1
|
Yan Y, Fan X, Hua D, Liu X, Li C, Li Z, Bai M, Zhang Y, Liu H. Effects of different enzymatic hydrolysis techniques on volatile flavor compounds and nutritional metabolites of soybean meal yogurt. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1312-1323. [PMID: 39658891 DOI: 10.1002/jsfa.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND This study explores enzymatic hydrolysis as a method of modifying soybean meal (SM). It can reduce the particle size, improve flavor, and convert macromolecules into absorbable nutrients. The purpose is to provide technical information regarding the use of SM. Papain alone, and a combination of papain and acid protease, and a mixture of papain, acid protease, and Lactiplantibacillus plantarum were employed for the enzymatic hydrolysis of SM. RESULTS Sensory evaluation and nutritional and flavor analyses were performed with yogurt produced after SM enzymatic hydrolysis. The enzymatic hydrolysis improved yogurt quality significantly in comparison with non-enzymatically hydrolyzed soybean meal yogurt (SMY) by accelerating the decrease in pH and shortening the duration of fermentation. Enzymatic hydrolysis also reduced beany flavors and bitterness and enhanced the aromatic compound, flavor-related amino acid, and organic acid content, rendering the yogurt more appealing to consumers. Microstructural analysis revealed favorable characteristics that textural and rheological properties of the yogurt produced after enzymatically hydrolyzed SM were improved. CONCLUSION In this study, the biotechnological approach was used to demonstrate the efficacy of enzymatic hydrolysis in improving the quality and value of SM, promoting the efficient application of SM in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxin Yan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiangrong Fan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiaoqing Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Chunling Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zixuan Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Yaru Zhang
- Fuxin Drug Inspection Institute Co. Ltd., Fuxin, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
2
|
Validation of High-Pressure Homogenization Process to Pasteurize Brazil Nut (Bertholletia excelsa) Beverages: Sensorial and Quality Characteristics during Cold Storage. BEVERAGES 2023. [DOI: 10.3390/beverages9010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The effect of high-pressure homogenization (HPH) on the inactivation of Escherichia coli and the stability of the quality properties of Brazil nut beverages were studied. E. coli was used as target microorganism to validate the HPH process (pressures from 50 to 180 MPa and inlet temperatures (Ti) from 25 to 75 °C). Cold storage (5 °C) for 21 days was conducted to establish the shelf-life of BN beverages, in terms of their microbiological, physical, physicochemical, and sensorial stability. HPH-treated samples were compared to pasteurized BN beverages (63 °C for 20 min). The combination of Ti and the pressure of the HPH process (50 to 150 MPa/75 °C and 180 MPa/25 °C) had a significant effect on E. coli inactivation (8.2 log CFU/mL). During storage at 5 °C, the growth of mesophilic aerobes in processed BN beverages was controlled by the HPH process. Oxidative stability (TBAR assay) and physicochemical properties (pH, acidity, and °Brix) were evaluated during cold storage, showing good stability. Additionally, HPH-treated beverages showed a reduction in their particle size and the formation of more stable protein aggregates, which favored the beverages’ whiteness (color). The HPH process could be an alternative to pasteurization to obtain Brazil nut beverages with an acceptable microbiological shelf life (≥21 days at 5 °C) and high-quality characteristics without the use of any additives.
Collapse
|
3
|
D'Alessandro M, Gottardi D, Parolin C, Glicerina VT, Vitali B, Lanciotti R, Patrignani F. Development and characterization of fermented soy milks containing encapsulated or non-encapsulated vaginal probiotics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Codina-Torrella I, Gallardo-Chacón JJ, Juan B, Guamis B, Trujillo AJ. Effect of Ultra-High Pressure Homogenization (UHPH) and Conventional Thermal Pasteurization on the Volatile Composition of Tiger Nut Beverage. Foods 2023; 12:foods12040683. [PMID: 36832758 PMCID: PMC9955544 DOI: 10.3390/foods12040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Tiger nut beverages are non-alcoholic products that are characterized by their pale color and soft flavor. Conventional heat treatments are widely used in the food industry, although heated products are often damaging to their overall quality. Ultra-high pressure homogenization UHPH) is an emerging technology that extends the shelf-life of foods while maintaining most of their fresh characteristics. The present work deals with the comparison of the effect of conventional thermal homogenization-pasteurization (H-P, 18 + 4 MPa at 65 °C, 80 °C for 15 s.) and UHPH (at 200 and 300 MPa, and inlet temperature of 40 °C), on the volatile composition of tiger nut beverage. Headspace-solid phase microextraction (HS-SPME) was used for detecting volatile compounds of beverages, which were then identified by gas chromatography-mass spectrometry (GC-MS). A total of 37 different volatile substances were identified in tiger nut beverages, which were primarily grouped into the aromatic hydrocarbons, alcohols, aldehydes and terpenes chemical families. Stabilizing treatments increased the total amount of volatile compounds (H-P > UHPH > R-P). H-P was the treatment that produced the most changes in the volatile composition of RP, while treatment at 200 MPa had a minor impact. At the end of their storage, these products were also characterized by the same chemical families. This study evidenced the UHPH technology as an alternative processing of tiger nut beverages production that minimally modifies their volatile composition.
Collapse
Affiliation(s)
- Idoia Codina-Torrella
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA-UAB), TECNIO, XIA, MALTA-Consolider, Department of Animal and Food Science, Facultat de Veterinària (Edifici V), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Department of Agri-Food Engineering and Biotechnology, EEABB, Universitat Politècnica de Catalunya (UPC), Parc Mediterrani de la Tecnologia, Campus del Baix Llobregat (Edifici D4), c/Esteve Terradas, 8, 08860 Castelldefels, Spain
- Correspondence: (I.C.-T.); (A.J.T.)
| | - Joan Josep Gallardo-Chacón
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA-UAB), TECNIO, XIA, MALTA-Consolider, Department of Animal and Food Science, Facultat de Veterinària (Edifici V), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Bibiana Juan
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA-UAB), TECNIO, XIA, MALTA-Consolider, Department of Animal and Food Science, Facultat de Veterinària (Edifici V), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Buenaventura Guamis
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA-UAB), TECNIO, XIA, MALTA-Consolider, Department of Animal and Food Science, Facultat de Veterinària (Edifici V), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Antonio José Trujillo
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA-UAB), TECNIO, XIA, MALTA-Consolider, Department of Animal and Food Science, Facultat de Veterinària (Edifici V), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (I.C.-T.); (A.J.T.)
| |
Collapse
|
5
|
Zhang Z, Zang M, Zhang K, Wang S, Li D, Li X. Effect of two types of thermal processing methods on the aroma and taste profiles of three commercial plant-based beef analogues and beef by GC-MS, E-nose, E-tongue, and sensory evaluation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Ji G, Li X, Dong Y, Shi Y. Composition, formation mechanism, and removal method of off‐odor in soymilk products. J Food Sci 2022; 87:5175-5190. [DOI: 10.1111/1750-3841.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Guo‐Zhi Ji
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Xiao‐Min Li
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Yang Dong
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Yu‐Dong Shi
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| |
Collapse
|
7
|
Madjirebaye P, Peng F, Huang T, Liu Z, Mueed A, Pahane MM, Guan Q, Xiao M, Du T, Wei B, Xiong S, Zhang L, Xiong T, Peng Z. Effects of fermentation conditions on bioactive substances in lactic acid bacteria-fermented soymilk and its storage stability assessment. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Mu Q, Su H, Zhou Q, Xiao S, Zhu L, Xu X, Pan S, Hu H. Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk. Food Chem 2022; 381:132158. [PMID: 35114622 DOI: 10.1016/j.foodchem.2022.132158] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The effects of different ultrasound treatments (20 kHz at 400 W for 0 to 9 min) on the functional properties, flavor characteristics, and storage stability of soybean milk at 4 °C were investigated. Results indicated that non-sonicated soymilk had the maximum particle size D4, 3 of 2.47 ± 0.47 µm, while 9 min high intensity ultrasound (HIU) decreased D4, 3 to 0.44 ± 0.01 µm. 9 min of HIU decreased the total number of microorganisms in soymilk from 4.51 to 3.95 Log (CFU/mL). Moreover, 9 min HIU increased the absolute value of ζ-potential from 36.43 to 34.13 mV. Turbiscan test showed that 9 min HIU decreased the instability index of soymilk from 0.78 to 0.65. Furthermore, sensory analysis, electronic nose, electronic tongue, and gas chromatography-mass spectrometry showed that 7 min HIU decreased the content of aldehydes, furans, ketones, and alcohols by 52.09%, 75.01%, 56.79%, and 57.27%, respectively.
Collapse
Affiliation(s)
- Qier Mu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hongchen Su
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Qi Zhou
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Shigao Xiao
- Hubei Only Long Food Co., LTD., 82 Huangchengnan road, Dangyang, Yichang, Hubei 444105, PR China
| | - Lijuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|
9
|
Effect of co-fermentation system with isolated new yeasts on soymilk: microbiological, physicochemical, rheological, aromatic, and sensory characterizations. Braz J Microbiol 2022; 53:1549-1564. [DOI: 10.1007/s42770-022-00773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/16/2022] [Indexed: 11/02/2022] Open
|
10
|
Mefleh M, Pasqualone A, Caponio F, Faccia M. Legumes as basic ingredients in the production of dairy-free cheese alternatives: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:8-18. [PMID: 34453343 PMCID: PMC9293078 DOI: 10.1002/jsfa.11502] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| |
Collapse
|
11
|
Wan J, Ningtyas DW, Bhandari B, Liu C, Prakash S. Oral perception of the textural and flavor characteristics of soy-cow blended emulsions. J Texture Stud 2021; 53:108-121. [PMID: 34689342 DOI: 10.1111/jtxs.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Soy-cow blended milk is a potential nutritional beverage and raw material for dairy products. This study determined the particle size, flow, lubrication, flavor and sensory properties of cow milk, soy milk and their blends. Twenty-one major volatile compounds were identified using solid-phase microextraction gas chromatography (SPME-GCMS) in cow milk and soy milk. Among all the compounds detected in the milk samples, hexanal, associated with off flavor was found highest in soymilk followed by cow milk and blended milk. From confocal images, soy-cow blended milk at a ratio of 1:1 showed a homogenous distribution of small fat globules and protein compared to the soy milk and cow milk. The addition of soy milk to cow milk lowers the particle size although not significantly (p > .05) and decreases the viscosity of blended milk. Cow milk was the most viscous (2.66 mPa·s at 50 s-1 ) with large particles (0.48 μm) observed from confocal images. However, soymilk was found to have better lubrication properties (boundary regime) with a lower friction coefficient (~0.30) compared to cow milk (~0.40) and blended milk (~0.50) at low entrainment speed (0.1-2 mm/s). The sensory panel ranked cow milk as creamier and more viscous while soymilk was perceived as more astringent with beany flavor. Overall, a proportion of 3:7 soy-cow blended milk was more acceptable than the other two blended milks with less beany flavor, as confirmed by the lower amount of hexanal from gas chromatography mass spectrometer.
Collapse
Affiliation(s)
- Jie Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Dian W Ningtyas
- Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran Malang, Indonesia.,School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
12
|
Microbiological, physicochemical, and sensory properties of goat milk co-fermented with isolated new yeasts. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Reyes-Jurado F, Soto-Reyes N, Dávila-Rodríguez M, Lorenzo-Leal A, Jiménez-Munguía M, Mani-López E, López-Malo A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- F. Reyes-Jurado
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - N. Soto-Reyes
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M. Dávila-Rodríguez
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A.C. Lorenzo-Leal
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - M.T. Jiménez-Munguía
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - E. Mani-López
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| | - A. López-Malo
- Chemical and Food Engineering Department, Universidad De Las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
14
|
Wang B, Zhang Q, Zhang N, Bak KH, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zheng Y, Fei Y, Yang Y, Jin Z, Yu B, Li L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiol 2020; 91:103540. [DOI: 10.1016/j.fm.2020.103540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
|
16
|
Inhibition of Bacillus cereus by garlic (Allium sativum) essential oil during manufacture of white sufu, a traditional Chinese fermented soybean curd. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jiang Y, Li L, He F, Yan W, Tang Y, Yang R, Zhao W. Highly effective inactivation of anti‐nutritional factors (lipoxygenase, urease and trypsin inhibitor) in soybean by radio frequency treatment. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yiming Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Li Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang He
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenxu Yan
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yali Tang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
18
|
Munekata PES, Domínguez R, Budaraju S, Roselló-Soto E, Barba FJ, Mallikarjunan K, Roohinejad S, Lorenzo JM. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020; 9:foods9030288. [PMID: 32143400 PMCID: PMC7142651 DOI: 10.3390/foods9030288] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Increase in allergenicity towards cow’s milk, lactose intolerance, the prevalence of hypercholesterolemia, and flexitarian choice of food consumption have increased the market for cow’s milk alternatives. Non-dairy plant-based beverages are useful alternatives because of the presence of bioactive components with health-promoting properties, which attract health-conscious consumers. However, the reduced nutritional value and sensory acceptability of the plant-based beverages (such as flavor, taste, and solubility) compared to cow’s milk pose a big threat to its place in the market. Thermal treatments are commonly used to ensure the quality of plant-based beverages during storage. However, the application of high temperatures can promote the degradation of thermolabile compounds and some detrimental reactions, thus reducing protein digestibility and amino acid availability of non-dairy plant-based beverages substitutes. New and advanced food processing technologies, such as high-pressure processing, high-pressure homogenization, pulsed electric fields, and ultrasound, are being researched for addressing the issues related to shelf life increase, emulsion stability, preservation of nutritional content and sensorial acceptability of the final product. However, the literature available on the application of non-thermal processing technologies on the physicochemical and nutritional properties of plant-based beverages is scarce. Concerted research efforts are required in the coming years in the functional plant-based beverages sector to prepare newer, tailor-made products which are palatable as well as nutritionally adequate.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
| | - Sravanthi Budaraju
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
| | - Elena Roselló-Soto
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain (F.J.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain (F.J.B.)
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
| | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (S.B.); (K.M.); (S.R.)
- Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, 71348-14336 Shiraz, Iran
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (R.D.)
- Correspondence: ; Tel.: +34-988-548-277
| |
Collapse
|
19
|
Chong WK, Mah SY, Easa AM, Tan TC. Thermal inactivation of lipoxygenase in soya bean using superheated steam to produce low beany flavour soya milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4371-4379. [PMID: 31478006 DOI: 10.1007/s13197-019-03905-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Time and temperature parameters of superheated steam (SHS) treatment were optimised using response surface methodology (RSM) for specific lipoxygenase (LOX) activity in soya beans and crude protein content in soya milk. The optimal SHS treatment was obtained at 9.3 min and 119 °C. The predicted values of specific LOX activity and crude protein content by RSM were 0.0098 μmol/(min mg protein) and 3.2%, respectively. These values were experimentally verified to be 0.0081 ± 0.0002 μmol/(min mg protein) and 3.0 ± 0.1%, respectively. Sensory evaluation showed that the beany flavour of soya milk produced from SHS treated soya beans was significantly weaker (P < 0.05) than that of untreated soya beans. The results showed that the optimised SHS treatment could reduce the beany flavour in the soya milk significantly (P < 0.05) by reducing the specific LOX activity in the soybean, while ensuring the crude protein content in the soya milk complied with Malaysian Food Regulations 1985.
Collapse
Affiliation(s)
- Wah-Kang Chong
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia
| | - Sook-Yun Mah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia
| |
Collapse
|
20
|
Zhu Y, Wang Z, Zhang L. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Starowicz M, Zieliński H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600538] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
22
|
Distribution of odour compounds, antinutritional factors and selected storage stability parameters in soymilk as affected by differences in roasting temperatures and times. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9785-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Mukherjee D, Chang SKC, Zhang Y, Mukherjee S. Effects of Ultra-High Pressure Homogenization and Hydrocolloids on Physicochemical and Storage Properties of Soymilk. J Food Sci 2017; 82:2313-2320. [DOI: 10.1111/1750-3841.13860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Dipaloke Mukherjee
- Dept. of Food Science, Nutrition and Health Promotion; Mississippi State Univ.; Mississippi State MS 39762 U.S.A
| | - Sam K. C. Chang
- Dept. of Food Science, Nutrition and Health Promotion; Mississippi State Univ.; Mississippi State MS 39762 U.S.A
| | - Yin Zhang
- Dept. of Food Science, Nutrition and Health Promotion; Mississippi State Univ.; Mississippi State MS 39762 U.S.A
| | - Soma Mukherjee
- Dept. of Food Science, Nutrition and Health Promotion; Mississippi State Univ.; Mississippi State MS 39762 U.S.A
| |
Collapse
|
24
|
Yoo SH, Chang YH. Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis. Prev Nutr Food Sci 2016; 21:338-347. [PMID: 28078256 PMCID: PMC5216885 DOI: 10.3746/pnf.2016.21.4.338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G′, G″) of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.
Collapse
Affiliation(s)
- Sang-Hun Yoo
- Department of Asian Cuisine and Culinary Arts, Youngsan University, Busan 48015, Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
25
|
Liu J, Yang CQ, Zhang Q, Lou Y, Wu HJ, Deng JC, Yang F, Yang WY. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading. Food Chem 2016; 207:107-14. [PMID: 27080886 DOI: 10.1016/j.foodchem.2016.03.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/17/2016] [Accepted: 03/17/2016] [Indexed: 12/27/2022]
Abstract
The profiles of isoflavone and fatty acids constitute important quality traits in soybean seeds, for making soy-based functional food products, due to their important contributions to the flavor and nutritional value of these products. In general, the composition of these constituents in raw soybeans is affected by cultivation factors, such as sunlight; however, the relationship of the isoflavone and fatty acid profiles with cultivation factors is not well understood. This study evaluated the isoflavone and fatty acid profiles in soybeans grown under a maize-soybean relay strip intercropping system with different row spacings, and with changes in the photosynthetic active radiation (PAR) transmittance. The effects of PAR on the isoflavone and fatty acid contents were found to be quadratic. Appropriate intercropping shading may reduce the bitterness of soybeans caused by soy aglycone and could improve their fatty acid composition.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Cai-qiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Qing Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Lou
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Hai-jun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Jun-cai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wen-yu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
26
|
Zamora A, Guamis B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9097-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V. Sterilization and aseptic packaging of soymilk treated by ultra high pressure homogenization. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2014.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|