29
|
Ke X, Tang J. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting. Chemphyschem 2013; 14:946-51. [PMID: 23436571 DOI: 10.1002/cphc.201200954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/23/2012] [Indexed: 11/11/2022]
Abstract
The fabrication of patterned microstructures in poly(dimethylsiloxane) (PDMS) is a prerequisite for soft lithography. Herein, curvilinear surface relief microstructures in PDMS are fabricated through a simple three-stage approach combining microcontact printing (μCP), selective surface wetting/dewetting and replica molding (REM). First, using an original PDMS stamp (first-generation stamp) with linear relief features, a chemical pattern on gold substrate is generated by μCP using hexadecanethiol (HDT) as an ink. Then, by a dip-coating process, an ordered polyethylene glycol (PEG) polymer-dot array forms on the HDT-patterned gold substrate. Finally, based on a REM process, the PEG-dot array on gold substrate is used to fabricate a second-generation PDMS stamp with microcavity array, and the second-generation PDMS stamp is used to generate third-generation PDMS stamp with microbump array. These fabricated new-generation stamps are utilized in μCP and in micromolding in capillaries (MIMIC), allowing the generation of surface micropatterns which cannot be obtained using the original PDMS stamp. The method will be useful in producing new-generation PDMS stamps, especially for those who want to use soft lithography in their studies but have no access to the microfabrication facilities.
Collapse
Affiliation(s)
- Xi Ke
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | |
Collapse
|
30
|
Lis S, Kaczmarek M. Chemiluminescent systems generating reactive oxygen species from the decomposition of hydrogen peroxide and their analytical applications. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem 2013; 405:7907-18. [DOI: 10.1007/s00216-013-6830-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/27/2022]
|