1
|
Li X, Zhuge S, Du J, Zhang P, Wang X, Liu T, Li D, Ma H, Li X, Nie Y, Liao C, Ding H, Zhang Z. The molecular mechanism by which heat stress during the grain filling period inhibits maize grain filling and reduces yield. FRONTIERS IN PLANT SCIENCE 2025; 15:1533527. [PMID: 39898260 PMCID: PMC11782181 DOI: 10.3389/fpls.2024.1533527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
High temperatures significantly impair plant growth and development by restricting maize grain filling; however, the molecular mechanisms underlying heat stress remain poorly understood. In this study, 350 maize inbred lines were evaluated under field conditions, leading to the identification of heat-tolerant Zheng58 and heat-sensitive Qi319. The two inbred lines were exposed to controlled conditions of 30°C/20°C (optimal) and 42°C/30°C (heat stress) during the grain filling period. Heat stress significantly reduced thousand-kernel weight and seed setting rates, with Qi319 experiencing more pronounced declines. In contrast, Zheng58 showed superior performance, with a grain filling rate 48% higher and seed setting rate 57% greater than Qi319. Transcriptome analysis showed that heat stress disrupted starch biosynthesis and hormonal homeostasis, notably affecting abscisic acid and auxin pathways. Additionally, photosynthetic and transpiration rates in panicle leaves were reduced due to the downregulation of genes related to light-harvesting complexes, photosystem I subunits, and water transport. These findings highlight the critical roles of starch metabolism, hormonal regulation, and photosynthetic efficiency in heat tolerance, offering valuable insights for developing heat-resilient maize varieties to mitigate yield losses under high-temperature conditions.
Collapse
Affiliation(s)
- Xiaohu Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shilin Zhuge
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Jiyuan Du
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Peng Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xingyu Wang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Tianjian Liu
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Donghui Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Haoran Ma
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xinzheng Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yongxin Nie
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Changjian Liao
- Institute of Crops Research, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Haiping Ding
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zhiming Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
2
|
Niu S, Yu L, Li J, Qu L, Wang Z, Li G, Guo J, Lu D. Effect of high temperature on maize yield and grain components: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175898. [PMID: 39222820 DOI: 10.1016/j.scitotenv.2024.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global warming poses a significant challenge to global food security, with maize playing a vital role as a staple crop in ensuring food availability worldwide. Therefore, investigating the impact of high temperature (HT) on maize cultivation is imperative for addressing food security concerns. Despite numerous studies exploring the effects of HT on maize growth and yield, a comprehensive understanding of these effects remains elusive due to variations in experimental environments, varieties, and growth stages. To solve these limitations, a meta-analysis was conducted to assess the effects of HT on maize yield and grain components, synthesizing data from 575 observations across 34 studies. The findings indicate that 1) HT significantly reduced grain yield by 32.7-40.9 % and grain starch content by 2.8-10.5 %; 2) the vicinity of kernel development stage (include silking, blister, milk) is the period when maize kernels are most sensitive to HT; 3) a significant negative correlation was observed between HT degree and their impact on grain yield (R2 = 0.38, P = 0.043); and 4) the effects of HT days and degrees on maize yield were equally important. In conclusion, this meta-analysis establishes a theoretical framework for enhancing the resilience of maize production and cultivation practices by comprehensively evaluating the impact of HT on yield and grain components.
Collapse
Affiliation(s)
- Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Linyang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Wu Y, Zhou G, Song Y, Zhou L. Thresholds and extent of temperature effects on maize yield differ in different grain-filling stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170709. [PMID: 38325451 DOI: 10.1016/j.scitotenv.2024.170709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Temperature is a vital environmental factor affecting grain filling and maize yield. The response of maize yield to temperature at different stages of grain filling, however, remains uncharacterized. This study used "Zhengdan 958" as the test material to analyze the high-temperature threshold and yield sensitivity of grain-filling in different periods without water stress by using the data from staging sowing experiments at agro-meteorological experimental stations in Hebi and Suzhou in the Huang-Huai-Hai Plain from 2019 to 2022. The results demonstrated that: (1) the maximum temperature threshold was different in various periods of maize grain-filling in the Huang-Huai-Hai Plain, showing the early grain-filling period (EP) > the active grain-filling period (AP) > the late grain-filling period (LP). With the largest differences in temperature thresholds found in AP, the maximum temperature threshold of AP can better reflect the characteristics of grain filling rather than the whole filling period. (2) The heat of the grain-filling period can explain more than 80 % of the yield variation and affect the yield by influencing the number of days required to reach the maximum grain-filling rate (Vmaxd) and the duration of the active grain-filling period (DAP). (3) The growing degree days (GDD) is the most significant controlling factor affecting yield; however, the effect of heat degree days (HDD) cannot be ignored. The HDD and cumulative thresholds of HDD in the EP and AP of grain-filling can better reflect the effect of heat on yield. The accumulation thresholds of HDD at Hebi and Suzhou were 28.1 °C·d and 15.2 °C·d in the EP period, and 31.0 °C·d and 14.9 °C·d in the AP period, respectively. The results provide a basis for the precise identification of heat disasters during grain-filling and the scientific adjustment of sowing dates.
Collapse
Affiliation(s)
- Yixuan Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, 210044 Nanjing, China; State Key Laboratory of Severe Weather, Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Chinese Academy of Meteorological Sciences, 100081 Beijing, China
| | - Guangsheng Zhou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, 210044 Nanjing, China; State Key Laboratory of Severe Weather, Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Chinese Academy of Meteorological Sciences, 100081 Beijing, China; CMA-CAU Jointly Laboratory of Agriculture Addressing Climate Change, 100081 Beijing, China.
| | - Yanling Song
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, 210044 Nanjing, China; State Key Laboratory of Severe Weather, Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Chinese Academy of Meteorological Sciences, 100081 Beijing, China; CMA-CAU Jointly Laboratory of Agriculture Addressing Climate Change, 100081 Beijing, China
| | - Li Zhou
- State Key Laboratory of Severe Weather, Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Chinese Academy of Meteorological Sciences, 100081 Beijing, China; CMA-CAU Jointly Laboratory of Agriculture Addressing Climate Change, 100081 Beijing, China
| |
Collapse
|
4
|
Zhao P, Sun L, Zhang S, Jiao B, Wang J, Ma C. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Genes (Basel) 2024; 15:189. [PMID: 38397179 PMCID: PMC10887930 DOI: 10.3390/genes15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
High temperature around flowering has a serious impact on the growth and development of maize. However, few maize genes related to flowering under heat stress have been confirmed, and the regulatory mechanism is unclear. To reveal the molecular mechanism of heat tolerance in maize, two maize hybrids, ZD309 and XY335, with different heat resistance, were selected to perform transcriptome and metabolomics analysis at the flowering stage under heat stress. In ZD309, 314 up-regulated and 463 down-regulated differentially expressed genes (DEGs) were detected, while 168 up-regulated and 119 down-regulated DEGs were identified in XY335. By comparing the differential gene expression patterns of ZD309 and XY335, we found the "frontloaded" genes which were less up-regulated in heat-tolerant maize during high temperature stress. They included heat tolerance genes, which may react faster at the protein level to provide resilience to instantaneous heat stress. A total of 1062 metabolites were identified via metabolomics analysis. Lipids, saccharides, and flavonoids were found to be differentially expressed under heat stress, indicating these metabolites' response to high temperature. Our study will contribute to the identification of heat tolerance genes in maize, therefore contributing to the breeding of heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Pu Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Siqi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Chunhong Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| |
Collapse
|
5
|
Wu ZW, Huang HR, Liao SQ, Cai XS, Liu HM, Ma YX, Wang XD. Evaluation of Quality Properties of Brown Tigernut (Cyperus esculentus L.) Tubers from Six Major Growing Regions of China: A New Source of Vegetable Oil and Starch. J Oleo Sci 2024; 73:147-161. [PMID: 38311405 DOI: 10.5650/jos.ess23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most β-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hong-Rui Huang
- College of Food Science and Engineering, Henan University of Technology
| | - Shu-Qiang Liao
- College of Food Science and Engineering, Henan University of Technology
| | - Xiao-Shuang Cai
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hua-Min Liu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Yu-Xiang Ma
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| |
Collapse
|
6
|
Wang Z, Qu L, Li J, Niu S, Guo J, Lu D. Effects of exogenous salicylic acid on starch physicochemical properties and in vitro digestion under heat stress during the grain-filling stage in waxy maize. Int J Biol Macromol 2024; 254:127765. [PMID: 38287575 DOI: 10.1016/j.ijbiomac.2023.127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.
Collapse
Affiliation(s)
- Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Zhang C, Xue W, Li T, Wang L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods 2023; 12:3611. [PMID: 37835265 PMCID: PMC10572268 DOI: 10.3390/foods12193611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between the molecular structure and physicochemical properties of soft rice starch (SRS) has been investigated in this research. The amylose content of SRS ranged from 10.76% to 11.85%, classified as the very low amylose type. Compared to waxy and japonica rice starch, the largest amount of small starch granules and the highest viscosity were shown in the SRS. The results of X-ray diffraction and Fourier transform infrared proved that the SRS depicted a typical A-type pattern with a low short-range ordered structure. Additionally, SRS had a great deal of A and B1 chains. Molecular weights and density of starch from soft rice were lower than those from waxy rice but higher than those from japonica rice. Furthermore, SRS possessed a higher amount of resistant starch. Correlation analysis indicated that the amylose content and the chain-length distributions of amylopectin play a major role in influencing the molecular structure and physicochemical properties of rice starch. In conclusion, the low amylose content, highest viscosity, and other excellent properties of soft rice starch make it have bright application prospects in instant rice and rice cakes.
Collapse
Affiliation(s)
- Congnan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China (T.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Wei Xue
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China (T.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China (T.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China (T.L.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
8
|
Li Y, Liang C, Liu J, Zhou C, Wu Z, Guo S, Liu J, A N, Wang S, Xin G, Henry RJ. Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods 2023; 12:2601. [PMID: 37444339 DOI: 10.3390/foods12132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The quality and starch properties of rice are significantly affected by nitrogen. The effect of the nitrogen application rate (0, 180, and 230 kg ha-1) on the texture of cooked rice and the hierarchical structure and physicochemical properties of starch was investigated over two years using two japonica cultivars, Bengal and Shendao505. Nitrogen application contributed to the hardness and stickiness of cooked rice, reducing the texture quality. The amylose content and pasting properties decreased significantly, while the relative crystallinity increased with the increasing nitrogen rates, and the starch granules became smaller with an increase in uneven and pitted surfaces. The proportion of short-chain amylopectin rose, and long-chain amylopectin declined, which increased the external short-range order by 1045/1022 cm-1. These changes in hierarchical structure and grain size, regulated by nitrogen rates, synergistically increased the setback viscosity, gelatinization enthalpy and temperature and reduced the overall viscosity and breakdown viscosity, indicating that gelatinization and pasting properties were the result of the joint action of several factors. All results showed that increasing nitrogen altered the structure and properties of starch, eventually resulting in a deterioration in eating quality and starch functional properties. A moderate reduction in nitrogen application could improve the texture and starch quality of rice while not impacting on the grain yield.
Collapse
Affiliation(s)
- Yimeng Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| | - Chao Liang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Junfeng Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chanchan Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouzhou Wu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shimeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaxin Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Na A
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| |
Collapse
|
9
|
Li G, Li W, Liang Y, Lu W, Lu D. Spraying exogenous hormones alleviate impact of weak-light on yield by improving leaf carbon and nitrogen metabolism in fresh waxy maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1220827. [PMID: 37409291 PMCID: PMC10319006 DOI: 10.3389/fpls.2023.1220827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Insufficient light during the growth periods has become one of the main factors restricting maize yield with global climate change. Exogenous hormones application is a feasible measure to alleviate abiotic stresses on crop productivity. In this study, a field trial was conducted to investigate the effects of spraying exogenous hormones on yield, dry matter (DM) and nitrogen (N) accumulation, leaf carbon and N metabolism of fresh waxy maize under weak-light stress in 2021 and 2022. Five treatments including natural light (CK), weak-light after pollination (Z), spraying water (ZP1), exogenous Phytase Q9 (ZP2) and 6-benzyladenine (ZP3) under weak-light after pollination were set up using two hybrids suyunuo5 (SYN5) and jingkenuo2000 (JKN2000). Results showed that weak-light stress significantly reduced the average fresh ear yield (49.8%), fresh grain yield (47.9%), DM (53.3%) and N accumulation (59.9%), and increased grain moisture content. The net photosynthetic rate (Pn), transpiration rate (Tr) of ear leaf after pollination decreased under Z. Furthermore, weak-light decreased the activities of RuBPCase and PEPCase, nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in ear leaves, and increased malondialdehyde (MDA) accumulation. And the decrease was greater on JKN2000. While ZP2 and ZP3 treatments increased the fresh ear yield (17.8%, 25.3%), fresh grain yield (17.2%, 29.5%), DM (35.8%, 44.6%) and N (42.5%, 52.4%) accumulation, and decreased grain moisture content compared with Z. The Pn, Tr increased under ZP2 and ZP3. Moreover, the ZP2 and ZP3 treatments improved the activities of RuBPCase, PEPCase; NR, GS, GOGAT; SOD, CAT, POD in ear leaves, and decreased MDA content during grain filling stage. The results also showed the mitigative effect of ZP3 was greater than ZP2, and the improvement effect was more significant on JKN2000.
Collapse
Affiliation(s)
- Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yuwen Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Gu X, Zhang X, Lu W, Lu D. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem X 2022; 16:100463. [PMID: 36217316 PMCID: PMC9547181 DOI: 10.1016/j.fochx.2022.100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive high temperature (>35 °C) enlarges and corrodes the starch granules. Heat stress increases the proportion of amylopectin long chains. Extremely high temperature induces the lowest pasting viscosity and the highest retrogradation of starch. This study provides scientific basis for the deterioration of waxy maize starch under severe high temperature.
Global warming affects crop productivity, but the influence is uncertain under different temperature regimes. The impact of growth temperatures (T0, 28 °C/20 °C; T1, 32 °C/24 °C; T2, 36 °C/28 °C; T3, 40 °C/32 °C) at grain formation stage on the waxy maize starch physicochemical properties of Suyunuo5 (heat-sensitive hybrid) and Yunuo7 (heat-tolerant hybrid) was studied. Compared with T0, T2 and T3 resulted in a higher number of starch granules with more pitted or uneven surface due to the enhanced enzymatic activities of α-amylase and β-amylase. Meanwhile, large starch granule size, long amylopectin chain-length, and high relative crystallinity under T2 and T3 resulted in low pasting viscosities and gelatinization enthalpy and high retrogradation percentage, especially under T3. The low coefficient variation of gelatinization temperatures indicated that the differences were meaninglessness. The influence of T1 on the pasting viscosities were more obvious in Suyunuo5. In conclusion, high temperatures at grain formation stage deteriorated the starch pasting and retrogradation properties.
Collapse
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou 225009, China
- Corresponding author at: Agricultural College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Gu X, Yang S, Li G, Lu W, Lu D. Starch morphological, structural, pasting, and thermal properties of waxy maize under different heat stress durations at grain formation stage. Food Energy Secur 2022. [DOI: 10.1002/fes3.378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Siling Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety The Ministry of Education of China Yangzhou China
| |
Collapse
|
12
|
Kim KH, Kim JY. Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. PLANTS (BASEL, SWITZERLAND) 2021; 10:2282. [PMID: 34834645 PMCID: PMC8624758 DOI: 10.3390/plants10112282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023]
Abstract
Wheat starch is one of the most important components in wheat grain and is extensively used as the main source in bread, noodles, and cookies. The wheat endosperm is composed of about 70% starch, so differences in the quality and quantity of starch affect the flour processing characteristics. Investigations on starch composition, structure, morphology, molecular markers, and transformations are providing new and efficient techniques that can improve the quality of bread wheat. Additionally, wheat starch composition and quality are varied due to genetics and environmental factors. Starch is more sensitive to heat and drought stress compared to storage proteins. These stresses also have a great influence on the grain filling period and anthesis, and, consequently, a negative effect on starch synthesis. Sucrose metabolizing and starch synthesis enzymes are suppressed under heat and drought stress during the grain filling period. Therefore, it is important to illustrate starch and sucrose mechanisms during plant responses in the grain filling period. In recent years, most of these quality traits have been investigated through genetic modification studies. This is an attractive approach to improve functional properties in wheat starch. The new information collected from hybrid and transgenic plants is expected to help develop novel starch for understanding wheat starch biosynthesis and commercial use. Wheat transformation research using plant genetic engineering technology is the main purpose of continuously controlling and analyzing the properties of wheat starch. The aim of this paper is to review the structure, biosynthesis mechanism, quality, and response to heat and drought stress of wheat starch. Additionally, molecular markers and transformation studies are reviewed to elucidate starch quality in wheat.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Jae-Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
13
|
Guo J, Gu X, Lu W, Lu D. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6291-6304. [PMID: 34128533 DOI: 10.1093/jxb/erab286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding the adaptive changes in maize kernels under high-temperature stress during grain formation stage is critical for developing strategies to alleviate the negative effects on yield and quality. In this study, we subjected waxy maize (Zea mays L. sinensis Kulesh) to four different temperature regimes from 1-15 d after pollination (DAP), namely normal day/normal night (control), hot day/normal night, normal day/hot night, and hot day/hot night. Compared to the control, the three high-temperature treatments inhibited kernel development and starch deposition. To understand how the kernels responded to high-temperature stress, their transcriptomes, proteomes, and metabolomes were studied at 10 DAP and 25 DAP. This showed that genes and proteins related to kernel development and starch deposition were up- and down-regulated, respectively, at 10 DAP, but this pattern was reversed at 25 DAP. Metabolome profiling under high-temperature stress showed that the accumulation patterns of metabolites at 10 DAP and 25 DAP were inversely related. Our multiomics analyses indicated that the response to high-temperature stress of signaling pathways mediated by auxin, abscisic acid, and salicylic acid was more active at 10 DAP than at 25 DAP. These results confirmed that high-temperature stress during early kernel development has a carry-over effect on later development. Taken together, our multiomics profiles of developing kernels under high-temperature stress provide insights into the processes that underlie maize yield and quality under high-temperature conditions.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, P.R. China
| | - Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, P.R. China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, P.R. China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
14
|
Hu Y, Wang J, Chi M, Yang S, Lu D. Morphological, Structural, and Physicochemical Properties of Starch in Hybrids and Inbred Lines from Sweet–Waxy Maize. STARCH-STARKE 2021. [DOI: 10.1002/star.202100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences Lianyungang 222000 China
| | - Ming Chi
- Lianyungang Academy of Agricultural Sciences Lianyungang 222000 China
| | - Siling Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of China Yangzhou University Yangzhou 225009 China
| |
Collapse
|
15
|
Zhi K, Wang R, Wei J, Shan Z, Shi C, Xia X. Self-assembled micelles of dual-modified starch via hydroxypropylation and subsequent debranching with improved solubility and stability of curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Effects of post-silking low temperature on the physicochemical properties of waxy maize starch. Int J Biol Macromol 2021; 188:160-168. [PMID: 34343585 DOI: 10.1016/j.ijbiomac.2021.07.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Low temperature (LT) at late growth stages is an important abiotic stress that affects the grain end-use quality of summer maize. In the present work, two experiments were conducted to study the effects of LT on the structural and functional properties of starches using two waxy maize hybrids ('Suyunuo5' and 'Yunuo7'). In field trial, the plants were sown on July 1 (normal sowing date) and August 1 (late sowing date). In pot trial, the plants were sown on July 1, grown at natural environment till silking, and suffered two post-silking temperatures (normal temperature and LT were set as 28/20 and 23/15 °C, respectively). The result showed that the starch was composed of more small granules with oval polytope when sown late (August 1) or subjected to LT post-silking. The LT-stressed starch presented high proportion of short amylopectin chains and low relative crystallinity (RC). LT reduced the pasting viscosity, gelatinization enthalpy, and gelatinization temperatures but increased the retrogradation tendency. In conclusion, the low pasting viscosity and high retrogradation tendency under LT condition were caused by the decreased granule size, amylopectin chain length, and RC.
Collapse
|
17
|
Ran L, Luo J, Wang Y, Zou J, Yao H, Zhang R, Chen X, Xiong F. Structural and Physicochemical Properties of Starch Isolated from the Rhizome of
Drynaria roosii
: A Novel Source. STARCH-STARKE 2021. [DOI: 10.1002/star.202100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liping Ran
- Guangling College of Yangzhou University Guangling College Yangzhou Jiangsu 225128 China
| | - Jiaoyan Luo
- Guangling College of Yangzhou University Guangling College Yangzhou Jiangsu 225128 China
| | - Yiqing Wang
- Guangling College of Yangzhou University Guangling College Yangzhou Jiangsu 225128 China
| | - Jiuchun Zou
- Guangling College of Yangzhou University Guangling College Yangzhou Jiangsu 225128 China
| | - Huihui Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Rong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| |
Collapse
|
18
|
Hu X, Karthik P, Chen J. Enhanced oral oil release and mouthfeel perception of starch emulsion gels. Food Res Int 2021; 144:110356. [PMID: 34053549 DOI: 10.1016/j.foodres.2021.110356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Reducing oil/fat content without compromising the structural and sensory quality of food is a great technical challenge to the food industry. The present work aims to investigate the possibility of a novel emulsion design that gives an enhanced oral release of oil/fat from an emulsion gel and therefore an enhanced mouthfeel of oiliness. Hence, alpha-amylase sensitive emulsifier such as starch was used for this purpose. On the other hand, whey protein isolate (WPI) i.e. α-amylase insensitive emulsifier was used as a reference. The gellan gum was selected as a gelling agent to prepare emulsion gels. The mastication and size reduction of the emulsion gels were examined through in-vitro and in-vivo studies. The amount of oil released as indicated by the β-carotene analysis was monitored and various influencing factors (pH, time, compositions, etc.) were also investigated. Using sensory panelists, oral processing of emulsion gels was examined in terms of both mastication parameters and perceptions of oiliness and thickness. The obtained results showed that the use of a starch emulsifier gives a higher oil release and an enhanced oral sensation of oiliness mouthfeel. Therefore, starch emulsion could provide a novel solution in the design of fat-reduced food products with no effect on the mastication parameter, sensation and perception of fat-related attributes.
Collapse
Affiliation(s)
- Xia Hu
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310021, China; Wenzhou Characteristic Food Resources, Engineering and Technology Research Center, Wenzhou Academy of Agriculture Science, Wenzhou 325006, China
| | - P Karthik
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310021, China; Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310021, China.
| |
Collapse
|
19
|
Wang Y, Qian J, Liu D, Sun M, Chen H, Kong X, Qiu D. Cluster and building block structure of amylopectin from waxy maize starch. Cereal Chem 2021. [DOI: 10.1002/cche.10404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yajuan Wang
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Jin Qian
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Di Liu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Mengwen Sun
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| | - Hui Chen
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Dan Qiu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo China
| |
Collapse
|
20
|
Jing L, Chen C, Lu Q, Wang Y, Zhu J, Lai S, Wang Y, Yang L. How do elevated atmosphere CO 2 and temperature alter the physiochemical properties of starch granules and rice taste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142592. [PMID: 33071134 DOI: 10.1016/j.scitotenv.2020.142592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 (EC) and temperature (ET) strongly affect agricultural production, but the mechanism through which EC and/or ET influence starch granules and their relationship to cooked rice taste remain largely unknown. Therefore, a field experiment using a popular japonica cultivar grown in a temperature/free-air CO2 enrichment environment was conducted to investigate the responses of volume and fine structure of starch granules and their formation physiology to EC (+200 ppm) and/or ET (+1 °C) in 2015-2016. EC markedly enhanced the activity of soluble-starch synthase and granule-bound starch synthase by 28.0% and 27.9% respectively, thereby increasing the long chains and the volume of starch granules. However, EC decreased the activity of starch-branch enzyme by 7.5% possibly via the pathway of ethylene signalling (EC prominently decreased the ethylene evolution rate of rice grains by 28.8%), resulting in a remarkable decrease in α-1'6 glucosidic bonds and significant increase in the iodine-binding capacity and double helix in starch molecules. These EC-induced changes in morphology and fine structure of starch granules synergistically altered the thermal properties of rice flour and eventually improved the cohesiveness and taste of cooked rice, as suggested by the significant relationships between them. ET partially offset the beneficial EC effects in most cases. However, few remarkable CO2 × temperature or CO2 × year effects were detected, indicating that the effects of EC on starch granules and rice taste less varied with meteorological conditions. These findings have important implications on rice palatability and for the development of adaptive strategies in the starch industry in future environment.
Collapse
Affiliation(s)
- Liquan Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Shangkun Lai
- Suqian Institute, Jiangsu Academy of Agricultural Sciences, Suqian 223800, Jiangsu, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lianxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
21
|
Wang J, Mao Y, Huang T, Lu W, Lu D. Water and heat stresses during grain formation affect the physicochemical properties of waxy maize starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1331-1339. [PMID: 32820541 DOI: 10.1002/jsfa.10743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maize is frequently subjected to simultaneous water (drought or waterlogging) and heat (HS) stresses during grain formation in southern China. This work examined the effect of high temperature combined with drought (HD) or waterlogging (HW) during grain formation on the starch physicochemical properties of two waxy maize hybrids, namely Suyunnuo5 (SYN5) and Yunuo7 (YN7). RESULTS Heat stress enlarged the starch granule size, and water stresses aggravated this effect. Heat stress reduced the ratio of small molecular weight fractions for both hybrids, and HD aggravated this reduction only in SYN5. Relative crystallinity in SYN5 was increased by stresses but in YN7 it was unaffected by HD, reduced by HS, and increased by HW. Fourier-transform infrared (FTIR) spectrometry results showed that the 1045/1022 cm-1 ratio in SYN5 was not influenced by HW but was increased by other stresses, and that in YN7 it was increased by all stresses, with the highest value induced by HW. Peak viscosity was decreased, whereas gelatinization temperatures and retrogradation percentage were increased by all of these stresses. These effects were exacerbated by combined heat and water stresses. The maximum decomposition rate was severely increased by HW. CONCLUSION Drought or waterlogging at grain formation stage aggravated the detrimental effects of HS on the starch physicochemical properties of waxy maize. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jue Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Yuxiang Mao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Tianqi Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| |
Collapse
|
22
|
Jing L, Chen C, Hu S, Dong S, Pan Y, Wang Y, Lai S, Wang Y, Yang L. Effects of elevated atmosphere CO2 and temperature on the morphology, structure and thermal properties of starch granules and their relationship to cooked rice quality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM. Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 2020; 117:33177-33185. [PMID: 33323483 DOI: 10.1101/2020.05.21.108985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high-nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Kenneth Cline
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| |
Collapse
|
24
|
Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 2020; 117:33177-33185. [PMID: 33323483 DOI: 10.1073/pnas.2010179117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high-nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.
Collapse
|
25
|
Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol 2020; 164:3739-3750. [DOI: 10.1016/j.ijbiomac.2020.08.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
26
|
Effects of spraying exogenous cytokinin or spermine on the starch physicochemical properties of waxy maize exposed to post-silking high temperature. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Cuesta-Seijo JA, De Porcellinis AJ, Valente AH, Striebeck A, Voss C, Marri L, Hansson A, Jansson AM, Dinesen MH, Fangel JU, Harholt J, Popovic M, Thieme M, Hochmuth A, Zeeman SC, Mikkelsen TN, J�rgensen RB, Roitsch TG, M�ller BL, Braumann I. Amylopectin Chain Length Dynamics and Activity Signatures of Key Carbon Metabolic Enzymes Highlight Early Maturation as Culprit for Yield Reduction of Barley Endosperm Starch after Heat Stress. PLANT & CELL PHYSIOLOGY 2019; 60:2692-2706. [PMID: 31397873 PMCID: PMC6896705 DOI: 10.1093/pcp/pcz155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/30/2019] [Indexed: 05/30/2023]
Abstract
Abiotic environmental stresses have a negative impact on the yield and quality of crops. Understanding these stresses is an essential enabler for mitigating breeding strategies and it becomes more important as the frequency of extreme weather conditions increases due to climate change. This study analyses the response of barley (Hordeum vulgare L.) to a heat wave during grain filling in three distinct stages: the heat wave itself, the return to a normal temperature regime, and the process of maturation and desiccation. The properties and structure of the starch produced were followed throughout the maturational stages. Furthermore, the key enzymes involved in the carbohydrate supply to the grain were monitored. We observed differences in starch structure with well-separated effects because of heat stress and during senescence. Heat stress produced marked effects on sucrolytic enzymes in source and sink tissues. Early cessation of plant development as an indirect consequence of the heat wave was identified as the major contributor to final yield loss from the stress, highlighting the importance for functional stay-green traits for the development of heat-resistant cereals.
Collapse
Affiliation(s)
| | | | | | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Lucia Marri
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Andreas Hansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Anita M Jansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Jonatan Ulrik Fangel
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Milan Popovic
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Mercedes Thieme
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Anton Hochmuth
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Teis N�rgaard Mikkelsen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Rikke Bagger J�rgensen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Thomas Georg Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Birger Lindberg M�ller
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| |
Collapse
|
28
|
Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep 2018; 8:6343. [PMID: 29679066 PMCID: PMC5910399 DOI: 10.1038/s41598-018-23977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Maize (Zea mays L.) contributes approximately 55% of China’s grain production. The effects of nitrogen (N) on maize grain morphology and starch granules remain elusive. In this study, a field experiment in clay loam soil was conducted using three maize hybrids (Suyu 30, Suyu 20, and Suyu 29) and four N levels (0, 360, 450, and 540 kg ha−1) in 2010 and 2012. The results indicated that increased grain length and width, starch granule number, surface area, and volume, was associated with the application of 450 kg ha−1 of N. Differences between superior (ear base) and inferior (apical) grains decreased under highest yield treatments. The effects of N levels on inferior grains was more than that on superior grains. The starch granules of superior grains showed more polygonal, and bigger shape than inferior grains. The results revealed that N levels affected size and morphology of starch granules and grains. The application of 450 kg N ha−1 resulted in larger-sized starch granules and less difference between superior and inferior grains.
Collapse
|
29
|
Gu X, Huang T, Ding M, Lu W, Lu D. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1008-1015. [PMID: 28718948 DOI: 10.1002/jsfa.8549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. RESULTS Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. CONCLUSION Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, PR China
| | - Tianqi Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, PR China
| | - Mengqiu Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, PR China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, PR China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
30
|
Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization. COATINGS 2017. [DOI: 10.3390/coatings7120224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT), waxy (WS), oxidized (OS) and acetylated (AS) corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm), water content (11.53% ± 0.85%, w/w), solubility (26.77% ± 1.40%, w/v) and water vapor permeability ((1.18 ± 0.48) × 10−9 g·s−1·m−1·Pa−1). This film showed low hardness (2.30 ± 0.19 MPa), low surface roughness (Rq = 3.20 ± 0.41 nm) and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa). In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.
Collapse
|
31
|
Zhu D, Wei H, Guo B, Dai Q, Wei C, Gao H, Hu Y, Cui P, Li M, Huo Z, Xu K, Zhang H. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch. Food Chem 2017; 237:936-941. [DOI: 10.1016/j.foodchem.2017.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
|
32
|
Wang S, Li T, Miao Y, Zhang Y, He Z, Wang S. Effects of Heat Stress and Cultivar on the Functional Properties of Starch in Chinese Wheat. Cereal Chem 2017. [DOI: 10.1094/cchem-06-16-0179-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shujun Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tiangui Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongjie Miao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- CIMMYT China Office, c/o Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
33
|
|
34
|
Yang H, Huang T, Ding M, Lu D, Lu W. Effects of Waterlogging Around Flowering Stage on the Grain Yield and Eating Properties of Fresh Waxy Maize. Cereal Chem 2016. [DOI: 10.1094/cchem-03-16-0044-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Huan Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengqiu Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiping Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Hu L, Zheng Y, Peng Y, Yao C, Zhang H. The optimization of isoamylase processing conditions for the preparation of high-amylose ginkgo starch. Int J Biol Macromol 2016; 86:105-11. [DOI: 10.1016/j.ijbiomac.2016.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
36
|
Yu X, Zhang J, Li A, Wang Z, Xiong F. Morphology and Physicochemical Properties of 3LiliumBulb Starches. J Food Sci 2015. [DOI: 10.1111/1750-3841.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xurun Yu
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou Univ; Yangzhou 225009 China
| | - Jing Zhang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou Univ; Yangzhou 225009 China
| | - Aimin Li
- Jiangsu Inst. of Agricultural Science; Lixiahe District Yangzhou 225009 China
| | - Zhong Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou Univ; Yangzhou 225009 China
| | - Fei Xiong
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou Univ; Yangzhou 225009 China
| |
Collapse
|
37
|
Effects of waterlogging after pollination on the physicochemical properties of starch from waxy maize. Food Chem 2015; 179:232-8. [DOI: 10.1016/j.foodchem.2015.01.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/08/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
38
|
Lu D, Cai X, Lu W. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. STARCH-STARKE 2015. [DOI: 10.1002/star.201500061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou University; Yangzhou P. R. China
| | - Xuemei Cai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou University; Yangzhou P. R. China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Yangzhou University; Yangzhou P. R. China
| |
Collapse
|
39
|
Jin X, Fu Z, Lv P, Peng Q, Ding D, Li W, Tang J. Identification and Characterization of microRNAs during Maize Grain Filling. PLoS One 2015; 10:e0125800. [PMID: 25951054 PMCID: PMC4423906 DOI: 10.1371/journal.pone.0125800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
Abstract
The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patternsof miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assistedin the understanding of how miRNAs are functioning about the grain filling rate.
Collapse
Affiliation(s)
- Xining Jin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panqing Lv
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qian Peng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- * E-mail:
| |
Collapse
|
40
|
Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1737-48. [PMID: 25662847 PMCID: PMC4669556 DOI: 10.1093/jxb/eru544] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural-functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Grain Quality and Nutrition Center, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Vito M Butardo
- Grain Quality and Nutrition Center, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Gopal Misra
- Grain Quality and Nutrition Center, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Rosa Paula Cuevas
- Grain Quality and Nutrition Center, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Roslen Anacleto
- Grain Quality and Nutrition Center, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | | |
Collapse
|
41
|
Patindol JA, Siebenmorgen TJ, Wang YJ. Impact of environmental factors on rice starch structure: A review. STARCH-STARKE 2014. [DOI: 10.1002/star.201400174] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- James A. Patindol
- Department of Food Science; University of Arkansas; Fayetteville AR USA
| | | | - Ya-Jane Wang
- Department of Food Science; University of Arkansas; Fayetteville AR USA
| |
Collapse
|