1
|
David JJ, Kannan B, Pandi C, Jayaseelan VP, Vasagam JM, Arumugam P. Increased SEC14L2 expression is associated with clinicopathological features and worse prognosis in oral squamous cell carcinoma. Odontology 2024; 112:1326-1334. [PMID: 38575815 DOI: 10.1007/s10266-024-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Abnormal expression of SEC14L2 has been implicated in many human cancers. However, the role of SEC14L2 in oral squamous cell carcinoma (OSCC) remains unclear. Therefore, this study aimed to evaluate the expression and prognostic roles of SEC14L2 in OSCC. OSCC tumors and adjacent non-tumors were collected from OSCC patients and used for SEC14L2 mRNA expression by quantitative reverse transcription PCR (RT-qPCR). Additionally, the expression of SEC14L2 was further analyzed using The Cancer Genome Atlas-Head Neck Squamous Cell Carcinoma (TCGA-HNSCC) dataset to identify its relationship with HNSCC clinical characteristics. The Kaplan-Meier plot was used to assess survival rates, and the Tumor Immune Estimation Resource (TIMER) database was used to examine the correlation between SEC14L2 expression and tumor immune cell infiltration. In silico tools also looked at SEC14L2 involvement in cancer pathways through its protein network. The mRNA and protein levels of SEC14L2 are notably higher in both OSCC and HNSCC tissues compared to adjacent normal tissues. Upregulation of SEC14L2 was associated with advanced tumor stages, grades, metastasis, HPV-negative, and TP53 mutations in cancer patients. In addition, the high expression of SEC14L2 was negatively correlated with the poor survival of cancer patients and the infiltration of diverse immune cells in cancer patients. According to the findings of this investigation, SEC14L2 is significantly elevated in OSCC/HNSCC patients and associated with a worse prognosis. More investigation and clinical studies are required to completely understand the therapeutic potential of SEC14L2 in HNSCC and convert these findings into better patient outcomes.
Collapse
Affiliation(s)
- Jonah Justin David
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Chandra Pandi
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Jeevitha Manicka Vasagam
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
2
|
Nava-Tapia DA, Román-Justo NY, Cuenca-Rojo A, Guerrero-Rivera LG, Patrón-Guerrero A, Poblete-Cruz RI, Zacapala-Gómez AE, Sotelo-Leyva C, Navarro-Tito N, Mendoza-Catalán MA. Exploring the potential of tocopherols: mechanisms of action and perspectives in the prevention and treatment of breast cancer. Med Oncol 2024; 41:208. [PMID: 39060448 DOI: 10.1007/s12032-024-02454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Currently, breast cancer is the most common cause of mortality caused by neoplasia in women worldwide. The unmet challenges of conventional cancer therapy are chemoresistance and lack of selectivity, which can lead to serious side effects in patients; therefore, new treatments based on natural compounds that serve as adjuvants in breast cancer therapy are urgently needed. Tocopherols are naturally occurring antioxidant compounds that have shown antitumor activity against several types of cancer, including breast cancer. This review summarizes the antitumoral activity of tocopherols, such as the antiproliferative, apoptotic, anti-invasive, and antioxidant effects of tocopherols, through different molecular mechanisms. According to the studies described, α-T, δ-T and γ-T are the most studied in breast tumor cells; however, α-T and γ-T show a more critical antitumor activity and significant potential as a complements to chemotherapeutic drugs against breast cancer, enhancing toxicity against tumor cells and preventing cytotoxicity in nontumor cells. However, the possible relationship between tocopherol intake, related to concentration, and the promotion of cancer in particular cases should not be ruled out, so additional studies are required to determine the correct dose to obtain the desired antitumor effect. Moreover, nanomicelles of D-α-tocopherol have promising potential as pharmaceutical excipients for drug delivery to improve the cytotoxicity and selectivity of first-line chemotherapeutics against breast cancer.
Collapse
Affiliation(s)
- Dania A Nava-Tapia
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Norely Y Román-Justo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Antonio Cuenca-Rojo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Lizeth G Guerrero-Rivera
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Annet Patrón-Guerrero
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ruth I Poblete-Cruz
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Av. Lázaro Cárdenas S/N., 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
3
|
Hoefer CC, Hollon LK, Campbell JA. The Role of the Human Gutome on Chronic Disease: A Review of the Microbiome and Nutrigenomics. Clin Lab Med 2022; 42:627-643. [PMID: 36368787 DOI: 10.1016/j.cll.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carrie C Hoefer
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB 3005, Cincinnati, OH 45267, USA.
| | - Leah K Hollon
- Richmond Natural Medicine, National University of Natural Medicine Residency, 9211 Forest Hill Avenue, Richmond, VA 23235, USA
| | - Jennifer A Campbell
- Manchester University, College of Pharmacy, Natural, and Health Sciences, 10627 Diebold Road, Fort Wayne, IN 46845, USA
| |
Collapse
|
4
|
Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, AL Awadh AA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut ( Juglans regia) Oil with Roasting and Accelerated Storage Conditions. Molecules 2022; 27:molecules27227693. [PMID: 36431794 PMCID: PMC9696496 DOI: 10.3390/molecules27227693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Zineb Lakhlifi El Idrissi
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah AL Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (K.W.G.); (A.B.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Correspondence: (K.W.G.); (A.B.)
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
5
|
Edwards G, Olson CG, Euritt CP, Koulen P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front Neurosci 2022; 16:890021. [PMID: 35600628 PMCID: PMC9114494 DOI: 10.3389/fnins.2022.890021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
The eye is particularly susceptible to oxidative stress and disruption of the delicate balance between oxygen-derived free radicals and antioxidants leading to many degenerative diseases. Attention has been called to all isoforms of vitamin E, with α-tocopherol being the most common form. Though similar in structure, each is diverse in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology and survival through several signaling pathways by activating kinases and transcription factors relevant for uptake, transport, metabolism, and cellular action to promote neuroprotective effects. In the clinical setting, population-based studies on vitamin E supplementation have been inconsistent at times and follow-up studies are needed. Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this review is to recognize the importance of vitamin E’s role in guarding against gradual central vision loss observed in age-related macular degeneration (AMD). The therapeutic role and molecular mechanisms of vitamin E’s function in the retina, clinical implications, and possible toxicity are collectively described in the present review.
Collapse
|
6
|
Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021; 112:1603-1614. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
7
|
Sonbarse PP, Kiran K, Sharma P, Parvatam G. Biochemical and molecular insights of PGPR application for the augmentation of carotenoids, tocopherols, and folate in the foliage of Moringa oleifera. PHYTOCHEMISTRY 2020; 179:112506. [PMID: 32920264 DOI: 10.1016/j.phytochem.2020.112506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) were utilized to contemplate their impact on the foliage of Moringa oleifera and examined for changes in tocopherols, chlorophyll, carotenoids, and folate in the sixth week. Among the eight treatments, Bacillus subtilis GB03, B. pumilus SE34, B. pumilus T4, and Pseudomonas fluorescens UOM14 improved α-tocopherol (10-14 fold) and β-carotene (1-1.40 fold) altogether significantly (P ≤ 0.05). The most significant improvement in folate content was apparent for B. subtilis IN937B (5.47 fold) trailed by B. pumilus SE34 (5.05 fold) and B. pumilus T4 (5.12 fold) treatments. P. fluorescens UOM14 indicated remarkable improvement in Chl a (0.39 fold) and Chl b (0.44 fold) content. Organisms showing a significant increase for the analyzed molecules in individual treatment were blended in different combinations and were used for the next set of treatments. Of all the three combinations, Combination 2 (COM2-B. pumilus SE34 + B. pumilus T4 + B. pumilus INR7) showed the maximum increase in α-tocopherol (8.46 fold) and γ-tocopherol (8.45 fold), followed by Combination 3 (COM3-B. pumilus SE34 + B. pumilus T4 + P. fluorescens UOM14) (5.93 and 3.65 fold). On the whole COM2 containing different strains of B. pumilus was found to enhance the targeted metabolites in foliage significantly. Real-time PCR studies were conducted for the biochemical pathway genes of the targeted molecules, including, γ-tocopherol methyltransferase (γ-TMT), phytoene synthase (PSY), phytoene desaturase (PDS), lycopene β cyclase (LBC) and dihydrofolate reductase thymidylate synthase (DHFR-TS). All the selected genes exhibited an up-regulation compared to control, similar to the biochemical output. Our investigation provides the strong evidence that PGPR can be viably utilized in combination to enhance the quality of the food crops.
Collapse
Affiliation(s)
- Priyanka P Sonbarse
- Academy of Scientific and Innovative Research, Ghaziabad, India; Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysore, 570020, India
| | - Kamireddy Kiran
- Academy of Scientific and Innovative Research, Ghaziabad, India; Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysore, 570020, India
| | - Preksha Sharma
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysore, 570020, India
| | - Giridhar Parvatam
- Academy of Scientific and Innovative Research, Ghaziabad, India; Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysore, 570020, India.
| |
Collapse
|
8
|
Saberi Ansar E, Eslahchii C, Rahimi M, Geranpayeh L, Ebrahimi M, Aghdam R, Kerdivel G. Significant random signatures reveals new biomarker for breast cancer. BMC Med Genomics 2019; 12:160. [PMID: 31703592 PMCID: PMC6842262 DOI: 10.1186/s12920-019-0609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In 2012, Venet et al. proposed that at least in the case of breast cancer, most published signatures are not significantly more associated with outcome than randomly generated signatures. They suggested that nominal p-value is not a good estimator to show the significance of a signature. Therefore, one can reasonably postulate that some information might be present in such significant random signatures. METHODS In this research, first we show that, using an empirical p-value, these published signatures are more significant than their nominal p-values. In other words, the proposed empirical p-value can be considered as a complimentary criterion for nominal p-value to distinguish random signatures from significant ones. Secondly, we develop a novel computational method to extract information that are embedded within significant random signatures. In our method, a score is assigned to each gene based on the number of times it appears in significant random signatures. Then, these scores are diffused through a protein-protein interaction network and a permutation procedure is used to determine the genes with significant scores. The genes with significant scores are considered as the set of significant genes. RESULTS First, we applied our method on the breast cancer dataset NKI to achieve a set of significant genes in breast cancer considering significant random signatures. Secondly, prognostic performance of the computed set of significant genes is evaluated using DMFS and RFS datasets. We have observed that the top ranked genes from this set can successfully separate patients with poor prognosis from those with good prognosis. Finally, we investigated the expression pattern of TAT, the first gene reported in our set, in malignant breast cancer vs. adjacent normal tissue and mammospheres. CONCLUSION Applying the method, we found a set of significant genes in breast cancer, including TAT, a gene that has never been reported as an important gene in breast cancer. Our results show that the expression of TAT is repressed in tumors suggesting that this gene could act as a tumor suppressor in breast cancer and could be used as a new biomarker.
Collapse
Affiliation(s)
- Elnaz Saberi Ansar
- Curie Institute, INSERM U830, Translational Research Department, PSL Research University, Paris, 75005 France
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Changiz Eslahchii
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, GC, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mahsa Rahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Rosa Aghdam
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, GC, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Gwenneg Kerdivel
- Institut Cochin, Department Development, Reproduction, Inserm U1016, CNRS, UMR 8104, Université Paris Descartes UMR-S1016, Paris, 75014 France
| |
Collapse
|
9
|
Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019; 11:nu11071514. [PMID: 31277273 PMCID: PMC6682953 DOI: 10.3390/nu11071514] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer worldwide and the most commonly occurring malignancy in women. There is growing evidence that lifestyle factors, including diet, body weight and physical activity, may be associated with higher BC risk. However, the effect of dietary factors on BC recurrence and mortality is not clearly understood. Here, we provide an overview of the current evidence obtained from the PubMed databases in the last decade, assessing dietary patterns, as well as the consumption of specific food-stuffs/food-nutrients, in relation to BC incidence, recurrence and survival. Data from the published literature suggest that a healthy dietary pattern characterized by high intake of unrefined cereals, vegetables, fruit, nuts and olive oil, and a moderate/low consumption of saturated fatty acids and red meat, might improve overall survival after diagnosis of BC. BC patients undergoing chemotherapy and/or radiotherapy experience a variety of symptoms that worsen patient quality of life. Studies investigating nutritional interventions during BC treatment have shown that nutritional counselling and supplementation with some dietary constituents, such as EPA and/or DHA, might be useful in limiting drug-induced side effects, as well as in enhancing therapeutic efficacy. Therefore, nutritional intervention in BC patients may be considered an integral part of the multimodal therapeutic approach. However, further research utilizing dietary interventions in large clinical trials is required to definitively establish effective interventions in these patients, to improve long-term survival and quality of life.
Collapse
|
10
|
Khadangi F, Azzi A. Vitamin E - The Next 100 Years. IUBMB Life 2018; 71:411-415. [PMID: 30550633 DOI: 10.1002/iub.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
α-Tocopherol is the only tocopherol that has been shown to prevent the human deficiency disease Ataxia with Isolated Vitamin E Deficiency (AVED), and thus it is the only one that, for humans, can be called vitamin E. Vitamin E in addition to preventing AVED has documented immune boosting properties and an activity against nonalcoholic hepatosteatosis and low-grade inflammation. Epidemiological studies indicating that vitamin E could prevent cardiovascular events, neurodegenerative disease, macular degeneration, and cancer were in general not confirmed by clinical intervention studies. Vitamin E and some of its metabolites modulate cell signaling and gene transcription. Future research is needed to achieve a better understanding of the molecular events leading to gene regulation by vitamin E, especially in its phosphorylated form. Isolation and characterization of the vitamin E kinase and vitamin E phosphate phosphatase will help in the understanding of cell regulation processes modulated by vitamin E. A clarification of the pathogenesis of AVED remains an important goal to be achieved. © 2018 IUBMB Life, 71(4):411-415, 2019.
Collapse
Affiliation(s)
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, Massachusetts
| |
Collapse
|
11
|
Björkblom B, Wibom C, Jonsson P, Mörén L, Andersson U, Johannesen TB, Langseth H, Antti H, Melin B. Metabolomic screening of pre-diagnostic serum samples identifies association between α- and γ-tocopherols and glioblastoma risk. Oncotarget 2018; 7:37043-37053. [PMID: 27175595 PMCID: PMC5095057 DOI: 10.18632/oncotarget.9242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/23/2016] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is associated with poor prognosis with a median survival of one year. High doses of ionizing radiation is the only established exogenous risk factor. To explore new potential biological risk factors for glioblastoma, we investigated alterations in metabolite concentrations in pre-diagnosed serum samples from glioblastoma patients diagnosed up to 22 years after sample collection, and undiseased controls. The study points out a latent biomarker for future glioblastoma consisting of nine metabolites (γ-tocopherol, α-tocopherol, erythritol, erythronic acid, myo-inositol, cystine, 2-keto-L-gluconic acid, hypoxanthine and xanthine) involved in antioxidant metabolism. We detected significantly higher serum concentrations of α-tocopherol (p=0.0018) and γ-tocopherol (p=0.0009) in future glioblastoma cases. Compared to their matched controls, the cases showed a significant average fold increase of α- and γ-tocopherol levels: 1.2 for α-T (p=0.018) and 1.6 for γ-T (p=0.003). These tocopherol levels were associated with a glioblastoma odds ratio of 1.7 (α-T, 95% CI:1.0-3.0) and 2.1 (γ-T, 95% CI:1.2-3.8). Our exploratory metabolomics study detected elevated serum levels of a panel of molecules with antioxidant properties as well as oxidative stress generated compounds. Additional studies are necessary to confirm the association between the observed serum metabolite pattern and future glioblastoma development.
Collapse
Affiliation(s)
- Benny Björkblom
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Lina Mörén
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulrika Andersson
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| | - Tom Børge Johannesen
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway
| | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway
| | - Henrik Antti
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
12
|
α-Tocopherol succinate enhances pterostilbene anti-tumor activity in human breast cancer cells in vivo and in vitro. Oncotarget 2017; 9:4593-4606. [PMID: 29435127 PMCID: PMC5796998 DOI: 10.18632/oncotarget.23390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
Vitamin E (Vit. E) is considered an essential dietary nutrient for humans and animals. An enormous body of evidence indicates the biological and protective effects of Vit. E consumption. Tocopherol-associated protein (TAP) is a major tocopherol-binding protein affecting Vit. E stimulation and downstream signaling transduction. However, how Vit. E utilizes TAP as an anti-cancer mechanism remains unclear. Microarray analysis of signature gene profiles in breast cancer cells treated with α-tocopheryl succinate (α-TOS, a Vit. E isoform) resulted in cell cycle arrest and anti-cancer activity in breast cancer cells. Pterostilbene (PS), a natural dietary antioxidant found in blueberries, in combination with α-TOS synergistically maximized breast cancer cell growth inhibition by disrupting signal transduction, transcription factors and cell cycle proteins. In a xenograft mouse model, PS treatment with Vit. E inhibited breast tumor growth and cell invasion, which were evaluated using our recently developed circulating tumor cell (CTC) detection assay. Because dietary Vit. E and PS supplementation contributed to preventative and therapeutic effects in vitro and in vivo, this combination may benefit breast cancer therapy in the clinic.
Collapse
|
13
|
Phytotherapy and Nutritional Supplements on Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7207983. [PMID: 28845434 PMCID: PMC5563402 DOI: 10.1155/2017/7207983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent type of nonskin malignancy among women worldwide. In general, conventional cancer treatment options (i.e., surgery, radiotherapy, chemotherapy, biological therapy, and hormone therapy) are not completely effective. Recurrence and other pathologic situations are still an issue in breast cancer patients due to side effects, toxicity of drugs in normal cells, and aggressive behaviour of the tumours. From this point of view, breast cancer therapy and adjuvant methods represent a promising and challenging field for researchers. In the last few years, the use of some types of complementary medicines by women with a history of breast cancer has significantly increased such as phytotherapeutic products and nutritional supplements. Despite this, the use of such approaches in oncologic processes may be problematic and patient's health risks can arise such as interference with the efficacy of standard cancer treatment. The present review gives an overview of the most usual phytotherapeutic products and nutritional supplements with application in breast cancer patients as adjuvant approach. Regardless of the contradictory results of scientific evidence, we demonstrated the need to perform additional investigation, mainly well-designed clinical trials in order to establish correlations and allow for further validated outcomes concerning the efficacy, safety, and clinical evidence-based recommendation of these products.
Collapse
|
14
|
Abstract
Four tocopherols are available in nature and are absorbed with the diet, but only one RRR-α-tocopherol satisfies the criteria of being a vitamin. The biological activity of the different tocopherols studied in the rat by the resorption-gestation test has been inconsistently extrapolated to human beings where the tocopherols have no influence on a successful pregnancy. Diminution of RRR-α-tocopherol intake results in diseases characterized by ataxia, whose pathogenetic mechanism, despite vigorous claims, has not been clarified. The calculation of the Daily Reference Intake (DRI), necessary to prevent disease, is based on an obsolete test, the peroxide-induced erythrocyte hemolysis, called the gold standard, but of highly questioned validity. If many epidemiological studies have given positive results, showing prevention by high vitamin E containing diets of cardiovascular events, neurodegenerative disease, macular degeneration and cancer, the clinical confirmatory intervention studies were mostly negative. On the positive side, besides preventing vitamin E deficiency diseases, vitamin E has shown efficacy as anti-inflammatory and immune boosting compound. It has also shown some efficacy in protecting against nonalcoholic hepato-steatosis. At a molecular level, vitamin E and some of its metabolites have shown capacity of regulating cell signaling and modulating gene transcription.
Collapse
Affiliation(s)
- Angelo Azzi
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
15
|
Shahidi F, de Camargo AC. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int J Mol Sci 2016; 17:E1745. [PMID: 27775605 PMCID: PMC5085773 DOI: 10.3390/ijms17101745] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil.
| |
Collapse
|
16
|
Wang X, Ring BZ, Seitz RS, Ross DT, Woolf K, Beck RA, Hicks DG, Yeh S. Expression of a-Tocopherol-Associated protein (TAP) is associated with clinical outcome in breast cancer patients. BMC Clin Pathol 2015; 15:21. [PMID: 26664297 PMCID: PMC4673715 DOI: 10.1186/s12907-015-0021-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The role of vitamin E in breast cancer prevention and treatment has been widely investigated, and the different tocopherols that comprise this nutrient have been shown to have divergent associations with cancer outcome. Our previous studies have shown that α-Tocopherol-associated protein (TAP), a vitamin E binding protein, may function as a tumor suppressor-like factor in breast carcinogenesis. The current study addresses the association of TAP expression with breast cancer clinical outcomes. METHODS Immunohistochemical stain for TAP was applied to a tissue microarray from a breast cancer cohort consisting of 271 patients with a median follow-up time of 5.2 years. The expression of TAP in tumor cells was compared with patient's clinical outcome at 5 years after diagnosis. The potential role of TAP in predicting outcome was also assessed in clinically relevant subsets of the cohort. In addition, we compared TAP expression and Oncotype DX scores in an independent breast cancer cohort consisting of 71 cases. RESULTS We demonstrate that the expression of TAP was differentially expressed within the breast cancer cohort, and that ER+/PR ± tumors were more likely to exhibit TAP expression. TAP expression was associated with an overall lower recurrence rate and a better 5-year survival rate. This association was primarily in patients with ER+ tumors; exploratory analysis showed that this association was strongest in patients with node-positive tumors and was independent of stage and treatment with chemotherapy. TAP expression in ER/PR negative or triple negative tumors had no association with clinical outcome. In addition, we did not observe an association between TAP expression and Oncotype DX recurrence score. CONCLUSIONS The significant positive association we found for α-Tocopherol-associated protein with outcome in breast cancer may help to better define and explain studies addressing α-tocopherol's association with cancer risk and outcome. Additionally, further studies to validate and extend these findings may allow TAP to serve as a breast-specific prognostic marker in breast cancer patients, especially in those patients with ER+ tumors.
Collapse
Affiliation(s)
- Xi Wang
- />Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Brian Z. Ring
- />Institute for Genomic and Personalized Medicine, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | - Kirsten Woolf
- />Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | | | - David G. Hicks
- />Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Shuyuan Yeh
- />Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
17
|
Feng CC, Chen LN, Chen MJ, Li W, Jia X, Zhou YY, He WM. Analysis of different activation statuses of human mammary epithelial cells from young and old groups. Asian Pac J Cancer Prev 2014; 15:3763-6. [PMID: 24870790 DOI: 10.7314/apjcp.2014.15.8.3763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human mammary epithelial cells have different proliferative statuses and demonstrate a close relationship with age and cell proliferation. Research on this topic could help understand the occurrence, progression and prognosis of breast cancer. In this article, using significance analysis of a microarray algorithm, we analyzed gene expression profiles of human mammary epithelial cells of different proliferative statuses and different age groups. The results showed there were significant differences in gene expression in the same proliferation status between elderly and young groups. Three common differentially expressed genes were found to dynamically change with the proliferation status and to be closely related to tumorigenesis. We also found elderly group had less status-related differential genes from actively proliferating status to intermediate status and more status- related differential genes from intermediate status than the young group. Finally, functional enrichment analyses allowed evaluation of the detailed roles of these differentially-expressed genes in tumor progression.
Collapse
Affiliation(s)
- Chen-Chen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
18
|
Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 2013; 141:1553-61. [PMID: 23790951 DOI: 10.1016/j.foodchem.2013.04.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemopreventive or chemosensitising properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified. This study found that the level of cyclin E2 (CCNE2) mRNA was higher in tumour cells (4.89-fold, (∗)P=0.005) than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257). Further, relatively high levels of CCNE2 protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5μM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitised the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemosensitiser to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients.
Collapse
|