1
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
2
|
Kumari S, Thakur M, Chauhan C, Kumari M. Synthesis, characterization, biological activity and computation-based efficacy of cobalt(II) complexes of biphenyl-2-ol against SARS-CoV-2 virus. J Biomol Struct Dyn 2025; 43:483-497. [PMID: 37990487 DOI: 10.1080/07391102.2023.2283144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Cobalt(II) complexes of biphenyl-2-ol of composition, CoCl2-n(OC6H4C6H5-2)n(H2O)4 (where n = 1 or 2), were prepared by reacting cobaltous(II) chloride with equi- and bimolar ratios of sodium salt of biphenyl-2-ol. The structural characterization of the synthesized complexes was accomplished by NMR, FTIR, thermogravimetry (TGA), high resolution mass spectroscopy (HRMS), electronic spectroscopic techniques coupled with density functional theory (DFT). The stability of the complexes in different pH media of solvent was studied. Chemical reactivity parameters of the newly synthesized complexes, computed using DFT, indicated greater reactivity of complex 2 over complex 1 and free ligand as indicated by its low HOMO-LUMO energy gap corresponding to 1.71 eV. Molecular docking (MD) studies were carried out in order to study the binding affinities between amino acid residues of DNA duplex (PDB ID: 1BNA) and SARS-CoV-2 (PDB ID: 7T9K) with newly synthesized complexes. Complex 2 has shown promising antivirus behaviour with an inhibition constant value of 0.0423 µmol-1 with amino acid residues of SARS-CoV-2 virus. Toxicity of the complexes was predicted using ProTox-II online server. Antibacterial studies have indicated the complexes to exhibit greater efficacy than the free ligand, while the antioxidant activities have suggested them to display enhanced antioxidant behaviour as compared to reference compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalima Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Maridula Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
3
|
Lima IT, Gomes RFC, Paura ENC, Provasi PF, Gester R, Rodrigues da Cunha A. Exploring the molecular solvatochromism, stability, reactivity, and non-linear optical response of resveratrol. J Mol Model 2024; 30:314. [PMID: 39167248 DOI: 10.1007/s00894-024-06108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
CONTEXT This work analyzes the isomerization effects and solvent contributions to the stability, electronic excitations, reactivity, and non-linear optical properties (NLO) of resveratrol molecules within the formalism of the Density Functional Theory. The findings suggest that resveratrol solvatochromism is significantly influenced by solvent polarization. The electronic and free energies (E and G) indicate that trans is the most stable conformer. The system is classified as a strong nucleophile. However, the analysis of the Fukui functions and the Mulliken charges indicate that cis-trans isomerization jointly affects the reactive indices of the carbon and hydrogen atoms. The results also suggest that solvent is relevant to solvatochromism and the NLO response. Both cis and trans conformers present strong π - π ∗ excitations that undergo a visible hypsochromic change when the polarity of the solvent increases. Once the absorption spectra are connected to the first hyperpolarization ( β ) by the Oudar and Chemla relation, the hypsochromism of resveratrol is the reason for the drop in the generation of the second harmonic when the ambient polarity decreases. The CAM-B3LYP DFT results suggest that resveratrol is interesting for NLO applications. Depending on the choice of solvent, values ∼ 50 times those observed for urea ( β = 0.34 × 10 - 34 esu), which is a standard NLO material. METHODS The optimized geometries of cis and trans isomers of resveratrol in vacuum were obtained using Density Functional Theory (DFT) with the hybrid exchange-correlation function (CAM-B3LYP) and Pople basis set functions, specifically 6-311++G(d,p). The solvent effect on the geometries of both isomers was included using the polarizable continuum model (PCM) with the same level of QM calculation. Vibrational analysis was conducted to confirm that all optimized geometries correspond to the minimum energy. Various electronic properties, including dipole moments, molecular orbitals, transition energy, dipole polarizabilities, and global reactivity parameters, were calculated using both continuum and discrete solvation models based on the sequential QM/MM methodology. All QM calculations were performed with the Gaussian 09 program and the MC simulations with the DICE program. All NLO analysis was carried out using the Multiwfn code.
Collapse
Affiliation(s)
- Igo T Lima
- Coordenação do Bacharelado Interdisciplinar em Ciência e Tecnologia, Campus Dom Delgado, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Ramon F C Gomes
- Coordenação do Bacharelado Interdisciplinar em Ciência e Tecnologia, Campus Dom Delgado, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Edson N C Paura
- Universidade Federal do Maranhão, UFMA, Campus Balsas, Balsas, MA, Brazil
| | - Patricio F Provasi
- Department of Physics, IMIT, Northeastern University, CONICET, AV. Libertad 5500, W 3404 AAS, Corrientes, Argentina
| | - Rodrigo Gester
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, UNIFESSPA, Marabá, PA, Brazil
- Instituto de Física, Universidade de São Paulo, USP, Rua do Matão 1371, São Paulo, SP, Brazil
| | | |
Collapse
|
4
|
Bendaas R, Bekkar Y, Messaadia L, Bourougaa L, Messaoudi A, Kiamouche S, Messaoud B. Computational-based investigation of antioxidative potential polyphenolic compounds of Salvia officinalis L.: combined DFT and molecular docking approaches. J Mol Model 2024; 30:87. [PMID: 38416254 DOI: 10.1007/s00894-024-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
CONTEXT The antioxidant properties of the three polyphenolic compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were investigated employing the density functional theory (DFT) calculations at the B3LYP of basis set at 6-311 + + G (d, p) in order to evaluate their antioxidant activity. The enthalpies of reactions associated with the SET-PT, SPLET, and HAT mechanisms were analyzed in gas and in different solvents using the CPCM (conductor-like polarizable continuum) model. For all possible hydrogen donor sites, the corresponding parameters (BDE, AIP, PDE, PA, ETE, HOMOs, and LUMOs) and reactivity indices (IPE, EA, Χ, η, S, and ω) were also evaluated. The calculated results showed that derivatives 12-OH, 11-OH, 4'-OH, and 3'-OH had the lowest antioxidant activity. The results showed as well that carnosol, cirsiliol, and luteolin have higher reactivity compared to ascorbic acid and could be considered better antioxidants. According to research, the catechol group is crucial in influencing the studied compounds antioxidant activity. The theoretically predicted order of antioxidant efficiencies in this work agrees well with the QSAR (quantitative structure-activity relationship) data. The findings show that in the vacuum as well as benzene media. HAT would be the most effective mechanism; in contrast, the thermodynamic equilibrium approach in polar media is the SPLET mechanism. Likewise, the outcomes of the docking modeling confirm that the selected molecules have high inhibitory activity to glutathione-S-transferases (GSTs) receptors. Moreover, they have very important pharmacokinetic, chemical, and biological profiles. Finally, all the results show that the three natural molecules have good pharmacokinetic profiles, particularly the bioavailability and permeability toward biological membranes. METHODS The software packages used in this investigation are Gaussian 16, Discovery studio Visualizer, and AutoDock vina. The three compounds (carnosol, cirsiliol, and luteolin) of Salvia officinalis L. were optimized with DFT/B3LYP of basis set at 6-311 + + G (d, p). The optimized structures were established via vibrational analysis (i.e., no imaginary frequencies in the frequency set). All enthalpies were zero-point (ZPE) corrected. Vibrational frequency calculations were performed at 298.15 K and 1 atmosphere pressure to determine the thermodynamic characteristics of the investigated reactions. The descriptors were associated with the antioxidant mechanisms for investigated molecules in vacuum and in various solvents. The molecular docking was used by AutoDock vina to estimate and evaluate the title compounds compatibility as potential antioxidant drugs utilizing appropriate receptor proteins. The solvation effect in the medium of benzene (ɛ = 2.27) and water (ɛ = 78.39) was taken into account. Furthermore, a methanol solvent (ɛ = 32.61) was also taken into consideration to compare with the empirical data.
Collapse
Affiliation(s)
- Ridha Bendaas
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria
| | - Yahia Bekkar
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), University of El Oued, B.P.789, 39000, El Oued, Algeria
| | - Lyamine Messaadia
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria.
| | - Lotfi Bourougaa
- Laboratory of Molecular Chemistry and Environment (LMCE), University of Biskra, BP 145, 707000, Biskra, Algeria
| | - Abdelatif Messaoudi
- Laboratoire de Chimie Des Matériaux Et Des Vivants: Activité & Réactivité (LCMVAR), Département Chimie, Faculté Des Sciences de La Matière, Université de Batna 1, Batna, Algeria
| | - Samir Kiamouche
- Laboratory of Applied Energy and Materials (LEAM), University of Jijel, Jijel, Algeria
- Department of Environmental Engineering, Faculty of Engineering Process, University Constantine 3, 25000, Constantine, Algeria
| | - Benamira Messaoud
- Laboratory of Materials Interaction and Environment (LIME), Faculty of Exact Sciences and Computer Science, University of Jijel, 18000, Jijel, Algeria
| |
Collapse
|
5
|
Ugraskan V, Bilgi M, Yazici O. Investigation of electrical conductivity and radical scavenging activity of boron phosphate filled polypyrrole nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| | - Mesut Bilgi
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| |
Collapse
|
6
|
Bahloul A, Benayahoum A, Bouakkaz S, Bordjiba T, Boudjahem A, Lilya B, Bachari K. The antioxidant activity of N-E-caffeoyl and N-E-feruloyl tyramine conformers and their sulfured analogs contribution: density functional theory studies. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Wijesooriya SS, Pandithavidana DR. Investigation and Comparison of Antioxidant Potential of Catechins Present in Green Tea: DFT Study. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.04.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DFT calculations were applied to compare the antioxidant potential of four major catechins present in green tea. The thermodynamic parameters related to three key mechanisms of primary antioxidant action were investigated in detail. Molecular orbital energies, absolute hardness, electronegativity, and electrophilicity index, which contributed to the radical scavenging were also investigated. The radical scavenging potential of each hydroxyl group of these polyphenolic antioxidants were investigated independently.
Collapse
|
8
|
Density Functional Theory Study on Antioxidant Activity of Three Polyphenols. J Fluoresc 2022; 33:933-944. [PMID: 36534204 DOI: 10.1007/s10895-022-03104-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In recent years, research on the antioxidant activity of natural antioxidants has become more and more popular. Polyphenols are a large number of natural antioxidants in plants. This paper selected three common polyphenols to study their antioxidant activity based on quantum chemistry theory. This experiment hopes to provide a theoretical basis for the further development of polyphenol health food with strong antioxidant activity. Three polyphenols resveratrol, liquiritigenin, and isoliquiritigenin were optimized at the level of B3lyp/6-311G (d, p), and the single point energy was calculated with B3lyp/6-311 + + G (2d, 2p). The phenol hydroxyl bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) were calculated in different phase states study the antioxidant mechanism. Draw the frontier molecular orbital and conduct dynamic simulation analysis scavenging · OH and · OOH to explore the most possible active sites in different phenolic hydroxyl sites. The bond length, dihedral angle, BDE, IP, PDE, PA and ETE were compared to speculate the antioxidant activity: Resveratrol > isoliquiritigenin > liquiritigenin. By analyzing the frontier molecular orbital and dynamic simulation results, it is speculated that the phenolic hydroxyl groups at C4', C4', and C4 are the most likely active sites of resveratrol, liquiritigenin, and isoliquiritigenin, respectively. In different phase states, the three compounds showed the same antioxidant activity, and the phenolic hydroxyl activities of the three compounds were different at different sites.
Collapse
|
9
|
Zhang N, Wu Y, Qiao M, Yuan W, Li X, Wang X, Sheng J, Zi C. Structure-antioxidant activity relationships of dendrocandin analogues determined using density functional theory. Struct Chem 2022; 33:795-805. [PMID: 35194353 PMCID: PMC8855351 DOI: 10.1007/s11224-022-01895-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Quantum-chemical calculations based on the density functional theory (DFT) at the B3LYP/6-311 + + G(2d,2p)//B3LYP/6-31G(d,p) level were employed to study the relationship between the antioxidant properties and chemical structures of six dendrocandin (DDCD) analogues in the gas phase and two solvents (methanol and water). The hydrogen atom transfer (HAT), electron-transfer-proton-transfer (ET-PT), and sequential proton-loss-electron-transfer (SPLET) mechanisms are explored. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), reactivity indices (η, μ, ω, ω +, and ω - ), and molecular electrostatic potentials (MEPs) were also evaluated. The results suggest that the D ring plays an important role in mediating the antioxidant activity of DDCDs. For all the studied compounds, indicating that HAT was identified as the most favorable mechanism, whereas the SPLET mechanism was the most thermodynamically favorable pathway in polar solvents. The results of our study should aid in the development of new or modified antioxidant compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-01895-2.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Yilong Wu
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Miao Qiao
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Wenjuan Yuan
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Science, Yunnan Agricultural University, Kunming, 650201 China
| | - Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming, 650201 China
| | - Xuanjun Wang
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Science, Yunnan Agricultural University, Kunming, 650201 China
| | - Jun Sheng
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
| | - Chengting Zi
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201 China
- College of Science, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
10
|
Pandithavidana DR, Hewage KSK. Antioxidant Potential of Novel Designed Phenolic Derivatives: Computational Insights. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.04.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Density functional theory calculations were applied for designed phenolic antioxidant derivatives. The reaction enthalpies related to various mechanisms of primary antioxidant action were deliberated in detail. How antioxidant activity of designed phenolic compounds has been perturbed by electron donor and withdrawing substituents present at ortho, meta and para positions, allylic conjugation and the dimerization effect were computed.
Collapse
|
11
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
12
|
Modelling the Anti-Methicillin-Resistant Staphylococcus Aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study. CRYSTALS 2020. [DOI: 10.3390/cryst10080692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Twenty-four cannabinoids active against MRSA SA1199B and XU212 were optimized at WB97XD/6-31G(d,p), and several molecular descriptors were obtained. Using a multiple linear regression method, several mathematical models with statistical significance were obtained. The robustness of the models was validated, employing the leave-one-out cross-validation and Y-scrambling methods. The entire data set was docked against penicillin-binding protein, iso-tyrosyl tRNA synthetase, and DNA gyrase. The most active cannabinoids had high affinity to penicillin-binding protein (PBP), whereas the least active compounds had low affinities for all of the targets. Among the cannabinoid compounds, Cannabinoid 2 was highlighted due to its suitable combination of both antimicrobial activity and higher scoring values against the selected target; therefore, its docking performance was compared to that of oxacillin, a commercial PBP inhibitor. The 2D figures reveal that both compounds hit the protein in the active site with a similar type of molecular interaction, where the hydroxyl groups in the aromatic ring of cannabinoids play a pivotal role in the biological activity. These results provide some evidence that the anti-Staphylococcus aureus activity of these cannabinoids may be related to the inhibition of the PBP protein; besides, the robustness of the models along with the docking and Quantitative Structure–Activity Relationship (QSAR) results allow the proposal of three new compounds; the predicted activity combined with the scoring values against PBP should encourage future synthesis and experimental testing.
Collapse
|
13
|
|
14
|
Richa K, Karmaker R, Ao T, Longkumer N, Singha B, Sinha UB. Rationale for antioxidant interaction studies of 4-bromo-1-isothiocyanato-2-methylbenzene – An experimental and computational investigation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the DFT study. J Mol Model 2020; 26:98. [PMID: 32279127 DOI: 10.1007/s00894-020-04368-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Chromone (4H-chromen-4-one, 4H-1-benzopyran-4-one) and related compounds are important pharmacophores and privileged structures in medicinal chemistry because of their important biological activities such as anti-tumor, anti-HIV, and antioxidant. In the study, the density functional theory (DFT) calculations were performed for radical scavenging activity evaluation of a series of 3-styrylchromone derivatives. The reaction enthalpies related to the steps in the radical scavenging action mechanisms and several physicochemical descriptors such as global hardness, softness, and electronegativity were computed in gas phase and in water. The solvation effect of water on the antioxidant activity was taken into account by using the conductor-like polarizable continuum model. The calculated results were discussed by considering all physicochemical properties of molecules: thermodynamic, orbital, and structural. The results obtained were consistent with the experimental results.
Collapse
|
16
|
Choudhary V, Bhatt A, Dash D, Sharma N. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin(IV) 2‐chloridophenylacetohydroxamate complexes. J Comput Chem 2019; 40:2354-2363. [DOI: 10.1002/jcc.26012] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 06/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - ArvindKumar Bhatt
- Department of BiotechnologyHimachal Pradesh University Summer Hill, Shimla‐5 India
| | - Dibyajit Dash
- Department of ChemistrySant Longowal Institute of Engineering & Technology Longowal Sangrur Punjab 148106 India
| | - Neeraj Sharma
- Department of ChemistryHimachal Pradesh University Summer Hill, Shimla‐5 India
| |
Collapse
|
17
|
Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Molecules 2019; 24:molecules24091646. [PMID: 31027343 PMCID: PMC6540138 DOI: 10.3390/molecules24091646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
Density functional theory (DFT) was used to explore the antioxidant properties of some naturally occurring dietary vitamins, and the reaction enthalpies related to various mechanisms of primary antioxidant action, i.e., hydrogen atom transfer, single electron transfer–proton transfer, and sequential proton loss–electron transfer were discussed in detail. B3LYP, M05-2X, and M06-2X functionals were utilized in this work. For aqueous phase studies, the integral equation formalism polarized continuum model (IEF–PCM) was employed. From the outcomes, hydrogen atom transfer (HAT) was the most probable mechanism for the antioxidant action of this class of compounds. Comparison of found results with experimental data (available in literature), vitamin C possesses the lowest enthalpy values for both proton affinity (PA) and bond dissociation energy (BDE)in the aqueous phase, suggesting it as the most promising candidate as an antioxidant. Accordingly, these computational insights encourage the design of structurally novel, simple vitamins which will be more economical and beneficial in the pharmaceutical industry.
Collapse
|
18
|
da Silva ACP, Paiva JP, Diniz RR, Dos Anjos VM, Silva ABSM, Pinto AV, Dos Santos EP, Leitão AC, Cabral LM, Rodrigues CR, de Pádula M, Santos BAMC. Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:162-171. [PMID: 30884286 DOI: 10.1016/j.jphotobiol.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 03/09/2019] [Indexed: 11/25/2022]
Abstract
Olive leaves contain higher amount of polyphenols than olive oil and represent a waste product from olive harvest and pruning of olive trees. The most abundant compound in olive leaves is oleuropein. Benefits of the topical application of olive leaves extract were previously reported, but little information is available on its photoprotective potential and the result of the association of this extract with organic UV filters in topical sunscreen formulations. The olive leaves extract photoprotective potential is less explored for both oral and topical photoprotection in comparison with other plants extracts and polyphenols, such as Polypodium leucotomos extract and resveratrol. There are increasing efforts towards developing more efficient sunscreens and a photoprotection assessement along with a better understanding of the photochemistry of naturally occurring sunscreens could aid the design of new and improved commercial sunscreen formulations. This study was designed to investigate the photoprotective potential of olive leaves extract standardized for oleuropein performing a set of in vitro and in silico tools as an innovative approach, highlighting yeast assays, in vitro Sun Protection Factor (SPF) and molecular modelling studies of UV absorption. This study supports the use of olive leaves extract for photoprotection, as an effective photoprotective, anti-mutagenic and antioxidant active, also showing a synergistic effect in association with UV filters with an improvement on in vitro SPF of sunscreen formulations.
Collapse
Affiliation(s)
- Anne C P da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Juliana P Paiva
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Vitor M Dos Anjos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Beatriz S M Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alicia Viviana Pinto
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Elisabete P Dos Santos
- Laboratório de Desenvolvimento Galênico (LADEG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Bianca Aloise M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil.
| |
Collapse
|
19
|
Antioxidant activity and pKa calculations of 4‑mercaptostilbene and some derivatives: A theoretical approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Vo QV, Cam Nam P, Bay MV, Minh Thong N, Hieu LT, Mechler A. A theoretical study of the radical scavenging activity of natural stilbenes. RSC Adv 2019; 9:42020-42028. [PMID: 35542856 PMCID: PMC9076562 DOI: 10.1039/c9ra08381b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is implicated in aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Quan V. Vo
- Institute of Research and Development
- Duy Tan University
- Danang 550000
- Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering
- The University of Da Nang – University of Science and Technology
- Danang 550000
- Vietnam
| | - Mai Van Bay
- Department of Chemistry
- The University of Da Nang – University of Education
- Danang 550000
- Vietnam
| | | | | | - Adam Mechler
- Department of Chemistry and Physics
- La Trobe University
- Victoria 3086
- Australia
| |
Collapse
|
21
|
Shang Y, Zhou H, Li X, Zhou J, Chen K. Theoretical studies on the antioxidant activity of viniferifuran. NEW J CHEM 2019. [DOI: 10.1039/c9nj02735a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DFT studies reveal the thermodynamics and kinetics of radical scavenging reactions of a resveratrol dimer derivative – viniferifuran.
Collapse
Affiliation(s)
- Yaxuan Shang
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Huakang Zhou
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Xiangzhou Li
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
- Institute of Natural Product Research and Development
| | - Jun Zhou
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
- Institute of Natural Product Research and Development
| | - Kai Chen
- School of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Lu L, Ruan Z, Ni J, Chen J, Shu H, Wang Y, Liu Y. Improvement of antioxidative activity of resveratrol by calix[4]arene-like tetramer: A theoretical study. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Antioxidant Properties of the Vam3 Derivative of Resveratrol. Molecules 2018; 23:molecules23102446. [PMID: 30257419 PMCID: PMC6222371 DOI: 10.3390/molecules23102446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
A considerable number of studies has shown that many constituents of foods derived from plants are effective and safe antioxidants. This explains the growing interest in natural antioxidants in food applications. The goal of this investigation was to evaluate the antioxidant properties of the Vam3, a resveratrol derivative, firstly isolated from ethanol extracts of Vitis amurensis Rupr as a secondary product, and to carry out a comparison with resveratrol and other phenolic compounds which are currently in the limelight all over the world due to their beneficial effects on the human body. The potential of Vam3 as an antioxidant was determined through the evaluation of some key thermodynamic parameters which are commonly used for this purpose and describe the antioxidant activity quite well. Various mechanisms through which antioxidants usually can carry out their action were also explored both in water and in apolar environment. The results indicated that Vam3 is an excellent candidate as a natural antioxidant.
Collapse
|
24
|
Theoretical and experimental analysis of the antioxidant features of substituted phenol and aniline model compounds. Struct Chem 2018. [DOI: 10.1007/s11224-018-1183-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Resveratrol Functionalized Carboxymethyl-β-Cyclodextrin: Synthesis, Characterization, and Photostability. J CHEM-NY 2018. [DOI: 10.1155/2018/6789076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resveratrol functionalized carboxymethyl-β-cyclodextrin conjugate was synthesized by two simple steps. The conjugate was successfully demonstrated by 1H NMR, 13C NMR, UV, and FTIR. The photostability of the conjugate was studied by ultraviolet absorption spectrum. After 360 min of UV light irradiation, the conjugate showed a total loss in absorbance of only 12.54%, while the resveratrol and its CM-β-CD inclusion complex showed a total loss in absorbance of 32.15% and 24.05%, respectively. The results indicate that the conjugate was more stable than resveratrol and its CM-β-CD inclusion complex.
Collapse
|
26
|
El-Hadj Saïd A, Mekelleche SM, Ardjani TEA. Theoretical insight into the substituent effects on the antioxidant properties of 8-hydroxyquinoline derivatives in gas phase and in polar solvents. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this work is to perform a theoretical analysis of the antioxidant properties of a series of 8-hydroxyquinolines (8-HQs) to rationalize the available experimental results and to design new potent 8-HQ derivatives. The study was carried out in gas phase and in methanol at the DFT/B3LYP/ 6-311++G(d,p) computational level. The formation of stable ArO• radicals is discussed on the basis of different mechanisms, namely, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and single proton loss electron transfer (SPLET). The obtained results show that the HAT mechanism is, thermodynamically, more favoured in gas phase, whereas the SPLET pathway is more favoured in polar solvents. The calculated thermochemical descriptors allow classification of the antioxidant power of the studied compounds.
Collapse
Affiliation(s)
- Anes El-Hadj Saïd
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
| | - Sidi Mohamed Mekelleche
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
| | - Taki-Eddine Ahmed Ardjani
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen, 13000, Algeria
| |
Collapse
|
27
|
Effect of Double Bond Position on 2-Phenyl-benzofuran Antioxidants: A Comparative Study of Moracin C and Iso-Moracin C. Molecules 2018; 23:molecules23040754. [PMID: 29587376 PMCID: PMC6017532 DOI: 10.3390/molecules23040754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Two 2-phenyl-benzofurans, moracin C {2-[3′,5′-dihydroxy-4′-(3-methlbut-2-enyl)phenyl]-6-hydroxybenzofuran} and its isomer iso-moracin C{2-[3′,5′-dihydroxy-4′-(3-methlbut-1-enyl)phenyl]-6-hydroxybenzofuran}, were comparatively studied using redox-related antioxidant assays and non-redox antioxidant assays. Moracin C always resulted in higher IC50 values than iso-moracin C in the redox-related antioxidant assays, including •O2−-inhibition, Cu2+-reducing power, DPPH•-inhibition, and ABTS+•-inhibition assays. In the non-redox antioxidant assay, moracin C and iso-moracin C underwent similar radical-adduct-formation (RAF), evidenced by the peaks at m/z 704 and m/z 618 in HPLC-MS spectra. In conclusion, both moracin C and iso-moracin C can act as 2-phenyl-benzofuran antioxidants; their antioxidant mechanisms may include redox-related ET and H+-transfer, and non-redox RAF. A double bond at the conjugation position can enhance the redox-related antioxidant potential, but hardly affects the RAF potential.
Collapse
|
28
|
Li X, Xie Y, Xie H, Yang J, Chen D. π-π Conjugation Enhances Oligostilbene's Antioxidant Capacity: Evidence from α-Viniferin and Caraphenol A. Molecules 2018; 23:molecules23030694. [PMID: 29562698 PMCID: PMC6017043 DOI: 10.3390/molecules23030694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
α-Viniferin and caraphenol A, the two oligostilbenes, have the sole difference of the presence or absence of an exocyclic double bond at the π-π conjugative site. In this study, the antioxidant capacity and relevant mechanisms for α-viniferin and caraphenol A were comparatively explored using spectrophotometry, UV-visible spectral analysis, and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC–ESI–Q–TOF–MS/MS) analysis. The spectrophotometric results suggested that caraphenol A always gave lower IC50 values than α-viniferin in cupric ion-reducing antioxidant capacity assay, ferric-reducing antioxidant power assay, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical-scavenging assays. In UV-visible spectra analysis, caraphenol A was observed to show enhanced peaks at 250–350 nm when mixed with Fe2+, but α-viniferin exhibited no similar effects. UPLC–ESI–Q–TOF–MS/MS analysis revealed that α-viniferin mixed with DPPH• produced radical adduct formation (RAF) peak (m/z = 1070–1072). We conclude that the antioxidant action of α-viniferin and caraphenol A may involve both redox-mediated mechanisms (especially electron transfer and H+-transfer) and non-redox-mediated mechanisms (including Fe2+-chelating or RAF). The π-π conjugation of the exocyclic double bond in caraphenol A can greatly enhance the redox-mediated antioxidant mechanisms and partially promote the Fe2+-chelating mechanism. This makes caraphenol A far superior to α-viniferin in total antioxidant levels.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Jian Yang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
29
|
da Veiga AAS, de Jesus Chaves Neto AM, da Silva ABF, Herculano AM, Oliveira KRM, dos Santos Borges R. Sugar moiety has a synergistic effect on hydroxylated xanthone for better antioxidant activity of mangiferin. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2147-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Toscano M, Ritacca AG, Mazzone G, Russo N. Theoretical investigation of the action mechanisms of N,N-di-alkylated diarylamine antioxidants. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2122-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Wang F, Chatterjee S. Dominant Carbons in trans- and cis-Resveratrol Isomerization. J Phys Chem B 2017; 121:4745-4755. [PMID: 28402662 DOI: 10.1021/acs.jpcb.7b02115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A comprehensive analysis for isomerization of geometric isomers in the case of resveratrol (R) has been presented. As an important red wine molecule, only one geometric isomer of resveratrol, i.e., trans-R rather than cis-R, is primarily associated with health benefit. In the present study, density function theory (DFT) provides accurate descriptions of isomerization of resveratrol. The nearly planar trans-R forms a relatively rigid and less flexible conjugate network, but the nonplanar cis-R favors a more flexible structure with steric through space interaction. The calculated carbon nuclear magnetic resonance (NMR) chemical shift indicates that all carbons are different in the isomers; it further reveals that four carbon sites, i.e., C(6), C(8)═C(9), and C(11), have a significant response to the geometric isomerization. Here C(6) is related to the steric effect in cis-R, whereas C(11) may indicate the isomerization proton transfer on C(9) linking with the resorcinol ring. The excess orbital energy spectrum (EOES) confirms the NMR "bridge of interest" carbons and reveals that five valence orbitals of 34a, 35a, 46a, 55a, and 60a respond to the isomerization most significantly. The highest occupied molecular orbital (HOMO), 60a, of the isomer pair is further studied using dual space analysis (DSA) for its orbital momentum distributions, which exhibit p-electron dominance for trans-R but hybridized sp-electron dominance for cis-R. Finally, energy decomposition analysis (EDA) highlights that trans-R is preferred over cis-R by -4.35 kcal·mol-1, due to small electrostatic energy enhancement of the attractive orbital energy with respect to the Pauli repulsive energy.
Collapse
Affiliation(s)
- Feng Wang
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne, P.O. Box 218, Victoria, 3122, Australia
| | - Subhojyoti Chatterjee
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne, P.O. Box 218, Victoria, 3122, Australia
| |
Collapse
|
32
|
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations. PLoS Comput Biol 2016; 12:e1005213. [PMID: 27861556 PMCID: PMC5115656 DOI: 10.1371/journal.pcbi.1005213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. Kynurenines, the tryptophan metabolites with multiple biological activities, regulate the production of reactive oxygen species (ROS) during several neurodegenerative diseases. Many experiments show that kynurenines can be both prooxidants and antioxidants depending on their concentration, mode of action, and cell redox potential. However, there is lack of computational studies of kynurenines properties which could help us better understand the biophysical mechanism of their antioxidant activity. We performed the computations of kynurenines' hydrogen and electron donating power, both in the gas phase and in water solution. We found that aromatic hydroxyl group facilitates hydrogen and electron abstraction by kynurenines, in agreement with experimental data and computations earlier performed for phenolic antioxidants. We revealed the correlations of kynurenines' antioxidant power with their electronic structure, charge, and surroundings. We also found that 3-hydroxykynurenine and 3-hydroxyanthranilic acid can fastly quench free radicals by hydrogen atom donation. Hence both of them are potent antioxidants. The therapeutic strategy may be to inhibit their oxidative dimerization leading to ROS production.
Collapse
|
33
|
La Rocca MV, Rutkowski M, Ringeissen S, Gomar J, Frantz MC, Ngom S, Adamo C. Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. J Mol Model 2016; 22:250. [PMID: 27686561 DOI: 10.1007/s00894-016-3118-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
The overall objective was to identify an accurate computational electronic method to virtually screen phenolic compounds through their antioxidant and free-radical scavenging activity. The impact of a key parameter of the density functional theory (DFT) approach was studied. Performances of the 21 most commonly used exchange-correlation functionals are thus detailed in the evaluation of the main energetic parameters related to the activities of two prototype antioxidants, namely quercetin and edaravone, is reported. These functionals have been chosen among those belonging to three different families of hybrid functionals, namely global, range separated, and double hybrids. Other computational parameters have also been considered, such as basis set and solvent effects. The selected parameters, namely bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) allow a mechanistic evaluation of the antioxidant activities of free radical scavengers. Our results show that all the selected functionals provide a coherent picture of these properties, predicting the same order of BDEs and PDEs. However, with respect to the reference values, the errors found at CBS-Q3 level significantly vary with the functional. Although it is difficult to evidence a global trend from the reported data, it clearly appears that LC-ωPBE, M05-2X, and M06-2X are the most suitable approaches for the considered properties, giving the lowest cumulative mean absolute errors. These methods are therefore suggested for an accurate and fast evaluation of energetic parameters related to an antioxidant activity via free radical scavenging.
Collapse
Affiliation(s)
- Mario Vincenzo La Rocca
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France.,Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Malvina Rutkowski
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France
| | - Stéphanie Ringeissen
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Jérôme Gomar
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Marie-Céline Frantz
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Saliou Ngom
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Carlo Adamo
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France. .,Institut Universitaire de France, 103 Boulevard Saint Michel, 75005, Paris, France.
| |
Collapse
|
34
|
Borgohain R, Handique JG, Guha AK, Pratihar S. A theoretical study on antioxidant activity of ferulic acid and its ester derivatives. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenolic compounds play a very crucial role as antioxidant that can prevent various diseases caused by free radicals in human body. Although, lots of natural phenolic compounds having antioxidant activity are available nowadays, the modeling of compounds with naturally available phenolics as building blocks is very important in order to get enhanced antioxidant activity. In this study, Ferulic acid (FA), one natural phenolic acid present in coffee, apples, orange, etc., is taken as building block and its ester derivatives with different alkyl groups are subjected to measure the antioxidant activity by using density functional theory (DFT). Various parameters like bond dissociation enthalpy (BDE), vertical ionization potential (IP[Formula: see text]), reactivity descriptors, metal chelation ability, etc. are used to measure the antioxidant activity. All the parameters suggest that the ester derivatives are superior antioxidants to the parent FA. Since FA has been reported to be present as esters in many herbs and plants, hence our study provides a route to study the structure activity relationship of this class of natural phenolics with antioxidant activity.
Collapse
Affiliation(s)
- Romesh Borgohain
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | | | - Ankur Kanti Guha
- Department of Chemistry, Cotton College State University, Guwahati-781001, Assam, India
| | - Sanjay Pratihar
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam-784028, India
| |
Collapse
|
35
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
36
|
|
37
|
Mazzone G, Russo N, Toscano M. Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Chen Y, Xiao H, Zheng J, Liang G. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS One 2015; 10:e0121276. [PMID: 25803685 PMCID: PMC4372407 DOI: 10.1371/journal.pone.0121276] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, P. R. China
| | - Huizhi Xiao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
- * E-mail:
| |
Collapse
|
39
|
Mazzone G, Malaj N, Galano A, Russo N, Toscano M. Antioxidant properties of several coumarin–chalcone hybrids from theoretical insights. RSC Adv 2015. [DOI: 10.1039/c4ra11733f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural features, antioxidant ability and UV-Vis absorption properties of a series of coumarin–chalcone derivatives have been elucidated by means of density functional theory.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende
- Italy
- Dipartimento di ingegneria Informatica
| | - Naim Malaj
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende
- Italy
- Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra
| | - Annia Galano
- Departamento de Quimica
- Division de Ciencias Basicas e Ingenieria
- Universidad Autonoma Metropolitana-Iztapalapa
- Mexico, D.F
- Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende
- Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende
- Italy
| |
Collapse
|
40
|
Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients 2014; 6:6020-47. [PMID: 25533011 PMCID: PMC4277013 DOI: 10.3390/nu6126020] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity.
Collapse
Affiliation(s)
- An-Na Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yu-Jie Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
41
|
Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem 2014; 171:89-97. [PMID: 25308647 DOI: 10.1016/j.foodchem.2014.08.106] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
The free radical scavenging activity of a series of 2,4,5-trimethoxy chalcones has been computationally explored using the density functional theory (DFT) method. Three potential working mechanisms, hydrogen atom transfer (HAT), stepwise electron transfer proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) have been investigated. The physiochemical parameters including O-H bond dissociation enthalpy (BDE), ionisation potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) have been calculated in gas phase and solvents. The order of antioxidant efficiencies predicted theoretically in this work is in good agreement with that reported by experimental results. The results obtained demonstrate that HAT would be the most favourable mechanism in the gas and benzene phases, whereas the SPLET mechanism is the thermodynamically preferred pathway in polar media. In addition, the importance of the A-ring on the radical scavenging capabilities of chalcones was also confirmed.
Collapse
|
42
|
Xiong W, Wu M, Zhou L, Liu S. The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode. RSC Adv 2014. [DOI: 10.1039/c4ra04256e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
43
|
Benayahoum A, Amira-Guebailia H, Houache O. Homolytic and heterolytic O–H bond cleavage in trans-resveratrol and some phenantrene analogs: A theoretical study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Xue Y, Zheng Y, An L, Dou Y, Liu Y. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem 2013; 151:198-206. [PMID: 24423521 DOI: 10.1016/j.foodchem.2013.11.064] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Quantum chemical calculations based on the density functional theory (DFT) have been employed to study the relationship between the structure and the antioxidant activity of four polyphenolic deoxybenzoins (DOBs) in solvents and the gas phase. The three main working mechanisms, H-atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) have been investigated. The calculated results closely matched experimental values. The results obtained prove that for the HAT mechanism, the most efficient system possessed ortho-dihydroxy functionality. The results suggested that HAT would be the most favourable mechanism for explaining the radical-scavenging activity of polyphenolic DOBs in the gas phase, whereas the SPLET mechanism is the thermodynamically favourable pathway in polar solvents.
Collapse
Affiliation(s)
- Yunsheng Xue
- Chemical and Biological Pharmaceutical Engineering Research Center, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China; School of Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Youguang Zheng
- Chemical and Biological Pharmaceutical Engineering Research Center, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China; School of Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin An
- Chemical and Biological Pharmaceutical Engineering Research Center, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China; School of Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yunyan Dou
- School of Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Chemical and Biological Pharmaceutical Engineering Research Center, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China; School of Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
45
|
Mazzone G, Toscano M, Russo N. Density functional predictions of antioxidant activity and UV spectral features of nasutin A, isonasutin, ellagic acid, and one of its possible derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9650-9657. [PMID: 24024615 DOI: 10.1021/jf403262k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The antioxidant ability of ellagic acid and some of its derivatives was explored at density functional level of theory within the framework of the following three different reaction mechanisms: hydrogen atom transfer (HAT), electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Computations were performed in gas phase and in both water and methanol media. Results show that the HAT mechanism is preferred by this class of compounds in all environments, although, in principle, polar solvents should promote the SET-PT and SPLET mechanisms. Among the considered compounds, the derivative not yet experimentally characterized seems to be the most promising candidate as antioxidant. For a more detailed spectroscopic characterization and to help in the identification of these compounds, the simulated UV spectra of all investigated molecules were done by using the time-dependent formulation of density functional theory (TDDFT).
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| | | | | |
Collapse
|