1
|
Milovanovic I, Chillon TS, Hackler J, Schomburg L, Goessler W, Lajin B. Comparative investigation of selenium-enriched Pleurotus ostreatus and Ganoderma lucidum as natural sources of selenium supplementation. Food Chem 2024; 437:137842. [PMID: 37956581 DOI: 10.1016/j.foodchem.2023.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Selenium (Se) is an essential trace element for human health, but its nutritional supply is insufficient in large parts of the world. Mushrooms can be enriched in selenium and can serve as alternative and natural source of selenium supplementation. In the present study, two common mushroom species (Pleurotus ostreatus and Ganoderma lucidum), were enriched with two selenium compounds (selenite and selenate) to test their suitability as natural sources of selenium supplementation. Sharp differences in the the metabolic patterns of the fortified selenium were observed. Selenium was effectively metabolized in P. ostreatus but remained in inorganic form in G. lucidum. However, mushrooms extracts were effective in enhancing selenoprotein expression in cell lines. The present study highlights the importance of employing selenium speciation analysis with an element-selective technique to examine the metabolic products following mushroom fortification for nutritional purposes due to the different toxicological profile and bioavailability of different selenium biotransformation products.
Collapse
Affiliation(s)
- Ivan Milovanovic
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Thilo Samson Chillon
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Walter Goessler
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria
| | - Bassam Lajin
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria; University of Graz, Institute of Chemistry - ChromICP, Universitätsplatz 1/1, 8010 Graz, Austria
| |
Collapse
|
2
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
3
|
Zhao B, Zhang Y, Zhang S, Hu T, Guo Y. Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 2023; 107:7403-7416. [PMID: 37773218 DOI: 10.1007/s00253-023-12792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett-Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2-7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. KEY POINTS: • Cordycepin production in the CCDmax group was 5.2-fold than that of the control. • Glucose uptake of the CCDmax group was accelerated and cell wall was damaged. • The metabolic flux was concentrated to the cordycepin synthesis pathway.
Collapse
Affiliation(s)
- Bingjie Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Yong Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
5
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
6
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Campo-Sabariz J, García-Vara A, Moral-Anter D, Briens M, Hachemi MA, Pinloche E, Ferrer R, Martín-Venegas R. Hydroxy-Selenomethionine, an Organic Selenium Source, Increases Selenoprotein Expression and Positively Modulates the Inflammatory Response of LPS-Stimulated Macrophages. Antioxidants (Basel) 2022; 11:antiox11101876. [PMID: 36290599 PMCID: PMC9598155 DOI: 10.3390/antiox11101876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The role of 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), a form of organic selenium (Se), in selenoprotein synthesis and inflammatory response of THP1-derived macrophages stimulated with lipopolysaccharide (LPS) has been investigated. Glutathione peroxidase (GPX) activity, GPX1 gene expression, selenoprotein P (SELENOP) protein and gene expression, and reactive oxygen species (ROS) production were studied in Se-deprived conditions (6 and 24 h). Then, macrophages were supplemented with OH-SeMet for 72 h and GPX1 and SELENOP gene expression were determined. The protective effect of OH-SeMet against oxidative stress was studied in H2O2-stimulated macrophages, as well as the effect on GPX1 gene expression, oxidative stress, cytokine production (TNFα, IL-1β and IL-10), and phagocytic and killing capacities after LPS stimulation. Se deprivation induced a reduction in GPX activity, GPX1 gene expression, and SELENOP protein and gene expression at 24 h. OH-SeMet upregulated GPX1 and SELENOP gene expression and decreased ROS production after H2O2 treatment. In LPS-stimulated macrophages, OH-SeMet upregulated GPX1 gene expression, enhanced phagocytic and killing capacities, and reduced ROS and cytokine production. Therefore, OH-SeMet supplementation supports selenoprotein expression and controls oxidative burst and cytokine production while enhancing phagocytic and killing capacities, modulating the inflammatory response, and avoiding the potentially toxic insult produced by highly activated macrophages.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - Adriana García-Vara
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - David Moral-Anter
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | | | | | | | - Ruth Ferrer
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - Raquel Martín-Venegas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
8
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
9
|
Chi X, Liu Z, Wang H, Wang Y, Xu B, Wei W. Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice. Biol Trace Elem Res 2022; 200:1763-1775. [PMID: 34170447 DOI: 10.1007/s12011-021-02800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Royal jelly (RJ) and selenium (Se)-rich foods have well-known health benefits which are attributable to a broad range of pharmacologic effects including antioxidant, bacteriostatic, anticancer, and immunoregulatory activities. However, there was no study to combine Se with RJ. Here, Se-rich RJ (SRJ) was produced by feeding sodium selenite to honeybees (Apis mellifera). To further clarify the function of SRJ, mice were then fed RJ or SRJ for 30 days, and their antioxidant capacity and gut microbiota profile were analyzed. The results showed that SRJ treatment could more effectively increase glutathione peroxidase levels in the liver and kidney, as well as total antioxidant activity in the liver and superoxide dismutase level in the kidney. Additionally, the ratio of Firmicutes/Bacteroidetes and relative abundance of the Lachnospiraceae and Prevotellaceae families were increased, whereas the abundance of Helicobacterceae was decreased in mice treated with SRJ. At the genus level, SRJ increased the relative abundance of Lachnospiraceae NK4A136 group, Prevotellaceae UCG 001, Rikenellaceae RC9 gut group, and Oscillibacter and decreased that of Alistipes. And the functional prediction of gut microbiota indicated SRJ treatment could enhance the amino acid metabolism. Correlation analysis indicated that SRJ could optimize the functional network of gut microbiota and the interactions between the gut microbiota and the host. These results suggested the SRJ had potential therapeutic applications in the improvement of overall health or treatment of diseases related to oxidative stress or dysbiosis.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Zhenguo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Hongfang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| | - Baohua Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China.
| | - Wei Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai' an, 271018, Shandong, China
| |
Collapse
|
10
|
|
11
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
12
|
|
13
|
Chi X, Liu Z, Wang H, Wang Y, Wei W, Xu B. Royal jelly enhanced the antioxidant activities and modulated the gut microbiota in healthy mice. J Food Biochem 2021; 45:e13701. [PMID: 33792081 DOI: 10.1111/jfbc.13701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Royal jelly (RJ) is a well-known traditional health food that has a wide range of pharmacological activities. In this study, mice were fed with different doses of RJ for 30 days and their antioxidant activities and gut microbiota were measured to examine the correlation between gut microbiota and overall health. RJ did not influence the feed consumption or relative organ weight, but RJ did increase the amount of serum interleukin 10 (IL-10), as well as the levels of antioxidant activities in the liver and kidney. The middle dose of RJ (RJM) decreased the relative abundance of Proteobacteria at phylum level, increased the relative abundance of Lachnospiraceae_NK4A136_group and Bacteroides. Correlation analysis indicated that RJ could optimize the functional network of gut microbiota and the interactions between the gut microbiota and the host. In conclusion, RJ could enhance the antioxidant activities and modulate the gut microbiota. RJM treatment had a more positive effect on physical health compared with RJL and RJH treatments. PRACTICAL APPLICATIONS: Royal jelly is a healthy dietary supplement which has a wide range of functions. The research helps us know the action mechanism of RJ in healthy body and analyzed the correlation of gut microbiota and physiological state. The appropriate dose of RJ was also studied and the health functions of RJ for healthy body were proved. This research could help to increase the RJ consuming in market.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Wei Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
14
|
Zhang DG, Zhao T, Xu XJ, Lv WH, Luo Z. Dietary Marginal and Excess Selenium Increased Triglycerides Deposition, Induced Endoplasmic Reticulum Stress and Differentially Influenced Selenoproteins Expression in the Anterior and Middle Intestines of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2021; 10:antiox10040535. [PMID: 33805536 PMCID: PMC8067157 DOI: 10.3390/antiox10040535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Wu-Hong Lv
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Fishery College, Huazhong Agricultural University, Ministry of Agriculture, Wuhan 430070, China; (D.-G.Z.); (T.Z.); (X.-J.X.); (W.-H.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: or ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
15
|
Zhou F, Dinh QT, Yang W, Wang M, Xue M, Bañuelos GS, Liang D. Assessment of speciation and in vitro bioaccessibility of selenium in Se-enriched Pleurotus ostreatus and potential health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109675. [PMID: 31536913 DOI: 10.1016/j.ecoenv.2019.109675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 05/14/2023]
Abstract
Due to the two-dimensional effect of selenium (Se) to health, which form of Se is most effective for increasing the bioaccessible Se content in P. ostreatus and whether these products have potential health risks are worth considering. Three Se supplements were applied at different application rates into substrates for cultivating P. ostreatus. The total content and speciation of Se in P. ostreatus fruit bodies were analyzed, and the bioaccessibility of Se was determined via an in vitro physiologically based extraction test (PBET). Results showed that P. ostreatus had the highest utilization efficiency with selenite, followed by Se yeast and selenate. Organic Se (46%-90%) was the major Se speciation in P. ostreatus regardless applied Se species. Although the Se bioaccessibility of the gastrointestinal digestion of P. ostreatus was high (70%-92%), the estimated daily intake and target hazard quotient values are all within the safe ranges. Se-enriched P. ostreatus can be safely used as a dietary source of Se for increasing Se intake.
Collapse
Affiliation(s)
- Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Campo-Sabariz J, Moral-Anter D, Brufau MT, Briens M, Pinloche E, Ferrer R, Martín-Venegas R. 2-Hydroxy-(4-methylseleno)butanoic Acid Is Used by Intestinal Caco-2 Cells as a Source of Selenium and Protects against Oxidative Stress. J Nutr 2019; 149:2191-2198. [PMID: 31504719 DOI: 10.1093/jn/nxz190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress. OBJECTIVE The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells. METHODS Glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) activities, selenoprotein P1 protein (SELENOP) and gene (SELENOP) expression, and GPX1 and GPX2 gene expression were studied in Se-deprived (FBS removal) and further HMSeBA-supplemented (0.1-625 μM, 72 h) cultures. The effect of HMSeBA supplementation (12.5 and 625 μM, 24 h) on oxidative stress induced by H2O2 (1 mM) was evaluated by the production of reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE) adducts, and protein carbonyl residues compared with a sodium selenite control (SS, 5 μM). RESULTS Se deprivation induced a reduction (P < 0.05) in GPX activity (62%), GPX1 expression, and both SELENOP (33%) and SELENOP expression. In contrast, an increase (P < 0.05) in GPX2 expression and no effect in TXNRD activity (P = 0.09) were observed. HMSeBA supplementation increased (P < 0.05) GPX activity (12.5-625 μM, 1.68-1.82-fold) and SELENOP protein expression (250 and 625 μM, 1.87- and 2.04-fold). Moreover, HMSeBA supplementation increased (P < 0.05) GPX1 (12.5 and 625 μM), GPX2 (625 μM), and SELENOP (12.5 and 625 μM) expression. HMSeBA (625 μM) was capable of decreasing (P < 0.05) ROS (32%), 4-HNE adduct (49%), and protein carbonyl residue (75%) production after H2O2 treatment. CONCLUSION Caco-2 cells can use HMSeBA as an Se source for selenoprotein synthesis, resulting in protection against oxidative stress.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - David Moral-Anter
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - M Teresa Brufau
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Ruth Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Zhu S, Du C, Yu T, Cong X, Liu Y, Chen S, Li Y. Antioxidant Activity of Selenium‐Enriched Peptides from the Protein Hydrolysate of
Cardamine violifolia. J Food Sci 2019; 84:3504-3511. [DOI: 10.1111/1750-3841.14843] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Song Zhu
- State Key Laboratory of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
| | - Chaodong Du
- State Key Laboratory of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
| | - Tian Yu
- Enshi Deyuan Health Technology Development Co., Ltd. Enshi Hubei China
| | - Xin Cong
- Enshi Deyuan Health Technology Development Co., Ltd. Enshi Hubei China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
- School of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
| | - Shangwei Chen
- State Key Laboratory of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
| | - Yue Li
- State Key Laboratory of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
- School of Food Science and TechnologyJiangnan Univ. Wuxi 214122 China
| |
Collapse
|
18
|
Woo M, Noh JS, Kim MJ, Song YO, Lee H. Magma Seawater Inhibits Hepatic Lipid Accumulation through Suppression of Lipogenic Enzymes Regulated by SREBPs in Thioacetamide-Injected Rats. Mar Drugs 2019; 17:md17060317. [PMID: 31151157 PMCID: PMC6627349 DOI: 10.3390/md17060317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Thioacetamide (TAA) is known to induce lipid accumulation in the liver. In the present study, we investigated the effects of magma seawater (MS) rich in minerals on hepatic lipid metabolism by evaluating lipogenic enzymes regulated by sterol regulatory element-binding proteins (SREBPs). Rats (n = 10 per group) were intraperitoneally injected with TAA (200 mg/kg bw) thrice a week for seven weeks in combination with a respective experimental diet. Rats in the TAA-treated group received either a chow diet (Control group) or a chow diet containing MS (TMS group, 2.05%) or silymarin (TSM group, 0.05%). Rats in the normal group were injected with PBS as a vehicle and received a chow diet. Rats in the TMS group showed significantly lower hepatic lipid concentrations than rats in the control group (p < 0.05). Hepatic protein expression levels of fatty acid synthase, SREBP-1, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and SREBP-2 were significantly downregulated in the TMS group, whereas carnitine palmitoyltransferase 1 levels were upregulated (p < 0.05). Hepatic thiobarbituric acid reactive substances levels were lower in the TMS group, whereas protein levels of glutathione peroxidase and catalase were elevated (p < 0.05). The effects of MS were comparable to those of silymarin. Our results evidently showed that MS inhibits hepatic lipid accumulation by suppressing lipid synthesis, accompanied by lipid oxidation and elevation of antioxidative status.
Collapse
Affiliation(s)
- Minji Woo
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Korea.
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan 48520, Korea.
| | - Mi Jeong Kim
- Department of Food and Nutrition, Silla University, Busan 46958, Korea.
| | - Yeong Ok Song
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Korea.
| | - Hyunjoo Lee
- Wellness Life Institute Co., Ltd., Jeju 63246, Korea.
| |
Collapse
|
19
|
Guardado-Félix D, Antunes-Ricardo M, Rocha-Pizaña MR, Martínez-Torres AC, Gutiérrez-Uribe JA, Serna Saldivar SO. Chickpea (Cicer arietinum L.) sprouts containing supranutritional levels of selenium decrease tumor growth of colon cancer cells xenografted in immune-suppressed mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Zhou F, Yang W, Wang M, Miao Y, Cui Z, Li Z, Liang D. Effects of selenium application on Se content and speciation in Lentinula edodes. Food Chem 2018; 265:182-188. [DOI: 10.1016/j.foodchem.2018.05.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023]
|
21
|
Abedi J, Saatloo MV, Nejati V, Hobbenaghi R, Tukmechi A, Nami Y, Khosroushahi AY. Selenium-Enriched Saccharomyces cerevisiae Reduces the Progression of Colorectal Cancer. Biol Trace Elem Res 2018; 185:424-432. [PMID: 29468612 DOI: 10.1007/s12011-018-1270-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is one of the most common causes of mortality in the world while malnutrition is responsible for one third of the problem. Selenium has been recommended for prevention of colorectal cancer. The present study was conducted to investigate the effect of selenium-enriched Saccharomyces cerevisiae in reducing colorectal cancer progression in rats. Five groups of 170-200-g weight rats (n = 40) including healthy and cancer controls, Saccharomyces cerevisiae, selenium, and selenium-enriched Saccharomyces cerevisiae-treated groups were examined. All animals except healthy control group received 40 mg 1,2-dimethylhydrazine (DMH) per kilogram weight of rat twice a week. The healthy group received normal saline, and synchronously, selenium group received soluble selenium (4 mg/mL), Saccharomyces cerevisiae and selenium-enriched groups received yeast with the density of 5 × 108 CFU/mL by daily gavage. All treatments were carried out for 5 weeks after the last injection. Animals were autopsied, and aberrant crypt foci (ACF) of ejected colon were studied in the 40th week. Microscopic sections were prepared for hematoxylin and eosin. Furthermore, immunohistochemical staining of CD31, BCL2, and P53 antibodies was performed. Macroscopic and microscopic evaluations showed that DMH had the least destructive effect in selenium-enriched Saccharomyces cerevisiae group compared to other groups. Selenium-enriched Saccharomyces cerevisiae reduces colorectal cancer progression by various mechanisms such as reduction in the number and size of ACF and alteration in the function of the proteins such as P53, BCL2, and CD31.
Collapse
Affiliation(s)
- Jamileh Abedi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Maedeh Vakili Saatloo
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Urmia University of Medical Science, Nazloo Street, P.O. Box 57147-83734, Urmia, Iran.
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Rahim Hobbenaghi
- Department of Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Pathobiology and Quality control, Artemia and Aquatic Animals Research Institute, Urmia University, Urmia, Iran
| | - Yousef Nami
- Branch for North-West and West region, Agricultural Biotechnology Research Institute of Iran, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51548-53431, Tabriz, Iran.
| |
Collapse
|
22
|
Mao W, Zhu Z. Parthenolide inhibits hydrogen peroxide‑induced osteoblast apoptosis. Mol Med Rep 2018; 17:8369-8376. [PMID: 29693172 DOI: 10.3892/mmr.2018.8908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/11/2017] [Indexed: 11/06/2022] Open
Abstract
Parthenolide is a natural product from the shoots of Tanacetum parthenium that has been demonstrated to have immunomodulatory effects in a number of diseases. The present study aimed to determine the effect and mechanism of parthenolide on the apoptotic ability of H2O2‑induced osteoblasts. Cell viability was analyzed with a MTT assay and the apoptotic rate was subsequently measured using flow cytometry. The activity of the antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX), and the serum marker enzymes alkaline phosphatase (ALP), malondialdehyde (MDA) and lactate dehydrogenase (LDH) was measured. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to analyze the expression levels of osteogenesis and oxidative stress‑associated genes. The results indicated that parthenolide increased cell viability and inhibited the apoptosis of H2O2‑induced osteoblasts. Parthenolide decreased the levels of reactive oxygen species, MDA, LDH and ALP. SOD and GPX levels were increased by parthenolide in H2O2‑induced osteoblasts. This suggested that parthenolide may break the equilibrium state of oxidative stress and inhibit cellular apoptosis. Parthenolide additionally increased the expression levels of oxidative stress‑associated genes, including nuclear factor erythroid 2 like 2, hemeoxygenase‑1 and quinone oxidoreductase 1 in H2O2‑induced osteoblasts. Furthermore, parthenolide increased the expression of osteogenesis‑associated genes, including runt‑related transcription factor 2, osteopontin, osteocalcin and collagen 1 in H2O2‑inducedosteoblasts. Therefore, it was concluded that parthenolide may be used in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihuan Mao
- Department of Orthopedics, The Fifth People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, P.R. China
| | - Ziguan Zhu
- Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
23
|
Selenylation modification: enhancement of the antioxidant activity of a Glycyrrhiza uralensis polysaccharide. Glycoconj J 2018; 35:243-253. [DOI: 10.1007/s10719-018-9817-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 01/04/2023]
|
24
|
Chemical and Bioactive Profiling of Wild Edible Mushrooms. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem 2017; 243:373-381. [PMID: 29146352 DOI: 10.1016/j.foodchem.2017.09.149] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
Mushrooms have been used extensively, owing to their nutritional and medicinal value, for thousands of years. Modern research confirms the therapeutic effect of traditionally used species. Inflammation is a natural response of the immune system to damaging factors, e.g. physical, chemical and pathogenic. Deficiencies of antioxidants, vitamins, and microelements, as well as physiological processes, such as aging, can affect the body's ability to resolve inflammation. Mushrooms are rich in anti-inflammatory components, such as polysaccharides, phenolic and indolic compounds, mycosteroids, fatty acids, carotenoids, vitamins, and biometals. Metabolites from mushrooms of the Basidiomycota taxon possess antioxidant, anticancer, and most significantly, anti-inflammatory properties. Recent reports indicate that edible mushroom extracts exhibit favourable therapeutic and health-promoting benefits, particularly in relation to diseases associated with inflammation. In all certainty, edible mushrooms can be referred to as a "superfood" and are recommended as a valuable constituent of the daily diet.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agata Grzywacz-Kisielewska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
26
|
Xiang Q, Luo L, Liang Y, Chen Q, Zhang X, Gu Y. The Diversity, Growth Promoting Abilities and Anti-microbial Activities of Bacteria Isolated from the Fruiting Body of Agaricus bisporus. Pol J Microbiol 2017; 66:201-207. [DOI: 10.5604/01.3001.0010.7837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agaricus bisporus plays an important role in ecological processes and is one of the most widely cultivated mushrooms worldwide. Mushroom growth-promoting bacteria have been isolated from casing soil and compost, but microorganisms in the fruiting body have received only a little attention. To get an overview of phylogenetic diversity of microorganisms in the fruiting body of A. bisporus, as well as to screen antimicrobial and mushroom growth-promoting strains, and eventually intensify mushroom production, we isolated and characterized microorganisms from the fruiting body of A. bisporus. In total, 55 bacterial strains were isolated, among which nine isolates represented Actinomycetes. All the isolates were analyzed by 16S rRNA gene RFLP and sixteen representative strains by 16S rRNA gene sequencing. According to the phylogenetic analysis, eleven isolates represented the Gram positive Bacillus, Lysinibacillus, Paenibacillus, Pandorea and Streptomyces genera, and five isolates belonged to the Gram negative Alcaligenes and Pseudomonas genera. The bacteria isolated from the fruiting body of A. bisporus had broad-spectrum antimicrobial activities and potential mushroom growth-promoting abilities.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Lihua Luo
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Yuhuan Liang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| |
Collapse
|
27
|
|
28
|
Saxena A, Fayad R, Kaur K, Truman S, Greer J, Carson JA, Chanda A. Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer. Cancer Biol Ther 2017; 18:257-267. [PMID: 28045589 DOI: 10.1080/15384047.2016.1276130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Selenium (Se) is an essential dietary micronutrient that has been examined for protection against different types of cancers including colon cancer. Despite an established inverse association between Se and chronic inflammation induced colon cancer (CICC), the mechanistic understanding of Se's protective effects requires additional in-vivo studies using preclinical animal models of CICC. Adiponectin (APN) is an adipocytokine that is protective against CICC as well. However, its role in the anti-mutagenic effects of the Se-diet remains unknown. To address this knowledge gap, here we examine the ability of dietary Se in reducing CICC in APN knockout mice (KO) and its wild-type C57BL/6. CICC was induced with the colon cancer agent 1,2 dimethyl hydrazine (DMH) along with dextran sodium sulfate (DSS). Se-enhanced diet increased selenoproteins, Gpx-1 and Gpx-2, in the colon tissues, thereby reducing oxidative stress. Se-mediated reduction of CICC was evident from the histopathological studies in both mouse models. In both mice, reduction in inflammation and tumorigenesis associated well with reduced p65 phosphorylation and elevated 53 phosphorylation. Finally, we show that in both models Se-administration promotes goblet cell differentiation with a concomitant increase in the levels of associated proteins, Muc-2 and Math-1. Our findings suggest that Se's protection against CICC involves both colonic epithelial protection and anti-tumor effects that are independent of APN.
Collapse
Affiliation(s)
- Arpit Saxena
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - Raja Fayad
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA.,b Center for Colon Cancer Research, University of South Carolina , Columbia , SC , USA
| | - Kamaljeet Kaur
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - Samantha Truman
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - Julian Greer
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| | - James A Carson
- a Department of Exercise Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA.,b Center for Colon Cancer Research, University of South Carolina , Columbia , SC , USA
| | - Anindya Chanda
- b Center for Colon Cancer Research, University of South Carolina , Columbia , SC , USA.,c Department of Environmental Health Science , Arnold School of Public Health, University of South Carolina , Columbia , SC , USA
| |
Collapse
|
29
|
Du Q, Yao H, Yao L, Zhang Z, Lei X, Xu S. Selenium Deficiency Influences the Expression of Selenoproteins and Inflammatory Cytokines in Chicken Aorta Vessels. Biol Trace Elem Res 2016; 173:501-13. [PMID: 27025720 DOI: 10.1007/s12011-016-0676-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 01/26/2023]
Abstract
Selenium deficiency is known to cause cardiovascular diseases. However, the role of Se deficiency in causing oxidative damage and inflammation injury to the aorta vessels of chickens is not well known. In the present study, 180 1-day-old chickens were randomly divided into two groups, a low-Se group (L group) and a control-Se group (C group). The messenger RNA (mRNA) levels of 25 selenoproteins, the mRNA and protein expression levels of inflammatory cytokines (including NF-κB, TNF-α, COX-2, and PTGES), and the antioxidant levels in chicken aorta vessels were examined. The results showed that the mRNA levels of 25 selenoproteins and the activity of Gpx were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the MDA content were increased by Se deficiency in chicken aorta vessels. The data from the present study indicated that Se deficiency decreases the expression of selenoproteins, reduces antioxidant function, and increases the expression of inflammatory factors in chicken aorta vessels.
Collapse
Affiliation(s)
- Qiang Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Linlin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xingen Lei
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, People's Republic of China.
- Department of Animal Science, Cornell University, Ithaca, NY, USA.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
30
|
Effect of selenium enrichment on the quality of germinated brown rice during storage. Food Chem 2016; 207:20-6. [DOI: 10.1016/j.foodchem.2016.03.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/21/2023]
|
31
|
Qasem A, Abdel-Aty A, Abu-Suwa H, Naser SA. Oxidative stress due to Mycobacterium avium subspecies paratuberculosis (MAP) infection upregulates selenium-dependent GPx activity. Gut Pathog 2016; 8:12. [PMID: 26997979 PMCID: PMC4797197 DOI: 10.1186/s13099-016-0090-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
Objective This study was designed to determine the relationship between Mycobacterium avium subspecies paratuberculosis (MAP) infection and selenium-dependent glutathione peroxidase (GPx) activity, in the blood of humans and cattle infected with MAP. Design MAP infection status and GPx activity were determined in sera from 42 cattle, a group of 27 patients with Crohn’s disease and 27 of their healthy biological relatives, and a group of 66 subjects with various diseases other than Crohn’s disease and 34 non-related healthy subjects. Results GPx activity was significantly higher overall in the case of MAP infection in both humans and cattle. The mean value for GPx activity was 1.59 ± 0.65 units/ml in MAP positive cattle compared to 0.46907 ± 0.28 units/ml in healthy cattle sera, where a unit was defined as one mmol/minute (P < 0.01). The mean value of the GPx activity in MAP negative humans clinical sera was 0.42367 ± 0.229 units/ml compared to 0.80941 ± 0.521 in MAP positive sera in a study comparing Crohn’s disease patients to their healthy relatives. The mean activity in MAP negative humans was 0.4702 ± 0.1299 compared to 0.6510 ± 00.1665 units/ml in positive samples in a randomized field study of 100 subjects. Conclusion This study demonstrated a strong correlation between MAP and the elevation of GPx activity. This was especially evident in Crohn’s patients, which further supports the association of MAP and Crohn’s disease. GPx activity may also be used to predict MAP infection status and to show that Crohn’s disease patients who are infected with MAP have higher tendency to develop oxidative stress than Crohn’s disease patients who are negative for the bacteria.
Collapse
Affiliation(s)
- Ahmad Qasem
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| | - Ahmad Abdel-Aty
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| | - Huda Abu-Suwa
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL USA
| |
Collapse
|
32
|
Cardoso BR, Busse AL, Hare DJ, Cominetti C, Horst MA, McColl G, Magaldi RM, Jacob-Filho W, Cozzolino SMF. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct 2016; 7:825-33. [DOI: 10.1039/c5fo01270h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoproteins play important roles in antioxidant mechanisms, but it is hypothesised that single polymorphism nucleotides (SNPs) may affect their function.
Collapse
Affiliation(s)
- Bárbara R. Cardoso
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Alexandre L. Busse
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
- Elemental Bio-imaging Facility
| | | | - Maria A. Horst
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
| | - Regina M. Magaldi
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Wilson Jacob-Filho
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Silvia M. F. Cozzolino
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| |
Collapse
|
33
|
Liu K, Zhao Y, Chen F, Fang Y. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem 2015; 187:424-30. [DOI: 10.1016/j.foodchem.2015.04.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022]
|
34
|
Chou CH, Liu CW, Yang DJ, Wu YHS, Chen YC. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chem 2015; 168:63-9. [DOI: 10.1016/j.foodchem.2014.07.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/19/2022]
|
35
|
Selenium-enriched Agaricus bisporus mushroom protects against increase in gut permeability ex vivo and up-regulates glutathione peroxidase 1 and 2 in hyperthermally-induced oxidative stress in rats. Nutrients 2014; 6:2478-92. [PMID: 24962481 PMCID: PMC4073163 DOI: 10.3390/nu6062478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/28/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022] Open
Abstract
Dietary effects of organic Se supplementation in the form of Se-enriched Agaricus bisporus mushroom on ileal mucosal permeability and antioxidant selenoenzymes status in heat induced oxidative stress in rats were evaluated. Acute heat stress (40 °C, 21% relative humidity, 90 min exposure) increased ileum baseline short circuit current (Isc; 2.40-fold) and epithelial conductance (Ge; 2.74-fold). Dietary supplementation with Se-enriched A. bisporus (1 µg Se/g feed) reduced (p < 0.05) ileum Isc and Ge during heat stress to 1.74 and 1.91 fold, respectively, indicating protection from heat stress-induced mucosal permeability increase. The expression of ileum glutathione peroxidase (GPx-) 1 and 2 mRNAs were up-regulated (p < 0.05) by 1.90 and 1.87-fold, respectively, for non-heat stress rats on the Se-enriched diet relative to the control. The interplay between heat stress and dietary Se is complex. For rats on the control diet, heat stress alone increased ileum expression of GPx-1 (2.33-fold) and GPx-2 (2.23-fold) relative to thermoneutral conditions. For rats on the Se-enriched diet, heat stress increased (p < 0.05) GPx-1 expression only. Rats on Se-enriched + α-tocopherol diet exhibited increased expression of both genes (p < 0.05). Thus, dietary Se-enriched A. bisporus protected against increase in ileum permeability and up-regulated GPx-1 and GPx-2 expression, selenoenzymes relevant to mitigating oxidative stress.
Collapse
|