1
|
Zhang W, Zhao L, Zhang T, Shi M, Lu D, Wang S, Zhang J, Jiang W, Wei M. 3,4-dimethylpyrazole phosphate (DMPP) may negate the expected stimulation of elevated atmospheric CO 2 and warming on fertilizer-N loss. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112386. [PMID: 39793710 DOI: 10.1016/j.plantsci.2025.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
People have accepted the clear fact that elevated CO2 (eCO2) and climate warming are happening, but sustainable agricultural systems are still struggling to adapt. 3,4-dimethyl-1H-pyrazol phosphate (DMPP) is currently recognized as a highly effective strategy for reducing nitrogen (N) loss and related environmental impacts. There is still uncertainty, however, whether DMPP could contribute to building climate-resilient ecosystems in a future climate scenario with co-elevated CO2 and temperature. Thus, this study evaluated the responses of plant N derived from soil or fertilizer and strawberry growth to the tested climate conditions. Plants were supplied with or without DMPP, grown in controlled climate chambers under ambient CO2 and temperature (aCT; 400 ppm + 25℃), and co-elevated CO2 and temperature (eCT; 800 ppm + 27℃). The results showed that DMPP increased plant N accumulation by 9 % and 19 % under aCT and eCT conditions, respectively, compared to N treatment without DMPP. We also found a similar trend in total C content in the plants. Compared with aCT, DMPP demonstrated higher efficiency in improving N use efficiency (NUE, 51 % vs. 36 %) and reducing N loss (21 % vs. 29 %) under eCT, which could ensure higher N demand of plant, making fertilizer-N, rather than soil-N, a primary contributor to the N accumulation increment. Moreover, in terms of combating climate challenge, the combination with DMPP further strengthened the beneficial influence of eCT on the N accumulation and biomass in strawberry but reduced fertilizer-N loss. In summary, DMPP exhibits better performance under eCT, which may alleviate the potential adverse effects of co-elevated CO2 and temperature on ecosystem by reducing fertilizer-N loss and soil-N mineralization more efficiently, providing a promising approach to optimizing sustainable agricultural management under future climate change.
Collapse
Affiliation(s)
- Wenjie Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Ting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Mengyun Shi
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Dianjun Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Shuai Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Jia Zhang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Wei Jiang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Meng Wei
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| |
Collapse
|
2
|
Hlisnikovský L, Zemanová V, Roman M, Menšík L, Kunzová E. Long-Term Study of the Effects of Environment, Variety, and Fertilisation on Yield and Stability of Spring Barley Grain. PLANTS (BASEL, SWITZERLAND) 2024; 13:2745. [PMID: 39409615 PMCID: PMC11478852 DOI: 10.3390/plants13192745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The stability and yield of barley grain are affected by several factors, such as climatic conditions, fertilisation, and the different barley varieties. In a long-term experiment in Prague, Czech Republic, established in 1955, we analysed the weather trends and how weather, fertilisation (10 treatments in total), and different barley varieties affected grain yield and stability. A total of 44 seasons were evaluated. Trends in mean, minimum, and maximum temperatures from 1953 to 2023, as well as sunshine duration from 1961 to 2022, showed statistically significant increases. The trend for annual precipitation from 1953 to 2023 was not significant, but changes in precipitation were recorded via seasonal precipitation concentration indexes. The unfertilised Control and farmyard manure (FYM) provided the lowest mean yields. Mineral fertilisers (NPK) and FYM+NPK increased grain yield, ranging from 4.9 t ha-1 to 5.5 t ha-1. Three notable correlations between weather conditions and yields were observed: (1) June precipitation (r = 0.4), (2) minimal temperature in July (r = 0.3), and (3) sunshine duration in May (r = -0.5). According to the linear-plateau response model, the reasonable N dose is 55 kg ha-1, resulting in a mean yield of 6.7 t ha-1 for the contemporarily used barley variety Sebastián.
Collapse
Affiliation(s)
- Lukáš Hlisnikovský
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 161 01 Prague, Czech Republic; (V.Z.); (L.M.); (E.K.)
| | - Veronika Zemanová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 161 01 Prague, Czech Republic; (V.Z.); (L.M.); (E.K.)
| | - Muhammad Roman
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| | - Ladislav Menšík
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 161 01 Prague, Czech Republic; (V.Z.); (L.M.); (E.K.)
| | - Eva Kunzová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 161 01 Prague, Czech Republic; (V.Z.); (L.M.); (E.K.)
| |
Collapse
|
3
|
Vaghar M, Eshghizadeh HR, Ehsanzadeh P. Elevated atmospheric CO 2 concentration mitigates salt damages to safflower: Evidence from physiological and biochemical examinations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108242. [PMID: 38070243 DOI: 10.1016/j.plaphy.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024]
Abstract
The physiological and biochemical responses of salt-stressed safflower to elevated CO2 remain inadequately known. This study investigated the interactive effects of high CO2 concentration (700 ± 50 vs. 400 ± 50 μmol mol-1) and salinity stress levels (0.4, 6, and 12 dS m-1, NaCl) on growth and physiological properties of four safflower (Carthamus tinctorius L.) genotypes, under open chamber conditions. Results showed that the effects of CO2 on biomass of shoot and grains depend on salt stress and plant genotype. Elevated CO2 conditions increased shoot dry weight under moderate salinity stress and decreased it under severe stress. The increased CO2 concentration also increased the safflower genotypes' relative water content and their K+/Na + concentrations. Also enriched CO2 increased total carotenoid levels in safflower genotypes and improved membrane stability index by reducing H2O2 levels. In addition, increased CO2 level led to an increase in seed oil content, under both saline and non-saline conditions. This effect was particularly pronounced under severe saline conditions. Under conditions of high CO2 and salinity, the Koseh genotype exhibited higher grain weight and seed oil content than other genotypes. This advantage is due to the higher relative water content, maximum quantum efficiency of photosystem II (Fv/Fm), and K+/Na+, as well as the lower Na+ and H2O2 concentrations. Results indicate that the high CO2 level mitigated the destructive effect of salinity on safflower growth by reducing Na + uptake and increasing the Fv/Fm, total soluble carbohydrates, and membrane stability index. This finding can be used in safflower breeding programs to develop cultivars that can thrive in arid regions with changing climatic conditions.
Collapse
Affiliation(s)
- M Vaghar
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - H R Eshghizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - P Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
4
|
Jiang C, Lei M, Guo Y, Gao G, Shi L, Jin Y, Cai Y, Himmelbach A, Zhou S, He Q, Yao X, Kan J, Haberer G, Duan F, Li L, Liu J, Zhang J, Spannagl M, Liu C, Stein N, Feng Z, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. PLANT COMMUNICATIONS 2022; 3:100317. [PMID: 35605197 PMCID: PMC9284286 DOI: 10.1016/j.xplc.2022.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 05/26/2023]
Abstract
Barley is a diploid species with a genome smaller than those of other members of the Triticeae tribe, making it an attractive model for genetic studies in Triticeae crops. The recent development of barley genomics has created a need for a high-throughput platform to identify genetically uniform mutants for gene function investigations. In this study, we report an ethyl methanesulfonate (EMS)-mutagenized population consisting of 8525 M3 lines in the barley landrace "Hatiexi" (HTX), which we complement with a high-quality de novo assembly of a reference genome for this genotype. The mutation rate within the population ranged from 1.51 to 4.09 mutations per megabase, depending on the treatment dosage of EMS and the mutation discrimination platform used for genotype analysis. We implemented a three-dimensional DNA pooling strategy combined with multiplexed amplicon sequencing to create a highly efficient and cost-effective TILLING (targeting induced locus lesion in genomes) platform in barley. Mutations were successfully identified from 72 mixed amplicons within a DNA pool containing 64 individual mutants and from 56 mixed amplicons within a pool containing 144 individuals. We discovered abundant allelic mutants for dozens of genes, including the barley Green Revolution contributor gene Brassinosteroid insensitive 1 (BRI1). As a proof of concept, we rapidly determined the causal gene responsible for a chlorotic mutant by following the MutMap strategy, demonstrating the value of this resource to support forward and reverse genetic studies in barley.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaomiao Lei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijie Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yanlong Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Cai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Shenghui Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chunming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Zongyun Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Ahmad M, Imtiaz M, Shoib Nawaz M, Mubeen F, Imran A. What Did We Learn From Current Progress in Heat Stress Tolerance in Plants? Can Microbes Be a Solution? FRONTIERS IN PLANT SCIENCE 2022; 13:794782. [PMID: 35677244 PMCID: PMC9168681 DOI: 10.3389/fpls.2022.794782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
Temperature is a significant parameter in agriculture since it controls seed germination and plant growth. Global warming has resulted in an irregular rise in temperature posing a serious threat to the agricultural production around the world. A slight increase in temperature acts as stress and exert an overall negative impact on different developmental stages including plant phenology, development, cellular activities, gene expression, anatomical features, the functional and structural orientation of leaves, twigs, roots, and shoots. These impacts ultimately decrease the biomass, affect reproductive process, decrease flowering and fruiting and significant yield losses. Plants have inherent mechanisms to cope with different stressors including heat which may vary depending upon the type of plant species, duration and degree of the heat stress. Plants initially adapt avoidance and then tolerance strategies to combat heat stress. The tolerance pathway involves ion transporter, osmoprotectants, antioxidants, heat shock protein which help the plants to survive under heat stress. To develop heat-tolerant plants using above-mentioned strategies requires a lot of time, expertise, and resources. On contrary, plant growth-promoting rhizobacteria (PGPRs) is a cost-effective, time-saving, and user-friendly approach to support and enhance agricultural production under a range of environmental conditions including stresses. PGPR produce and regulate various phytohormones, enzymes, and metabolites that help plant to maintain growth under heat stress. They form biofilm, decrease abscisic acid, stimulate root development, enhance heat shock proteins, deamination of ACC enzyme, and nutrient availability especially nitrogen and phosphorous. Despite extensive work done on plant heat stress tolerance in general, very few comprehensive reviews are available on the subject especially the role of microbes for plant heat tolerance. This article reviews the current studies on the retaliation, adaptation, and tolerance to heat stress at the cellular, organellar, and whole plant levels, explains different approaches, and sheds light on how microbes can help to induce heat stress tolerance in plants.
Collapse
Affiliation(s)
| | - Muhammad Imtiaz
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | | | - Asma Imran
- Microbial Ecology Lab, Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
6
|
Ahmed M, Hayat R, Ahmad M, ul-Hassan M, Kheir AMS, ul-Hassan F, ur-Rehman MH, Shaheen FA, Raza MA, Ahmad S. Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. INTERNATIONAL JOURNAL OF PLANT PRODUCTION 2022; 16:341-363. [PMID: 35614974 PMCID: PMC9122557 DOI: 10.1007/s42106-022-00197-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2022] [Indexed: 05/28/2023]
Abstract
Dryland agricultural system is under threat due to climate extremes and unsustainable management. Understanding of climate change impact is important to design adaptation options for dry land agricultural systems. Thus, the present review was conducted with the objectives to identify gaps and suggest technology-based intervention that can support dry land farming under changing climate. Careful management of the available agricultural resources in the region is a current need, as it will play crucial role in the coming decades to ensure food security, reduce poverty, hunger, and malnutrition. Technology based regional collaborative interventions among Universities, Institutions, Growers, Companies etc. for water conservation, supplemental irrigation, foliar sprays, integrated nutrient management, resilient crops-based cropping systems, artificial intelligence, and precision agriculture (modeling and remote sensing) are needed to support agriculture of the region. Different process-based models have been used in different regions around the world to quantify the impacts of climate change at field, regional, and national scales to design management options for dryland cropping systems. Modeling include water and nutrient management, ideotype designing, modification in tillage practices, application of cover crops, insect, and disease management. However, diversification in the mixed and integrated crop and livestock farming system is needed to have profitable, sustainable business. The main focus in this work is to recommend different agro-adaptation measures to be part of policies for sustainable agricultural production systems in future.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Rifat Hayat
- Department of Soil Science and Soil Water Conservation, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University , Rawalpindi, 46300 Pakistan
| | - Mahmood ul-Hassan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University , Rawalpindi, 46300 Pakistan
| | - Ahmed M. S. Kheir
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Soils, Water and Environment Research Institute, Agricultural Research Center, 9 Cairo University Street, Giza, Egypt
| | - Fayyaz ul-Hassan
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Muhammad Habib ur-Rehman
- Institute of Crop Science and Resource Conservation, INRES) University, 53115 Bonn, Germany
- Department of Agronomy, Muhammad Nawaz Shareef Agriculture University, Multan, 60800 Pakistan
| | - Farid Asif Shaheen
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi, 46300 Pakistan
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Shakeel Ahmad
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| |
Collapse
|
7
|
Laza HE, Kaur-Kapoor H, Xin Z, Payton PR, Chen J. Morphological analysis and stage determination of anther development in Sorghum [Sorghum bicolor (L.) Moench]. PLANTA 2022; 255:86. [PMID: 35286485 PMCID: PMC8921119 DOI: 10.1007/s00425-022-03853-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The characteristics of sorghum anthers at 18 classified developmental stages provide an important reference for future studies on sorghum reproductive biology and abiotic stress tolerance of sorghum pollen. Sorghum (Sorghum bicolor L. Moench) is the fifth-most important cereal crop in the world. It has relatively high resilience to drought and high temperature stresses during vegetative growing stages comparing to other major cereal crops. However, like other cereal crops, the sensitivity of male organ to heat and drought can severely depress sorghum yield due to reduced fertility and pollination efficiency if the stress occurs at the reproductive stage. Identification of the most vulnerable stages and the genes and genetic networks that differentially regulate the abiotic stress responses during anther development are two critical prerequisites for targeted molecular trait selection and for enhanced environmentally resilient sorghum in breeding using a variety of genetic modification strategies. However, in sorghum, anther developmental stages have not been determined. The distinctive cellular characteristics associated with anther development have not been well examined. Lack of such critical information is a major obstacle in the studies of anther and pollen development in sorghum. In this study, we examined the morphological changes of sorghum anthers at cellular level during entire male organ development processes using a modified high-throughput imaging variable pressure scanning electron microscopy and traditional light microscopy methods. We divided sorghum anther development into 18 distinctive stages and provided detailed description of the morphological changes in sorghum anthers for each stage. The findings of this study will serve as an important reference for future studies focusing on sorghum physiology, reproductive biology, genetics, and genomics.
Collapse
Affiliation(s)
- Haydee E Laza
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Zhuanguo Xin
- Plant Stress and Germplasm Development, USDA-ARS, Lubbock, TX, 79415, USA
| | - Paxton R Payton
- Plant Stress and Germplasm Development, USDA-ARS, Lubbock, TX, 79415, USA
| | - Junping Chen
- Plant Stress and Germplasm Development, USDA-ARS, Lubbock, TX, 79415, USA.
| |
Collapse
|
8
|
Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Barley heading date has advanced in Fairbanks (64.83° N, 147.77° W), Alaska, USA. However, it is unclear if this advance coincidently causes weather pattern changes around heading and leads to yield loss. Using the Variety Trial and weather data in Fairbanks and Delta Junction (64.05° N, 145.60° W) from 1991 to 2018, two barley cultivars were selected to analyze the yield and weather trends, the yield variation explained by weather, and the effect of extreme weather on yield. The results showed that the heading date of ‘Otal’ significantly advanced and yield significantly declined in Fairbanks while there were no heading and yield changes of ‘Otal’ in Delta Junction and of ‘Thual’ in both Fairbanks and Delta Junction. The weather pattern changed around heading due to advanced heading of ‘Otal’ in Fairbanks. The climate factors at 7–10 days around heading explained over 50% of ‘Otal’ yield variation in Fairbanks. The results suggest that ‘Otal’ can still be good to plant in Delta Junction but not in Fairbanks. To cope with the climate change in Alaska, the farmers should increase the diversity of barley cultivars, select non-photoperiod sensitive cultivars and cultivars with longer duration from planting to heading, and sow late to avoid the impact on heading and yield.
Collapse
|
9
|
Romero H, Pott DM, Vallarino JG, Osorio S. Metabolomics-Based Evaluation of Crop Quality Changes as a Consequence of Climate Change. Metabolites 2021; 11:461. [PMID: 34357355 PMCID: PMC8303867 DOI: 10.3390/metabo11070461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Fruit composition determines the fruit quality and, consequently, consumer acceptance. As fruit quality can be modified by environmental conditions, it will be impacted by future alterations produced by global warming. Therefore, agricultural activities will be influenced by the changes in climatological conditions in cultivable areas, which could have a high socioeconomic impact if fruit production and quality decline. Currently, different stresses are being applied to several cultivated species to evaluate their impact on fruit metabolism and plant performance. With the use of metabolomic tools, these changes can be precisely measured, allowing us to determine changes in the patterns of individual compounds. As these changes depend on both the stress severity and the specific species involved and even on the specific cultivar, individual analysis must be conducted. To date, the most-studied crops have mainly been crops that are widely cultivated and have a high socioeconomic impact. In the near future, with the development of these metabolomic strategies, their implementation will be extended to other species, which will allow the adaptation of cultivation conditions and the development of varieties with high adaptability to climatological changes.
Collapse
Affiliation(s)
- Helena Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain;
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| |
Collapse
|
10
|
Bindereif SG, Rüll F, Kolb P, Köberle L, Willms H, Steidele S, Schwarzinger S, Gebauer G. Impact of Global Climate Change on the European Barley Market Requires Novel Multi-Method Approaches to Preserve Crop Quality and Authenticity. Foods 2021; 10:foods10071592. [PMID: 34359461 PMCID: PMC8303565 DOI: 10.3390/foods10071592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Most recently in 2018 and 2019, large parts of Europe were affected by periods of massive drought. Resulting losses in cereal yield pose a major risk to the global supply of barley, as more than 60% of global production is based in Europe. Despite the arising price fluctuations on the cereal market, authenticity of the crop must be ensured, which includes correct declaration of harvest years. Here, we show a novel approach that allows such differentiation for spring barley samples, which takes advantage of the chemical changes caused by the extreme drought. Samples from 2018 were successfully differentiated from those of 2017 by analysis of changes in near-infrared spectra, enrichment in the isotope 13C, and strong accumulation of the plant-physiological marker betaine. We demonstrate that through consideration of multiple modern analysis techniques, not only can fraudulent labelling be prevented, but indispensable knowledge on the drought tolerance of crops can be obtained.
Collapse
Affiliation(s)
- Stefan G. Bindereif
- BayCEER—Laboratory of Isotope Biogeochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
| | - Felix Rüll
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Peter Kolb
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Lucas Köberle
- ALNuMed GmbH, Gottlieb-Keim Straße 60, 95448 Bayreuth, Germany;
| | - Holger Willms
- IREKS GmbH, Lichtenfelser Straße 20, 95326 Kulmbach, Germany;
| | - Simon Steidele
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
- Correspondence: (S.S.); (G.G.); Tel.: +49-(0)-9-2155-2046 (S.S.); +49-(0)-9-2155-2060 (G.G.)
| | - Gerhard Gebauer
- BayCEER—Laboratory of Isotope Biogeochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
- Correspondence: (S.S.); (G.G.); Tel.: +49-(0)-9-2155-2046 (S.S.); +49-(0)-9-2155-2060 (G.G.)
| |
Collapse
|
11
|
Effect of Exogenous Melatonin on the Quality of Soybean and Natto Products under Drought Stress. J CHEM-NY 2021. [DOI: 10.1155/2021/8847698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melatonin can directly or indirectly eliminate reactive oxygen species, regulate hormone levels, and improve drought-stressed soybean crop resistance, yield, and quality. The nutrient contents of soybeans grown under normal conditions (WW), drought stress (D), and drought stress with exogenous melatonin (D + M) (
) were compared. The differences in the quality of natto from the three groups of soybeans were also analyzed. The results showed that compared with soybeans under normal conditions, those grown under drought stress had reduced yield and carbohydrate, protein, essential amino acid, soybean isoflavone, and other nutrient contents. Besides, natto presented low nattokinase levels (674 U/mL), natto drawing ability was weak, the surface was dull, the taste was poor, and the sensory score was 12 points. Exogenous melatonin increased the carbohydrate content (starch, sucrose, glucose, and fructose) and improved the yield and quality of soybeans under drought. The natto produced by soybeans under drought stress with exogenous melatonin had high nattokinase content (756 U/mL) and long wire drawing. The surface of the product was rich in mucus and had a natto aroma. Its comprehensive sensory score was 20 points. Natto from soybeans under drought stress that were treated with exogenous melatonin showed significantly higher yield, nutrient content, and quality, than those under drought stress without treatment. This study provides theoretical data that can facilitate the development of new methods to improve the quality of soybeans grown under drought conditions.
Collapse
|
12
|
Liu X, Wang N, Cui R, Song H, Wang F, Sun X, Du N, Wang H, Wang R. Quantifying Key Points of Hydraulic Vulnerability Curves From Drought-Rewatering Experiment Using Differential Method. FRONTIERS IN PLANT SCIENCE 2021; 12:627403. [PMID: 33603765 PMCID: PMC7884474 DOI: 10.3389/fpls.2021.627403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Abstract
Precise and accurate estimation of key hydraulic points of plants is conducive to mastering the hydraulic status of plants under drought stress. This is crucial to grasping the hydraulic status before the dieback period to predict and prevent forest mortality. We tested three key points and compared the experimental results to the calculated results by applying two methods. Saplings (n = 180) of Robinia pseudoacacia L. were separated into nine treatments according to the duration of the drought and rewatering. We established the hydraulic vulnerability curve and measured the stem water potential and loss of conductivity to determine the key points. We then compared the differences between the calculated [differential method (DM) and traditional method (TM)] and experimental results to identify the validity of the calculation method. From the drought-rewatering experiment, the calculated results from the DM can be an accurate estimation of the experimental results, whereas the TM overestimated them. Our results defined the hydraulic status of each period of plants. By combining the experimental and calculated results, we divided the hydraulic vulnerability curve into four parts. This will generate more comprehensive and accurate methods for future research.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Feng Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Ning Du
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Hui Wang
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Liu X, Zhang Q, Song M, Wang N, Fan P, Wu P, Cui K, Zheng P, Du N, Wang H, Wang R. Physiological Responses of Robinia pseudoacacia and Quercus acutissima Seedlings to Repeated Drought-Rewatering Under Different Planting Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:760510. [PMID: 34938307 PMCID: PMC8685255 DOI: 10.3389/fpls.2021.760510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Changing precipitation patterns have aggravated the existing uneven water distribution, leading to the alternation of drought and rewatering. Based on this variation, we studied species, namely, Robinia pseudoacacia and Quercus acutissima, with different root forms and water regulation strategy to determine physiological responses to repeated drought-rewatering under different planting methods. Growth, physiological, and hydraulic traits were measured using pure and mixed planting seedlings that were subjected to drought, repeated drought-rewatering (i.e., treatments), and well-irrigated seedlings (i.e., control). Drought had negative effects on plant functional traits, such as significantly decreased xylem water potential (Ψmd), net photosynthetic rate (AP), and then height and basal diameter growth were slowed down, while plant species could form stress imprint and adopt compensatory mechanism after repeated drought-rewatering. Mixed planting of the two tree species prolonged the desiccation time during drought, slowed down Ψmd and AP decreasing, and after rewatering, plant functional traits could recover faster than pure planting. Our results demonstrate that repeated drought-rewatering could make plant species form stress imprint and adopt compensatory mechanism, while mixed planting could weaken the inhibition of drought and finally improve the overall drought resistance; this mechanism may provide a theoretical basis for afforestation and vegetation restoration in the warm temperate zone under rising uneven spatiotemporal water distribution.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qinyuan Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Meixia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | | | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Kening Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Hui Wang,
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
14
|
Raoufi RS, Soufizadeh S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1657-1673. [PMID: 32683529 DOI: 10.1007/s00484-020-01946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
In the light of continuing anthropogenic climate change, it is important to gain a deep understanding of rice genotypic behavior under climate change. Most efforts on modeling rice performance under climate change focused on studying some aspects of climate change only such as CO2 concentration ([CO2]) or temperature. A comprehensive study on the role of genotypic variability in rice under diverse [CO2] × temperature × rainfall × representative concentration pathway (RCP) × environment is rare. The objective of the present study was to use AquaCrop-Rice model to study the impact of climate change on different rice cultivars in northern Iran. Three common improved and local rice cultivars were chosen, and their growth and yield behavior were simulated under three environments, three RCPs (2.6, 4.5 and 8.5), four temperature (+ 1 °C, + 2 °C, + 3 °C, + 4 °C), and two rainfall (± 20%) scenarios under two future timeframes (2020-2051 and 2052-2083). Results indicated different responses of rice cultivars under climate change. In general, improved cultivars acted better than the local cultivar although interaction with environment was also observed. Increase in [CO2] and temperature most often favored rice yield. However, RCP8.5 along with temperature scenario + 1 °C resulted in the highest aboveground biomass and yield. Rainfall variation was not of considerable importance. Phenology (flowering and physiological maturity) was accelerated especially by temperature. The length of the vegetative phase was more influenced by temperature than the length of the generative phase. Our simulations also indicated a potential for adaptation of improved cultivars under increasing [CO2] through their reduced stomatal conductance.
Collapse
Affiliation(s)
- Roxana Seyed Raoufi
- Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, G.C., P.O. Box 19835-196, Tehran, Iran
| | - Saeid Soufizadeh
- Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, G.C., P.O. Box 19835-196, Tehran, Iran.
| |
Collapse
|
15
|
Liu X, Li Q, Wang F, Sun X, Wang N, Song H, Cui R, Wu P, Du N, Wang H, Wang R. Weak Tradeoff and Strong Segmentation Among Plant Hydraulic Traits During Seasonal Variation in Four Woody Species. FRONTIERS IN PLANT SCIENCE 2020; 11:585674. [PMID: 33329647 PMCID: PMC7732674 DOI: 10.3389/fpls.2020.585674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
Plants may maintain long-term xylem function via efficiency-safety tradeoff and segmentation. Most studies focus on the growing season and community level. We studied species with different efficiency-safety tradeoff strategies, Quercus acutissima, Robinia pseudoacacia, Vitex negundo var. heterophylla, and Rhus typhina, to determine the seasonality of this mechanism. We separated their branches into perennial shoots and terminal twigs and monitored their midday water potential (Ψmd), relative water content (RWC), stem-specific hydraulic conductivity (Ks), loss of 12, 50, and 88% of maximum efficiency (i.e., P12, P50, P88) for 2 years. There were no correlations between water relations (Ψmd, RWC, Ks) and embolism resistance traits (P12, P50, P88) but they significantly differed between the perennial shoots and terminal twigs. All species had weak annual hydraulic efficiency-safety tradeoff but strong segmentation between the perennial shoots and the terminal twigs. R. pseudoacacia used a high-efficiency, low-safety strategy, whereas R. typhina used a high-safety, low-efficiency strategy. Q. acutissima and V. negundo var. heterophylla alternated these strategies. This mechanism provides a potential basis for habitat partitioning and niche divergence in the changing warm temperate zone environment.
Collapse
Affiliation(s)
- Xiao Liu
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qiang Li
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Feng Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Pan Wu
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Hui Wang,
| | - Renqing Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China. ATMOSPHERE 2019. [DOI: 10.3390/atmos10050240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the major winter wheat planting area of China is selected as the study area, with the time scale of the growth period of winter wheat (a total of 56 growth periods during October 1961 to May 2016). The significance, stability, magnitude of the trend and the average trend of the study area with eight temperature indices and seven precipitation indices of 453 meteorological stations are tested by Mann–Kendall method and Sen’s nonparametric method. The following observation can be made: (1) the cold extreme indices show strong and stable downward trend in most of the stations in the study area, while the hot extreme indices show a strong and stable upward trend, especially in the northern winter wheat planting area and the north of the southern winter wheat planting area. (2) The trends of extreme precipitation indices in most of the sites in the study area are insignificant and unstable. Only in R20mm, a significant and stable decreasing trend is shown in some stations, which is mainly located in the northern winter wheat planting area and part of the central and western regions in the study area. The results in some ways could enrich the references for understanding the climate change in the growth period of winter wheat in the region and help to formulate a better agronomic management practice of winter wheat.
Collapse
|
17
|
Wang J, Hasegawa T, Li L, Lam SK, Zhang X, Liu X, Pan G. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO 2 ] and temperature of canopy air in a paddy from East China. THE NEW PHYTOLOGIST 2019; 222:726-734. [PMID: 30586149 DOI: 10.1111/nph.15661] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Projected global climate change is a potential threat for food security. Both rising atmospheric CO2 concentrations ([CO2 ]) and temperatures have significant impacts on crop productivity, but the combined effects on grain quality are not well understood. We conducted an open-air field experiment to determine the impacts of elevated [CO2 ] (E-[CO2 ], up to 500 μmol mol-1 ) and warming (+2°C) on grain yield, protein and amino acid (AAs, acid digests) in a rice-winter wheat rotation system for 2 yr. E-[CO2 ] increased grain yield by 11.3% for wheat and 5.9% for rice, but decreased grain protein concentration by 14.9% for wheat and by 7.0% for rice, although E-[CO2 ] slightly increased the ratio of essential to nonessential AAs. With a consistent decline in grain yield, warming decreased protein yield, notably in wheat, despite a smaller increase in protein concentration. These results indicate that warming could partially negate the negative impact by E-[CO2 ] on grain protein concentration at the expense of grain yield; this tradeoff could not fully offset the negative effects of climate change on crop production.
Collapse
Affiliation(s)
- Jianqing Wang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Climate Change and Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Tohoku Agricultural Research Center, National Agricultural and Food Research Organization, Iwate, 020-0198, Japan
- Key Laboratory for Humid Subtropical Eco-geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Toshihiro Hasegawa
- Tohoku Agricultural Research Center, National Agricultural and Food Research Organization, Iwate, 020-0198, Japan
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Climate Change and Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shu Kee Lam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Climate Change and Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Climate Change and Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Climate Change and Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
18
|
Gordon R, Chapman J, Power A, Chandra S, Roberts J, Cozzolino D. Mid-infrared spectroscopy coupled with chemometrics to identify spectral variability in Australian barley samples from different production regions. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Contreras-Jiménez B, Del Real A, Millan-Malo BM, Gaytán-Martínez M, Morales-Sánchez E, Rodríguez-García ME. Physicochemical changes in barley starch during malting. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Brenda Contreras-Jiménez
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada; Universidad Nacional Autónoma de México, Campus Juriquilla; Querétaro Querétaro C.P. 76230 Mexico
| | - Alicia Del Real
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada; Universidad Nacional Autónoma de México, Campus Juriquilla; Querétaro Querétaro C.P. 76230 Mexico
| | - Beatriz M. Millan-Malo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada; Universidad Nacional Autónoma de México, Campus Juriquilla; Querétaro Querétaro C.P. 76230 Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry; Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas s/n Col. Centro; Querétaro Querétaro C.P. 76000 Mexico
| | - Eduardo Morales-Sánchez
- Instituto Politécnico Nacional. CICATA-IPN Unidad Querétaro; Cerro Blanco No. 141. Col. Colinas del Cimatario Querétaro Querétaro C.P.76090 Mexico
| | - Mario E. Rodríguez-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada; Universidad Nacional Autónoma de México, Campus Juriquilla; Querétaro Querétaro C.P. 76230 Mexico
| |
Collapse
|
20
|
A Review on the Source of Lipids and Their Interactions during Beer Fermentation that Affect Beer Quality. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The presence of lipids in wort and beer are important due to their influence on yeast metabolism and beer quality. Barley lipids have long been considered to have adverse effects on beer quality where some long-chain fatty acids are associated with high flavour potential. In addition, beer foam stability can be influenced by the concentration of lipids as well as other factors such as hop acids (e.g., iso-α-acids), proteins, polysaccharides and the presence of metal ions (e.g., nickel). Lipids can also influence yeast protease activity as well as the production of ethanol. This review provides an overview of the effect of climate change on the chemical composition of barley in relation to lipids and the influence of lipids in the process of this raw material in order to produce beer.
Collapse
|
21
|
Adu MO, Yawson DO, Armah FA, Abano EE, Quansah R. Systematic review of the effects of agricultural interventions on food security in northern Ghana. PLoS One 2018; 13:e0203605. [PMID: 30192868 PMCID: PMC6128573 DOI: 10.1371/journal.pone.0203605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background Food insecurity and poverty rates in Ghana are highest in the districts from latitude 8° N upwards. These have motivated several interventions aimed at addressing the food insecurity via promoting agricultural growth. An assessment of the overall impact of these interventions on food security is necessary to guide policy design and future interventions. Methods and findings A systematic review was used to assess the cumulative evidence of the effect of development interventions, implemented from 2006 to 2016 on food security, especially in Northern Ghana. Information were retrieved from over 20 Government and non-Governmental organisations through online search and actual visits. The number of studies included in systematic review was 22. The study showed that a large number of interventions have been implemented in Northern Ghana over the study period. Access to quality extension services, training and capacity building was a major intervention strategy. About 82% of studies considered increasing production but only 14% of the studies reported on changes in yield. About 42% of the included studies used market access as a strategy but about 44% reported increase in incomes of beneficiaries (with only seven studies providing numerical evidence for this claim). The ranking of frequency of intervention strategies was in the order extension and capacity building > production > postharvest value addition > water and irrigation facilities > storage facilities > input supply. A substantial number of the studies had no counterfactuals, weakening confidence in attributing impacts on food security for even the beneficiaries. Conclusions It is concluded that evidence for impacts of the interventions on food security was weak, or largely assumed. A logical recommendation is the need for development partners to synchronise their measurement and indicators of food security outcomes. It is also recommended that some food security indicators are explicitly incorporated into intervention design while bearing in mind the potential need for counterfactuals.
Collapse
Affiliation(s)
- Michael Osei Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
- * E-mail:
| | - David Oscar Yawson
- Department of Environmental Science, School of Biological Science, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Frederick Ato Armah
- Department of Environmental Science, School of Biological Science, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Ernest Ekow Abano
- Department of Agricultural Engineering, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Reginald Quansah
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
22
|
Reinmuth E, Parker P, Aurbacher J, Högy P, Dabbert S. Modeling perceptions of climatic risk in crop production. PLoS One 2017; 12:e0181954. [PMID: 28763471 PMCID: PMC5538739 DOI: 10.1371/journal.pone.0181954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
In agricultural production, land-use decisions are components of economic planning that result in the strategic allocation of fields. Climate variability represents an uncertainty factor in crop production. Considering yield impact, climatic influence is perceived during and evaluated at the end of crop production cycles. In practice, this information is then incorporated into planning for the upcoming season. This process contributes to attitudes toward climate-induced risk in crop production. In the literature, however, the subjective valuation of risk is modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic influence may be obscured by political and market influences so that risk perceptions during the production process are neglected. We present a utility concept that allows the inclusion of annual risk scores based on mid-season risk perceptions that are incorporated into field-planning decisions. This approach is exemplified and implemented for winter wheat production in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic simulation model FarmActor and empirical data from the region. Survey results indicate that a profitability threshold for this crop, the level of "still-good yield" (sgy), is 69 dt ha-1 (regional mean Kraichgau sample) for a given season. This threshold governs the monitoring process and risk estimators. We tested the modeled estimators against simulation results using ten projected future weather time series for winter wheat production. The mid-season estimators generally proved to be effective. This approach can be used to improve the modeling of planning decisions by providing a more comprehensive evaluation of field-crop response to climatic changes from an economic risk point of view. The methodology further provides economic insight in an agrometeorological context where prices for crops or inputs are lacking, but farmer attitudes toward risk should still be included in the analysis.
Collapse
Affiliation(s)
- Evelyn Reinmuth
- Institute of Farm Management, Section Production Theory and Resource Economics, Universität Hohenheim, Stuttgart, Germany
| | - Phillip Parker
- Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, Gießen, Germany
| | - Joachim Aurbacher
- Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, Gießen, Germany
| | - Petra Högy
- Institute of Landscape and Plant Ecology, Universität Hohenheim, Stuttgart, Germany
| | - Stephan Dabbert
- Institute of Farm Management, Section Production Theory and Resource Economics, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Alptekin B, Langridge P, Budak H. Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 2017; 17:145-170. [PMID: 27665284 PMCID: PMC5383695 DOI: 10.1007/s10142-016-0525-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
24
|
Yu W, Tan X, Zou W, Hu Z, Fox GP, Gidley MJ, Gilbert RG. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydr Polym 2017; 155:271-279. [DOI: 10.1016/j.carbpol.2016.08.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
25
|
Ingvordsen CH, Gislum R, Jørgensen JR, Mikkelsen TN, Stockmarr A, Jørgensen RB. Grain protein concentration and harvestable protein under future climate conditions. A study of 108 spring barley accessions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2151-2158. [PMID: 26889013 DOI: 10.1093/jxb/erw033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present study a set of 108 spring barley (H. vulgare L.) accessions were cultivated under predicted future levels of temperature and [CO2] as single factors and in combination (IPCC, AR5, RCP8.5). Across all genotypes, elevated [CO2] (700 ppm day/night) slightly decreased protein concentration by 5%, while elevated temperature (+5 °C day/night) substantially increased protein concentration by 29%. The combined treatment increased protein concentration across accessions by 8%. This was an increase less than predicted from strictly additive effects of the individual treatments. Despite the increase in grain protein concentration, the decrease in grain yield at combined elevated temperature and elevated [CO2] resulted in 23% less harvestable protein. There was variation in the response of the 108 accessions, which might be exploited to at least maintain if not increase harvestable grain protein under future climate change conditions.
Collapse
Affiliation(s)
- Cathrine H Ingvordsen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, DK - 2800 Kgs. Lyngby, Denmark
| | - René Gislum
- Department of Agroecology, AU-Flakkebjerg, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Johannes R Jørgensen
- Department of Agroecology, AU-Flakkebjerg, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Teis N Mikkelsen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, DK - 2800 Kgs. Lyngby, Denmark
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Matematiktorvet, Bld. 324, 2800 Kgs. Lyngby, Denmark
| | - Rikke B Jørgensen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, DK - 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
26
|
Li X, Jiang D, Liu F. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat. Sci Rep 2016; 6:23313. [PMID: 27001555 PMCID: PMC4802340 DOI: 10.1038/srep23313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/04/2016] [Indexed: 11/15/2022] Open
Abstract
Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target.
Collapse
Affiliation(s)
- Xiangnan Li
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegaard Allé 13, 2630 Tåstrup, Denmark
| | - Dong Jiang
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fulai Liu
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegaard Allé 13, 2630 Tåstrup, Denmark
| |
Collapse
|
27
|
Gous PW, Warren F, Mo OW, Gilbert RG, Fox GP. The effects of variable nitrogen application on barley starch structure under drought stress. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.260] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter W. Gous
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Sciences; Hartley Teakle Building Brisbane Qld 4072 Australia
| | - Frederick Warren
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Sciences; Hartley Teakle Building Brisbane Qld 4072 Australia
| | - Oi Wan Mo
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Robert G. Gilbert
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Sciences; Hartley Teakle Building Brisbane Qld 4072 Australia
| | - Glen P. Fox
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Sciences; Hartley Teakle Building Brisbane Qld 4072 Australia
| |
Collapse
|
28
|
Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R. Barley: a translational model for adaptation to climate change. THE NEW PHYTOLOGIST 2015; 206:913-931. [PMID: 25605349 DOI: 10.1111/nph.13266] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is an excellent model for understanding agricultural responses to climate change. Its initial domestication over 10 millennia ago and subsequent wide migration provide striking evidence of adaptation to different environments, agro-ecologies and uses. A bottleneck in the selection of modern varieties has resulted in a reduction in total genetic diversity and a loss of specific alleles relevant to climate-smart agriculture. However, extensive and well-curated collections of landraces, wild barley accessions (H. vulgare ssp. spontaneum) and other Hordeum species exist and are important new allele sources. A wide range of genomic and analytical tools have entered the public domain for exploring and capturing this variation, and specialized populations, mutant stocks and transgenics facilitate the connection between genetic diversity and heritable phenotypes. These lay the biological, technological and informational foundations for developing climate-resilient crops tailored to specific environments that are supported by extensive environmental and geographical databases, new methods for climate modelling and trait/environment association analyses, and decentralized participatory improvement methods. Case studies of important climate-related traits and their constituent genes - including examples that are indicative of the complexities involved in designing appropriate responses - are presented, and key developments for the future highlighted.
Collapse
Affiliation(s)
- Ian K Dawson
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Joanne Russell
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne Powell
- CGIAR Consortium Office, Montpellier Cedex 5, France
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - William T B Thomas
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute (JHI), Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, College of Life Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
29
|
Abstract
This review uses production and climate data to examine global and local production trends that can be related to events such as drought. UK grain quality data is also available and provides an overview of trends in protein content. Literature surveys show a consistent reduction in grain size due to the effects of temperature and/or drought. A review of gene expression studies showed that most genes involved in starch synthesis are down regulated under heat stress. Net protein production is also reduced under heat and/or drought stress but apparently to a lesser degree as the reduction in grain mass is larger, resulting in an increase in protein concentration. Modelling has suggested that adaptation could be achieved by moving production to more extreme latitudes but other research suggests that simply transferring germplasm from one region to another is unlikely to be successful. Another review has identified drought tolerance phenotypes that could be used to breed more drought tolerant crops. At the time of the review, the authors concluded that phenotypic selection was generally preferable to forms of marker-assisted breeding and have used the approach to produce drought tolerant wheat cultivars. Transgenic approaches have also been shown to improve drought tolerance under controlled environment conditions but there are no results to show how well these results translate into improved crop performance under field conditions. The recent advances in genomic data and detecting marker–trait associations suggest that marker-assisted breeding will play a much more important role in breeding drought tolerant cereals in the future.
Collapse
|
30
|
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 2013; 14:9643-84. [PMID: 23644891 PMCID: PMC3676804 DOI: 10.3390/ijms14059643] [Citation(s) in RCA: 772] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/02/2022] Open
Abstract
High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati University, Santiniketan 731235, West Bengal, India; E-Mail:
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; E-Mails: (K.N.); (M.M.A.)
| |
Collapse
|