1
|
Almeida RLJ, Santos NC, de Brito ACO, Leite ACN, Morais JRF, de Oliveira BF, da Silva PB, da Silva YTF, da Silva Freitas RV, do Bonfim KS, de Sousa ABB, de Figueiredo MJ, da Costa GA, de Assis Cavalcante J, Dos Santos Pereira T. Dual modification of starch: Synergistic effects of ozonation and pulsed electric fields on structural, rheological, and functional attributes. Food Chem 2025; 464:141718. [PMID: 39447264 DOI: 10.1016/j.foodchem.2024.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Study evaluated the influence of ozonization (O3) time combined with pulsed electric fields (PEF) on the modification of bean starch structure. O₃ was used at a concentration of 0.045 g/L for 60 min (Oz1) and 120 min (Oz2) both individually and in combination with 30 kV/cm (P30). Carbonyl content was higher than the carboxyl content, especially with prolonged treatment times (Oz2), indicating partial oxidation. Additionally, higher levels of amylose and degrees of polymerization (DP ≥ 37 and DP 25-36) were observed in the oxidized starches, with significant changes only when combined with PEF. The main morphological and structural modifications included the presence of agglomerates, partial gelatinization, reduced crystallinity, and lower IR1047/1022 in the granules treated with PEF + O3. Oxidized starches exhibited higher solubility, resulting in lower values for rheological parameters, with PEF + 2 h of O3 (Oz2P) standing out. It can be used as prebiotics, controlled release agents and a texturizer for gluten-free foods.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | - Ana Carolina Nóbrega Leite
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | | | | | - Karina Soares do Bonfim
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alison Bruno Borges de Sousa
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Pernambuco, Belo Jardim, PE, Brazil
| | - Maria José de Figueiredo
- Department of Agro-industrial Management and Technology, Federal University of Paraiba, Bananeiras, PB, Brazil
| | | | | | - Tamires Dos Santos Pereira
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Piaui, Uruçuí, PI, Brazil
| |
Collapse
|
2
|
El-Desouky TA. Evaluation of ozonated and ultrasonically treated corn starch as an adsorbent for patulin in buffer solutions. Sci Rep 2025; 15:2264. [PMID: 39825024 PMCID: PMC11742034 DOI: 10.1038/s41598-025-85108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025] Open
Abstract
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity. Adsorption efficiency was tested across different adsorbent doses (150 mg, 200 mg, 250 mg) and contact times (15, 30, 45, and 60 min). The highest removal efficiency of 92.5% was recorded for the 250 mg dose at 60 min, with USOCS showing superior performance compared to native corn starch and OCS. Kinetic studies revealed that the pseudo-second-order model provided the best fit for the adsorption process, indicating chemisorption as the dominant mechanism. The Langmuir and Freundlich isotherms were used to describe the adsorption behavior, with a maximum adsorption capacity (qmax) of 15.19 µg/mg and a Langmuir constant (KL) of 54.00 L/µg for the 250 mg dose. Additionally, the modified starch demonstrated consistent adsorption performance at varying concentrations, with a favorable adsorption intensity (n > 1), supporting its potential for practical applications. These findings highlight the modified corn starch as an efficient, biodegradable, and low-cost adsorbent suitable for mitigating patulin contamination in food products, offering a sustainable alternative for improving food safety.
Collapse
Affiliation(s)
- Tarek A El-Desouky
- Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
3
|
Park JY, Park EY. Improvement of pasting behavior and retrogradation inhibition of normal corn starch treated with phytic acid and malic acid. Food Chem 2025; 463:141052. [PMID: 39241415 DOI: 10.1016/j.foodchem.2024.141052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Phytic acid (PA) and malic acid (MA), as environmentally friendly, plant-based water-soluble acids, were applied to normal corn starch during dry heating at mildly acidic pH to improve its gelatinization and retrogradation behaviors. A significant increase in peak viscosity (5011-6338 mPa·s) was observed in starch treated with MA compared to native corn starch (1162 mPa·s). The treatment with PA and MA further increased the peak viscosity (8140-8621 mPa·s). The interactions of PA and MA with starch were analyzed using ICP-OES, FTIR, and 13C CP/MAS NMR. Swelling power and solubility increased in MA and PA + MA starches. After storage at 4 °C for 14 d, MA and PA + MA starches produced transparent and fluid gels without forming B-type crystals, which indicated inhibition of starch retrogradation by PA and MA treatments. In conclusion, dry heating with PA and MA produced starch with remarkably superior paste viscosity, swelling, and inhibition of retrogradation.
Collapse
Affiliation(s)
- Jae Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Ai X, Niu Q, Li S, Liu C, Wu N, Yu G, Li G. Eco-friendly ozonation of alginate: Physicochemical characterization and degradation mechanism exploration through mass spectrometry. Int J Biol Macromol 2024; 279:135306. [PMID: 39236949 DOI: 10.1016/j.ijbiomac.2024.135306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The ozone degradation has been proven to be an effective degradation method for alginate, while the degradation mechanism remained to be unconfirmed. In this study, two high-molecular-weight alginates with different mannuronic/guluronic (G/M) ratios, HM and HG (G/M 0.49 vs 1.40), were depolymerized using established ozonation technology platform. Notably, HM can be degraded faster than HG especially within initial 30 min, indicating that the β-1, 4-mannuronic bonds are more susceptible to be ozonated than α-1, 4-guluronic bonds. However, HM/HG degraded to LMWA in 2 h and reached a plateau. Therefore, we employed mass spectrometry (MS) to profile the degraded products of LMWA polymannuronate (PM) and polyguluronate (PG) in more intense conditions. The results indicated that the oxidation process continued until all reducing ends were converted to carboxyl groups. The o-diol could directly oxidize to o-dialdehyde. This study provides a MS based elucidation of the mechanism by which alginate cleaves to oligosaccharides through ozonation.
Collapse
Affiliation(s)
- Xuze Ai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Shijie Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Chanjuan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China
| | - Nianxi Wu
- Qingdao Gather Great Ocean Algae Industry Group CO., LTD, Qingdao 266500, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
5
|
Du M, Chen L, Din ZU, Liu X, Chen X, Wang Y, Zhuang K, Zhu L, Ding W. Ozone induced structural variation in OSA waxy rice starch: Effects on the thermal behavior of starch and its stabilized pickering emulsion. Food Chem X 2024; 23:101701. [PMID: 39184317 PMCID: PMC11342896 DOI: 10.1016/j.fochx.2024.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Waxy rice starch (St) was modified by pre-OSA esterification reaction followed by ozone treatment. The molecular structure of this modified product (OSA-OSt) was characterized, and the thermal behaviors and its stabilized Pickering emulsion were evaluated. 1HNMR and XPS results discovered that ozone initially oxidized the hydroxyl groups in the amorphous region of starch (preferentially C2/C3) along with a degree of crosslinking, enhancing the molecular orderliness. This led to an increase in water-holding capability (29.15%) and swelling power (52.8 g/g), and a decrease in solubility (0.35%). TGA, RVA, and DSC indicated that oxidation-induced crosslinking within a brief treatment period enhanced the starch's thermal stability. The structural change enabled the formation of a weak gel structure during the heating process, which displayed high thermal and freeze-thaw stability. The work proves ozone is an effective way of improving the thermal behavior of OSA-starch and its emulsion for subsequent applications in numerous food products.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-ud Din
- Department of Microbiology and Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Xinya Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lijie Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
6
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
7
|
Paulikienė S, Žvirdauskienė R. Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:3267. [PMID: 37765431 PMCID: PMC10534647 DOI: 10.3390/plants12183267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Products must be cleaned or otherwise treated to keep them clean when they are prepared for further production or when they are supplied fresh to the consumer. Cereals have significantly lower settling losses than succulent agricultural products, but the risks that can arise from their hydrothermal treatment before milling-where the cereals are moistened and left to rest for 14 h (temperature 30 °C)-are often underestimated. This operation creates a favourable environment for the development of micro-organisms, which, if not destroyed, can continue throughout the processing stages and be passed on to the consumer. This study investigated the qualitative characteristics of winter wheat hydrothermally treated with ozonated water at a concentration of 1.51 ± 0.1 mg L-1, such as the amount of mould in the grains and flour, as well as the grain protein, moisture, gluten, sedimentation, starch and weight per hectolitre. For the assessment of these parameters, the account was taken of the State standard, which provides the grain class and the type of grain. The reduction in mould fungi after the treatment of the winter wheat grain with ozonated water ranged between 440 and 950 CFU g-1. The results of the microbiological analysis showed that the ozone treatment improved the mycological safety of the flour samples made from the grain from an average of 390 ± 110 CFU g-1 to 29 ± 12 CFU g-1. On the other hand, the treatment of kernels with ozonated water did not significantly affect the basic composition of the winter wheat grains.
Collapse
Affiliation(s)
- Simona Paulikienė
- Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentų Str. 15, 53362 Akademija, Lithuania
| | - Renata Žvirdauskienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų Str. 19, 50254 Kaunas, Lithuania
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Akademija, Lithuania
| |
Collapse
|
8
|
Cao F, Lu S, Wang L, Zheng M, Young Quek S. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem 2023; 415:135765. [PMID: 36854239 DOI: 10.1016/j.foodchem.2023.135765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Native starches have low water solubility at room temperature and poor stability, which demand modifications to overcome. Porous starch as a modified one shows enhanced adsorptive efficiency and solubility compared with its native starch. In contrast, some inherent disadvantages exist, such as weak mechanical strength and low thermal resistance. Fortunately, modified porous starches have been developed to perform well in adsorption capacity and stability. Modified porous starch can be prepared by esterification, crosslinking, oxidation and multiple modifications to the porous starch. The characterization of modified porous starch can be achieved through various analytical techniques. Modified porous starch can be utilized as highly efficient adsorbents and encapsulants for various compounds and applied in various fields. This review dealt with the progress in the preparation, structural characterization and application of modified porous starch. The objective is to provide a reference for its development, utilization, and future research directions.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
9
|
He Y, Ye F, Tao J, Zhang Z, Zhao G. Ozone exposure tunes the physicochemical properties of sweet potato starch by modifying its molecular structure. Int J Biol Macromol 2023; 236:124002. [PMID: 36914058 DOI: 10.1016/j.ijbiomac.2023.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Ozonation is an efficient method for improving the technical performance of some starches, but the feasibility of its use for sweet potato starch remains unknown. The effects of aqueous ozonation on the multi-scale structure and physicochemical properties of sweet potato starch were explored. Structurally, ozonation did not generate significant alterations at the granular level (size, morphology, lamellar structure, and long-range and short-range ordered structures), but led to tremendous changes at the molecular level, including converting hydroxyl groups to carbonyl and carboxyl groups and depolymerizing starch molecules. These structural changes resulted in prominent alternations in the technological performance of sweet potato starch, such as increases in water solubility and paste clarity and decreases in water absorption capacity, paste viscosity, and paste viscoelasticity. For these traits, their amplitudes of variation elevated when the ozonation time was extended and peaked at the longest ozonation time (60 min). The greatest changes in paste setback (30 min), gel hardness (30 min), and the puffing capacity of the dried starch gel (45 min) were observed at moderate ozonation times. In summary, aqueous ozonation is a new method for fabricating sweet potato starch with improved functionality.
Collapse
Affiliation(s)
- Yonglin He
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jianming Tao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Center for Sweet Potato, Chongqing 400715, People's Republic of China.
| |
Collapse
|
10
|
De Baerdemaeker K, Van Reepingen A, Nikiforov A, De Meulenaer B, De Geyter N, Devlieghere F. Non-Thermal Plasma Decontamination Using a Multi-Hollow Surface Dielectric Barrier Discharge: Impact of Food Matrix Composition on Bactericidal Efficacy. Foods 2023; 12:foods12020386. [PMID: 36673477 PMCID: PMC9858114 DOI: 10.3390/foods12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
The non-thermal plasma (NTP) treatment of food products as an alternative for thermal processing has been investigated over the last few years. This quasi-neutral gas contains a wide variety of reactive oxygen and nitrogen species (RONS), which could be lethal for bacterial cells present in the product. However, apart from only targeting bacteria, the RONS will also interact with components present in the food matrix. Therefore, these food components will protect the microorganisms, and the NTP treatment efficiency will decrease. This effect was investigated by supplementing a plain agar medium with various representative food matrix components. After inoculation with Escherichia coli O157:H7 (STEC) MB3885, the plates were treated for 30 s by a multi-hollow surface dielectric barrier discharge (MSDBD) generated in either dry air or air at 75% humidity, at constant power (25.7 ± 1.7 W). Subsequently, the survival of the cells was quantified. It has been found that the addition of casein hydrolysate (7.1 ± 0.2 m%), starch (2.0 m%), or soybean oil (4.6 m%) decreased the inactivation effect significantly. Food products containing these biomolecules might therefore need a more severe NTP treatment. Additionally, with increasing humidity of the plasma input gas, ozone levels decreased, and the bactericidal effect was generally less pronounced.
Collapse
Affiliation(s)
- Klaas De Baerdemaeker
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Amber Van Reepingen
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Research Group, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-264-61-77
| |
Collapse
|
11
|
Nazerian M, Karimi J, Torshizi HJ, Papadopoulos AN, Hamedi S, Vatankhah E. An Improved Optimization Model to Predict the MOR of Glulam Prepared by UF-Oxidized Starch Adhesive: A Hybrid Artificial Neural Network-Modified Genetic Algorithm Optimization Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9074. [PMID: 36556880 PMCID: PMC9785485 DOI: 10.3390/ma15249074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the present article is to study the bending strength of glulam prepared by plane tree (Platanus Orientalis-L) wood layers adhered by UF resin with different formaldehyde to urea molar ratios containing the modified starch adhesive with different NaOCl concentrations. Artificial neural network (ANN) as a modern tool was used to predict this response, too. The multilayer perceptron (MLP) models were used to predict the modulus of rapture (MOR) and the statistics, including the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used to validate the prediction. Combining the ANN and the genetic algorithm by using the multiple objective and nonlinear constraint functions, the optimum point was determined based on the experimental and estimated data, respectively. The characterization analysis, performed by FTIR and XRD, was used to describe the effect of the inputs on the output. The results indicated that the statistics obtained show excellent MOR predictions by the feed-forward neural network using Levenberg-Marquardt algorithms. The comparison of the optimal output of the actual values obtained by the genetic algorithm resulting from the multi-objective function and the optimal output of the values estimated by the nonlinear constraint function indicates a minimum difference between both functions.
Collapse
Affiliation(s)
- Morteza Nazerian
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Jalal Karimi
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Hossin Jalali Torshizi
- Department of Bio Refinery, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Antonios N. Papadopoulos
- Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece
| | - Sepideh Hamedi
- Department of Bio Refinery, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Elham Vatankhah
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
12
|
Yashini M, Khushbu S, Madhurima N, Sunil CK, Mahendran R, Venkatachalapathy N. Thermal properties of different types of starch: A review. Crit Rev Food Sci Nutr 2022; 64:4373-4396. [PMID: 36322685 DOI: 10.1080/10408398.2022.2141680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Starch is present in high amount in various cereals, fruits and roots & tubers which finds major application in industry. Commercially, starch is rarely consumed or processed in its native form, thus modification of starch is widely used method for increasing its application and process stability. Due to the high demand for starch in industrial applications, researchers were driven to hunt for new sources of starch, including modification of starch through green processing. Thermal properties are significant reference parameters for evaluating the quality of starch when it comes to cooking and processing. Modification of starches affects the thermal properties, which are widely studied using Differential scanning calorimeter or Thermogravimetric analysis. It could lead to a better understanding of starch's thermal properties including factors influencing and expand its commercial applications as a thickener, extender, fat replacer, etc. in more depth. Therefore, the review presents the classification of starches, factors influencing the thermal properties, measurement methods and thermal properties of starch in its native and modified form. Further, this review concludes that extensive research on the thermal properties of new sources of starch, as well as modified starch, is required to boost thermal stability and extend industrial applications.
Collapse
Affiliation(s)
- M Yashini
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - S Khushbu
- University of Hohenheim, Stuttgart, Germany
| | - N Madhurima
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - N Venkatachalapathy
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| |
Collapse
|
13
|
Rostamabadi H, Rohit T, Karaca AC, Nowacka M, Colussi R, Feksa Frasson S, Aaliya B, Valiyapeediyekkal Sunooj K, Falsafi SR. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Freeze Moisture Treatment and Ozonation of Adlay Starch (Coix lacryma-jobi): Effect on Functional, Pasting, and Physicochemical Properties. Polymers (Basel) 2022; 14:polym14183854. [PMID: 36146001 PMCID: PMC9504366 DOI: 10.3390/polym14183854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Adlay starch has great potential as a cereal starch, but it has several weaknesses, namely a low swelling volume, low solubility, and low stability. The purpose of this study was to improve the characteristics of adlay starch, such as porosity, functional properties, and pasting properties, through starch modification using freeze moisture treatment (FMT) and ozonation. This study consisted of several treatments, namely FMT, ozonation, and a combination of FMT + ozonation. The results show that the FMT and ozonation generally increased water absorption capacity, swelling volume, solubility, and number of pores of the starch granule. The pasting properties showed an increase in the viscosity of the hot paste and caused a decrease in the gelatinization temperature, breakdown, and setback viscosity. FMT 70% + ozonation produced modified adlay starch with a porous granular surface, swelling volume value of 21.10 mL/g, water absorption capacity of 1.54 g/g, a solubility of 9.20%, and an increase in the amorphous structure but did not cause the emergence of new functional groups. The combination of FMT + ozonation was effective in improving the functional, pasting, and physicochemical properties of adlay starch.
Collapse
|
15
|
Wang Z, Mhaske P, Farahnaky A, Kasapis S, Majzoobi M. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Hu J, Li X, Cheng Z, Fan X, Ma Z, Hu X, Wu G, Xing Y. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
da Luz SR, Almeida Villanova F, Tuchtenhagen Rockembach C, Dietrich Ferreira C, José Dallagnol L, Luis Fernandes Monks J, de Oliveira M. Reduced of mycotoxin levels in parboiled rice by using ozone and its effects on technological and chemical properties. Food Chem 2022; 372:131174. [PMID: 34624788 DOI: 10.1016/j.foodchem.2021.131174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Contamination of foods by mycotoxins is a reality. However, emerging technologies such as ozonization can be used to reduce the levels of these contaminants. Thus, the aim of this study was to evaluate the effects of using ozone at different period and application times during the soaking step of parboiling process. Samples were analyzed for qualitative and quantitative analysis of mycotoxins, swelling power and solubility, head rice yield, protein solubility, cooking time, texturometric profile, colorimetric profile and defective grains. The results showed tha parboiled rice grains treated with ozone present significant reduction of mycotoxins contamination, regardless of the time and period of application and the mycotoxin evaluated. Regardig to technological properties, the samples treated with ozone in the final 3 h and for 5 h of soaking presented higher head rice yield, luminosity and hardness, with decreases in cooking time, percentage of defective grains and soluble protein.
Collapse
Affiliation(s)
- Suzane Rickes da Luz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil
| | - Franciene Almeida Villanova
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil; Clinical Nutrition Research Center, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore 117599, Singapore
| | | | - Cristiano Dietrich Ferreira
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| | - Leandro José Dallagnol
- Department of Plant Protection, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, Brazil
| | | | - Maurício de Oliveira
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil; Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
18
|
Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. Int J Biol Macromol 2022; 196:63-71. [PMID: 34896473 DOI: 10.1016/j.ijbiomac.2021.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.
Collapse
|
19
|
Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr Rev Food Sci Food Saf 2022; 21:1054-1085. [DOI: 10.1111/1541-4337.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - N. U. Sruthi
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
| |
Collapse
|
20
|
Xu H, Fu X, Ding Z, Kong H, Ding S. Effect of ozone and high‐pressure homogenization on the physicochemical, functional, and in vitro digestibility properties of lily starch. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haishan Xu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Xincheng Fu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Zemin Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Hui Kong
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Shenghua Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| |
Collapse
|
21
|
Wang L, Chen J, Lu S, Xiao P, Li C, Yi C. Structural characterization, physicochemical properties and
in vitro
digestion of finger millet–resistant starch prepared by different methods. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Le Wang
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| | - Jiali Chen
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| | - Shaochuang Lu
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| | - Panfei Xiao
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| | - Chiling Li
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| | - Cuiping Yi
- School of Chemistry and Food Engineering Changsha University of Science & Technology 960, 2nd Section, Wanjiali South Road Changsha Hunan 410114 China
| |
Collapse
|
22
|
Properties of Ozone-Oxidized Tapioca Starch and Its Use in Coating of Fried Peanuts. Molecules 2021; 26:molecules26206281. [PMID: 34684860 PMCID: PMC8538255 DOI: 10.3390/molecules26206281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidation of tapioca via ozone oxidation was carried out under different conditions in comparison with H2O2. The impact of ozonation on physicochemical properties of tapioca was studied and fried peanuts coated with different tapioca were characterized. Different ozone oxidation times (10, 20, and 30 min) and various pH values (5, 7, and 9) were used for tapioca modification. Tapioca oxidized by ozone for 20 min at pH 7 had higher swelling power (SP), water holding capacity (WHC), oil holding capacity (OHC), and viscosity than the native counterpart (P < 0.05). This coincided with the higher carbonyl and carboxyl contents (P < 0.05). The highest frying expansion (FE) with the lowest hardness was attained for fried peanut coated with tapioca oxidized under the aforementioned condition. Therefore, oxidation of tapioca using ozone under optimal conditions could be a potential means to improve frying expansion as well as the crispiness of the fried coated peanuts.
Collapse
|
23
|
|
24
|
Physicochemical Properties of Sago Ozone Oxidation: The Effect of Reaction Time, Acidity, and Concentration of Starch. Foods 2021; 10:foods10061309. [PMID: 34200263 PMCID: PMC8228979 DOI: 10.3390/foods10061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
The disadvantageous properties of sago starch has limited its application in food and industrial processes. The properties of sago starch can be improved by changing its physicochemical and rheological characteristics. This study examined the influence of reaction time, acidity, and starch concentration on the oxidation of sago starch with ozone, a strong oxidant. Swelling, solubility, carbonyl, carboxyl, granule morphology, thermal profile, and functional groups are comprehensively observed parameters. With starch concentrations of 10–30% (v/w) and more prolonged oxidation, sago starch was most soluble at pH 10. The swelling power decreased with a longer reaction time, reaching the lowest pH 10. In contrast, the carbonyl and carboxyl content exhibited the same pattern as solubility. A more alkaline environment tended to create modified starch with more favorable properties. Over time, oxidation shows more significant characteristics, indicating a superb product of this reaction. At the starch concentration of 20%, modified sago starch with the most favorable properties was created. When compared to modified starch, native starch is generally shaped in a more oval and irregular manner. Additionally, native starch and modified starch had similar spectral patterns and identical X-ray diffraction patterns. Meanwhile, oxidized starch had different gelatinization and retrogradation temperatures to those of the native starch.
Collapse
|
25
|
Srivastava S, Mishra G, Mishra HN. Vulnerability of different life stages of
Sitophilus oryzae
insects in stored rice grain to ozone treatment and its effect on physico‐chemical properties in rice grain. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shubhangi Srivastava
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - Gayatri Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| |
Collapse
|
26
|
Mhaske P, Wang Z, Farahnaky A, Kasapis S, Majzoobi M. Green and clean modification of cassava starch - effects on composition, structure, properties and digestibility. Crit Rev Food Sci Nutr 2021; 62:7801-7826. [PMID: 33966555 DOI: 10.1080/10408398.2021.1919050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is a growing need for clean and green labeling of food products among consumers globally. Therefore, development of green modified starches, to boost functionality, palatability and health benefits while reducing the negative processing impacts on the environment and reinforcing consumer safety is in high demand. Starch modification started in mid-1500s due to the inherent limitations of native starch restricting its commercial applications, with chemical modification being most common. However, with the recent push for "chemical-free" labeling, methods of physical and enzymatic modification have gained immense popularity. These methods have been successfully used in numerous studies to alter the composition, structure, functionality and digestibility of starch and in this review, studies reported on green modification of cassava starch, one of the most common utilized starches, within the last ten years have been critically reviewed. Recent research has introduced starch as an abundant, natural substrate for producing resistant starches through biophysical technologies that act as dietary fiber in the human body. It is evident that different techniques and processing parameters result in varying degrees of modification impacting the techno-functionality and digestibility of the resultant starch. This can be exploited by researchers and industrialists in order to customize starch functionality in accordance with application.
Collapse
Affiliation(s)
- Pranita Mhaske
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Stefan Kasapis
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Zarski A, Bajer K, Kapuśniak J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers (Basel) 2021; 13:832. [PMID: 33803238 PMCID: PMC7967182 DOI: 10.3390/polym13050832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers. Therefore, in the present review, an attempt was made to show the possibilities and limitations of using starch as a packaging material. The most important physicochemical features of this biopolymer are discussed, and special attention is paid to more or less environmentally friendly methods of improving its processing properties.
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| | - Krzysztof Bajer
- Lukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Sklodowskiej-Curie 55 Str., 87-100 Torun, Poland;
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| |
Collapse
|
28
|
|
29
|
Dual-process of starch modification: Combining ozone and dry heating treatments to modify cassava starch structure and functionality. Int J Biol Macromol 2020; 167:894-905. [PMID: 33181221 DOI: 10.1016/j.ijbiomac.2020.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/20/2022]
Abstract
This work evaluated for the first time the effect of dual modification of cassava starch by using ozone (O3) and dry heating treatment (DHT). The dual modification was capable to promote fissures on the surface of the starch granule (DHT + O3), affected the starch amorphous domains, presented greater degree of starch oxidation (DHT + O3) and different profiles of starch molecular size distribution. These modifications resulted in starches with different properties. Moreover, the sequence of treatments was decisive for the hydrogel properties: while DHT + O3 resulted in formation of stronger gels, O3 + DHT resulted in weaker gels. In conclusion, this proposed dual modification was capable to produce specific modified starch when compared with the isolated treatments, also expanding the potential of cassava starch applications.
Collapse
|
30
|
Lima DC, Villar J, Castanha N, Maniglia BC, Matta Junior MD, Duarte Augusto PE. Ozone modification of arracacha starch: Effect on structure and functional properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Lin L, Yang J, Ni S, Wang X, Bian H, Dai H. Resource utilization and ionization modification of waste starch from the recycling process of old corrugated cardboard paper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111031. [PMID: 32778311 DOI: 10.1016/j.jenvman.2020.111031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Generally, the mechanical strength and stiffness of old corrugated cardboard (OCC) waste paper are decreased after multiple recycling procedures. Surface sizing starch, which is extensively used in the surface sizing of paper making, accumulates after dissolving from the fibers and is transformed into pollutant during the OCC re-pulping process. To overcome the pollution and reutilization problem of the waste starch during the recycling process of OCC paper, waste starch was ionized using hydrogen peroxide (H2O2) to improve the mechanical properties of OCC paper during the reutilization. The results showed that the carboxyl group of waste starch increased with an increasing degree of ionization, resulting in enhanced copper ion adsorption capacity. Furthermore, the retention rate of the modified starch in the wet-end increased from 18.0% to 48.2%. The OCC paper presented the highest burst index and tensile strength of 8.94 kPa m2/g and 112.5 N m/g, respectively, when MS-2 was added. This work has great significance for implementation of the cleaning production of OCC waste papers and the reutilization of the waste starch.
Collapse
Affiliation(s)
- Lingrui Lin
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuzhen Ni
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiu Wang
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Huiyang Bian
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongqi Dai
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
33
|
Lauer MK, Smith RC. Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr Rev Food Sci Food Saf 2020; 19:3031-3083. [DOI: 10.1111/1541-4337.12627] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Moira K. Lauer
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|
34
|
Xie X, Li X, Lei J, Zhao X, Lyu Y, Mu C, Li D, Ge L, Xu Y. Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111165. [PMID: 32806308 DOI: 10.1016/j.msec.2020.111165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022]
Abstract
Many strategies have been employed to artificially reconstruct adipose tissue in tissue engineering. The functionalization and survival of reconstructed adipose tissue depend on sufficient angiogenesis. Notably, agglomeration growth of adipose-derived stem cells (ASCs) is beneficial to promoting angiogenesis. Herein, we present a porous collagen-based hydrogel for spontaneous agglomeration growth of ASCs to promote angiogenesis. Oxidized starch with different oxidation degree was prepared and used to cross-link collagen to fabricate the porous hydrogel. The gelation time and pore size of hydrogels can be controlled by adjusting the oxidation degree of starch. Crosslinking enhances the mechanical properties, inhibits the swelling and biodegradation of the hydrogels. The hydrogels possess good blood compatibility and cytocompatibility. Significantly, ASCs tended to adhere to the hydrogels and spontaneously grew into spheres along with time. Effective expression of vascular endothelial growth and fibroblast growth factors were observed. Overall, the hydrogels have application prospects in vascularized adipose tissue engineering.
Collapse
Affiliation(s)
- Xiaofen Xie
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, PR China
| | - Jinfeng Lei
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xi Zhao
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongbo Lyu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
| |
Collapse
|
35
|
Handarini K, Sauman Hamdani J, Cahyana Y, Siti Setiasih I. Functional and pasting properties of a starch–lipid complex formed with gaseous ozone and palm oil. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1801723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kejora Handarini
- Agricultural Sciences, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Food Chemistry, Department of Food Technology, Faculty of Agriculture, Dr. Soetomo University, 60119 Surabaya, Indonesia
| | - Jajang Sauman Hamdani
- Laboratory of Horticulture, Department of Agronomy, Universitas Padjadjaran, Bandung, Indonesia
| | - Yana Cahyana
- Laboratory of Food Chemistry, Department of Food Industrial Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Imas Siti Setiasih
- Laboratory of Food Processing Technology, Department of Food Industrial Technology, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
36
|
Ashogbon AO, Akintayo ET, Oladebeye AO, Oluwafemi AD, Akinsola AF, Imanah OE. Developments in the isolation, composition, and physicochemical properties of legume starches. Crit Rev Food Sci Nutr 2020; 61:2938-2959. [DOI: 10.1080/10408398.2020.1791048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Boonsuk P, Sukolrat A, Kaewtatip K, Chantarak S, Kelarakis A, Chaibundit C. Modified cassava starch/poly(vinyl alcohol) blend films plasticized by glycerol: Structure and properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Phetdaphat Boonsuk
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Apinya Sukolrat
- Office of Scientific Instrument and TestingPrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Kaewta Kaewtatip
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Antonios Kelarakis
- School of Physical Sciences and ComputingUniversity of Central Lancashire Preston PR1 2HE UK
| | - Chiraphon Chaibundit
- Department of Materials Science and Technology, Faculty of SciencePrince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
38
|
Maniglia BC, Castanha N, Le-Bail P, Le-Bail A, Augusto PED. Starch modification through environmentally friendly alternatives: a review. Crit Rev Food Sci Nutr 2020; 61:2482-2505. [PMID: 34374585 DOI: 10.1080/10408398.2020.1778633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Starch is a versatile and a widely used ingredient, with applications in many industries including adhesive and binding, paper making, corrugating, construction, paints and coatings, chemical, pharmaceutical, textiles, oilfield, food and feed. However, native starches present limited applications, which impairs their industrial use. Consequently, starch is commonly modified to achieve desired properties. Chemical treatments are the most exploited to bring new functionalities to starch. However, those treatments can be harmful to the environment and can also bring risks to the human health, limiting their applications. In this scenario, there is a search for techniques that are both environmentally friendly and efficient, bringing new desired functionalities to starches. Therefore, this review presents an up-to-date overview of the available literature data regarding the use of environmentally friendly treatments for starch modification. Among them, we highlighted an innovative chemical treatment (ozone) and different physical treatments, as the modern pulsed electric field (PEF), the emerging ultrasound (US) technology, and two other treatments based on heating (dry heating treatment - DHT, and heat moisture treatment - HMT). It was observed that these environmentally friendly technologies have potential to be used for starch modification, since they create materials with desirable functionalities with the advantage of being categorized as clean label ingredients.
Collapse
Affiliation(s)
- Bianca C Maniglia
- ONIRIS-GEPEA UMR CNRS, Nantes, France.,BIA-INRA UR, Nantes, France.,SFR IBSM INRA CNRS, Nantes, France.,Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz, College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Nanci Castanha
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz, College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | - Alain Le-Bail
- ONIRIS-GEPEA UMR CNRS, Nantes, France.,SFR IBSM INRA CNRS, Nantes, France
| | - Pedro E D Augusto
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz, College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.,Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
39
|
Avila-Sierra A, Vicaria J, Jurado-Alameda E, Martínez-Gallegos J. Removal of food soil by ozone-based oxidation processes: Cleaning and wastewater degradation in a single step. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Handarini K, Hamdani JS, Cahyana Y, Setiasih IS. Functional, thermal, and molecular properties of ozonated starches. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/443/1/012102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
|
42
|
Handarini K, Hamdani JS, Cahyana Y, Setiasih IS. Gaseous Ozonation at Low Concentration Modifies Functional, Pasting, and Thermal Properties of Arrowroot Starch (
Maranta arundinaceae
). STARCH-STARKE 2020. [DOI: 10.1002/star.201900106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kejora Handarini
- Laboratory of Food ChemistryDepartment of Food TechnologyFaculty of Agriculture, Dr. Soetomo University 60119 Surabaya Indonesia
- Agricultural SciencesFaculty of AgricultureUniversitas Padjadjaran 45363 Bandung Indonesia
| | - Jajang Sauman Hamdani
- Laboratory of HorticultureDepartment of AgronomyUniversitas Padjadjaran 45363 Bandung Indonesia
| | - Yana Cahyana
- Laboratory of Food ChemistryDepartment of Food Industrial TechnologyUniversitas Padjadjaran 45363 Bandung Indonesia
| | - Imas Siti Setiasih
- Laboratory of Food Processing TechnologyDepartment of Food Industrial TechnologyUniversitas Padjadjaran 45363 Bandung Indonesia
| |
Collapse
|
43
|
Alexandre APS, Castanha N, Costa NS, Santos AS, Badiale-Furlong E, Augusto PED, Calori-Domingues MA. Ozone technology to reduce zearalenone contamination in whole maize flour: degradation kinetics and impact on quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6814-6821. [PMID: 31368532 DOI: 10.1002/jsfa.9966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maize is one of the most important cereals. It is used for different purposes and in different industries worldwide. This cereal is prone to contamination with mycotoxins, such as zearalenone (ZEN), which is produced mainly by Fusarium graminearum, F. culmorum and F. equiseti. Toxin production under highly moist conditions (aw > 0.95) is exacerbated if there are alternations between low temperatures (12-14 °C) and high temperatures (25-28 °C). Even if good production practices are adopted, mycotoxins can be found in several stages of the production chain. For this reason, an alternative to reducing this contamination is ozonation. This study evaluated the reduction of ZEN in naturally contaminated whole maize flour (WMF) treated with 51.5 mg L-1 of ozone for up to 60 min. Pasting properties, peroxide value, and fatty acid composition were also evaluated. RESULTS Zearalenone degradation in ozonated WMF was described by a fractional first-order kinetic, with a maximum reduction of 62.3% and kinetic parameter of 0.201 min-1 in the conditions that were evaluated. The ozonation process in WMF showed a decrease in the apparent viscosity, a decrease in the proportion of linoleic, oleic, and α-linolenic fatty acids, an increase in the proportion of palmitic acid, and an increase in the peroxide value. CONCLUSION Ozonation was effective in reducing ZEN contamination in WMF. However, it also modified the pasting properties, fatty acid profile, and peroxide value, affecting functional and technological aspects of WMF. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Allana Patrícia Santos Alexandre
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Nanci Castanha
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Naiara Silva Costa
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Amanda Silva Santos
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | | | - Pedro Esteves Duarte Augusto
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, Brazil
| | - Maria Antonia Calori-Domingues
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
44
|
La Fuente CI, de Souza AT, Tadini CC, Augusto PED. Ozonation of cassava starch to produce biodegradable films. Int J Biol Macromol 2019; 141:713-720. [DOI: 10.1016/j.ijbiomac.2019.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
45
|
Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydr Polym 2019; 230:115573. [PMID: 31887939 DOI: 10.1016/j.carbpol.2019.115573] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
Many kinds of multi-drug-resistant microorganisms have appeared. Moreover, monotherapy is increasingly no longer adequate for many complicated bacterial infections. Therefore, development of efficient combination antibacterial agent is becoming crucial. Herein, we present a hybrid antibacterial agent with enhanced antibacterial activity and high aqueous dissolubility based on silver nanoparticles and curcumin. The silver nanoparticles were firstly synthesized using oxidized amylose as an environmentally friendly reducing agent and stabilizer. Then, curcumin was added into the above mixture to get the hybrid antibacterial agent. The hybrid antibacterial agent presented high dissolubility in aqueous solution and enhanced antibacterial activity. In addition, the hybrid antibacterial agent presented good antioxidant activity and cell compatibility. Overall, the developed hybrid antibacterial agent has a potential to combat multiple bacteria-induced infections of wound surfaces.
Collapse
|
46
|
Maniglia BC, Lima DC, Matta Junior MD, Le-Bail P, Le-Bail A, Augusto PE. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. Int J Biol Macromol 2019; 138:1087-1097. [DOI: 10.1016/j.ijbiomac.2019.07.124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 01/27/2023]
|
47
|
Combining ozone and ultrasound technologies to modify maize starch. Int J Biol Macromol 2019; 139:63-74. [DOI: 10.1016/j.ijbiomac.2019.07.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022]
|
48
|
Matta Junior M, Castanha N, dos Anjos CBP, Augusto PED, Sarmento SBS. Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch. Food Res Int 2019; 123:56-63. [DOI: 10.1016/j.foodres.2019.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
|
49
|
Structural, Physicochemical, and Functional Properties of Electrolyzed Cassava Starch. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:9290627. [PMID: 31192252 PMCID: PMC6525864 DOI: 10.1155/2019/9290627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 11/18/2022]
Abstract
Cassava starch was oxidized using the electrolysis system. Sodium chloride was added to this system at various concentrations from 0.5 to 5.0 % (w/v). The whiteness of modified starches proportionally increased based on the NaCl concentration and human eyes could recognize the difference of color. Under treatment, dents occurred on the surface of starch granule. Concentration of carbonyl and carboxyl groups was increased compared to native starch. Based on X-ray diffraction pattern, oxidized starch kept its A-type. Besides, the ratios of alpha-helix/amorphous regions remained indicating oxidation reaction mainly subjected on amorphous region. Intrinsic viscosity was used to indirectly calculate the average molecular weight of sample. Furthermore, results showed that average molecular weight was significantly reduced (from 2.09-fold to 13.22-fold) based on the reacting NaCl concentration. The increase of NaCl content related to the increase of retrogradation of treated starches. At various temperatures (30-95°C), swelling factor and clarity reflected negative and positive correlations to NaCl concentration.
Collapse
|
50
|
Properties and possible applications of ozone-modified potato starch. Food Res Int 2019; 116:1192-1201. [DOI: 10.1016/j.foodres.2018.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/22/2018] [Indexed: 11/18/2022]
|